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Abstract—Wireless ultrasound (US) systems that produce high-
quality images can improve current clinical diagnosis capabilities
by making the imaging process much more efficient, affordable,
and accessible to users. The most common technique for gener-
ating B-mode US images is delay and sum (DAS) beamforming,
where an appropriate delay is introduced to signals sampled
and processed at each transducer element. However, sampling
rates that are much higher than the Nyquist rate of the signal
are required for high resolution DAS beamforming, leading to
large amounts of data, making transmission of channel data
over WIFI impractical. Moreover, the production of US images
that exhibit high resolution and good image contrast requires
a large set of transducers which further increases the data
size. Previous works suggest methods for reduction in sampling
rate and in array size. In this work, we introduce compressed
Fourier domain convolutional beamforming, combining Fourier
domain beamforming, sparse convolutional beamforming, and
compressed sensing methods. This allows reducing both the
number of array elements and the sampling rate in each element,
while achieving high resolution images. Using in vivo data we
demonstrate that the proposed method can generate B-mode
images using 142 times less data than DAS. Our results pave the
way towards wireless US and demonstrate that high resolution
US images can be produced using sub-Nyquist sampling and a
small number of receiving channels.

Index Terms—Beamforming, compressed sensing, medical ul-
trasound, sparse arrays, wireless ultrasound

I. INTRODUCTION

ULTRASOUND (US) imaging is one of the most common
medical imaging methods. It offers a wide range of

noninvasive applications, including cardiac, fetal, and breast
imaging. In traditional US, imaging is performed by transmit-
ting acoustic pulses along a narrow beam from an array of
transducer elements. While propagating, echoes are scattered
by acoustic impedance perturbations in the tissue and detected
by the same array of transducers. The data collected by the
receiving elements is then stored and processed to create an
image line in a way called beamforming [1]. In the process
of beamforming, the signals are aligned by introducing appro-
priate time delays and subsequently averaged. Beamforming
allows to focus and steer the beam to a desired direction
corresponding to the transmission path or a point in space. This
results in signal-to-noise ratio (SNR) improvement together
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with improved angular localization, which makes it one of the
main components in the imaging cycle.

The standard approach for beamforming is delay and sum
(DAS) beamforming [2], [3] due to its low computational cost
and real time capabilities. In DAS beamforming delays are
implemented digitally after sampling the signals in order to
align the data, before averaging over the channels. To allow
high resolution time delays and avoid artifacts caused by the
digital implementation of beamforming in time, US signals
are typically sampled at a rate 4 to 10 times higher than their
Nyquist rate [4].

To generate US images with high resolution and image
contrast, the beam pattern of the beamformer should have
narrow main lobe and low sidelobes [2], [5]. Although being
simple for real time applications, DAS suffers from low
image resolution and contrast. Increasing the number of array
elements can improve image quality when keeping the array
pitch below half a wavelength to avoid grating side-lobes
[6]. However, a large number of transducer elements, each
sampling the signal at high rates, results in an enormous
amount of data that needs to be stored and processed, as well
as many sampling channels. The large amount of data leads to
impractical demands on the hardware and system power when
considering portable devices and wireless probes. Therefore,
rate reduction, together with image quality enhancement, is of
great importance for portable US devices.

Several methods have been studied recently for data, power,
and sampling rate reduction. Reduction in sampling rate has
been investigated in several studies, based on the combina-
tion of compressed sensing (CS) [7]–[10] and sub-Nyquist
sampling [4] by exploiting the finite rate of innovation (FRI)
[11] structure of the received US signal. It was shown in
[8], [9] that DAS beamforming can be implemented equiv-
alently in the Fourier domain, leading to frequency domain
beamforming, with sampling rates lower than those known in
today’s commercial US systems. This was later extended to
plane-wave imaging [12]. The suggested sub-Nyquist system
was implemented in the context of radar [13] based on the
ideas of Xampling presented in [7], [14]–[17]. A CS-based
synthetic transmit aperture technique is presented in [18].
This method increases the frame rate by transmitting a small
number of randomly apodized plane waves, and uses CS to
recover the full channel data. However, none of the methods
above considered the reduction in receiving elements.

Several approaches for generating US images using fewer
receiving elements were studied in the literature. One example
is relying on the analog implementation of sub-aperture and
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microbeamformers [19], where part of the beamformation is
moved to the probe handle. However, this requires producing
expensive integrated circuits with high power consumption and
affects image quality [20]. Other methods considered the usage
of sparse arrays [21]–[24] where some of the elements are
removed. In [25] Cohen et al. introduced a new beamforming
method called convolutional beamforming algorithm (COBA).
They showed that by applying COBA, the resulting beam-
pattern is equivalent to that of the virtual array given by
the sum co-array [26], [27]. Therefore, one can use thinned
sparse arrays, whose sum co-array is a full uniform linear
array (ULA), and result in the same beampattern that would
have been obtained using the original full array. Using COBA
together with sparse economic array geometries can result
in a huge reduction of receiving elements, as shown in [25]
and [28]–[34]. Although achieving reduction in the number of
receiving elements, these techniques did not address lowering
the sampling rate.

In [35], we presented the idea of combining both sampling
rate reduction and spatial reduction. It was shown that US
signals acquired by a sparse array can be sub-sampled to their
effective Nyquist rate, delayed in the frequency domain, and
then convolutionally beamformed, resulting in a US image
with high image quality but produced from a small data
set. However, in [35] the structure of the convolutionally
beamformed signal was not exploited to reduce the sampling
rates to sub-Nyquist rates.

The main goal of this paper is to present a beamforming
and recovery method that reduces the number of receiving
elements while sampling each of the channels at a rate lower
than the Nyquist rate. We aim for a beamformer that preserves
or improves image quality in terms of resolution and contrast,
when compared to DAS beamforming. To achieve this goal,
we introduce a compressed frequency domain convolutional
beamforing algorithm (CFCOBA) which reconstructs the con-
volutionally beamformed signal from only a portion of the
signal’s Fourier coefficients.

We begin by introducing the relationship between the
Fourier coefficients of the received signal to those of the
convolutionally beamformed signal, based on [9], [25]. This
relation uses the frequency equivalent of delaying signals in
time and sparse arrays with desired sum co-array properties.
We then show that the Fourier coefficients of the convolu-
tionally beamformed signal can be calculated efficiently using
the fast Fourier transform (FFT), making its implementation
in real time possible. The proposed method for calculating
the convolutionally beamformed signal Fourier coefficients
requires only a portion of the signals bandwidth and uses
sparse arrays, resulting in massive data size reduction. To
reconstruct the convolutionally beamformed signal, we prove
that the signal obeys an FRI model based on the square of
the known transmitted acoustic pulse, which enables recovery
using known CS methods.

Next, we evaluate the suggested technique on simulated
and in vivo data of several body parts scanned by different
US machines. Using this data we show that US images

can be produced without impacting image quality and even
improving it when compared to DAS using up to two orders
of magnitude less data. The data used for the proposed method
is sampled at a rate lower than its effective Nyquist rate, which
is typically much lower than its highest frequency. Thus, we
illustrate that CFCOBA allows preservation of image quality
with up to 142-fold reduction in data size due to the lower
sampling rate and efficient sparse arrays used upon reception.
Our approach offers significant data size reduction compared
to common methods used today, combined with an efficient
implementation, which can impact the system size, power
consumption, cost, and mobility, making wireless US imaging
feasible.

The rest of the paper is organized as follows. Section II
discusses several beamforming methods such as DAS, Fourier
domain beamforming, and COBA, together with examples of
sparse arrays. Section III presents our approach for combining
data reduction in the acquiring array size and in the sampling
rate. We consider further reduction in sampling rate in Section
IV and reconstruction of the signal using CS methods. The
performance of the suggested technique is evaluated in Section
V using phantom and in vivo scans. The paper is concluded
in Section VI.

Table I summarizes notation used throughout the paper.

II. ULTRASOUND BEAMFORMING TECHNIQUES

In most US imaging systems, the US image is built line by
line for each direction θ, using multiple transducer elements to
transmit and receive acoustic pulses. In that way, beamforming
can be performed both during transmission and reception.
In transmission, a pulse is generated and transmitted by an
array of transducer elements. The pulse transmitted by each
element in the array is delayed and scaled so that their sum
creates a directional beam propagating at a certain direction
through the tissue. A whole sector is radiated by subsequently
transmitting at different angles. The transmission parameters
per angle are calculated offline and saved in tables, which
makes real-time computational complexity in the transmit
negligible. Beamforming in reception, however, is much more
challenging. It involves dynamically delaying signals received
at each of the transducer elements and averaging them. By
averaging the delayed signals, the SNR of the beamformed
signal is enhanced and a line in the image is formed. In
the next subsections, we review several receive beamforming
methods that allow reducing the number of samples or the
number of receiving antenna elements.

A. Time Domain Beamforming

Consider a uniform linear array, M , comprised of |M | =
2N − 1 transducer elements aligned along the x-axis. The
imaging cycle starts at t = 0, when the pulse is transmitted
by each transducer element, resulting in a beam propagating
at direction θ through the tissue. The energy is scattered
by reflectors and the echoes are received by all elements at
times that depend on their location. Denote by φm(t) the
signal received by the mth element. Beamforming involves



TABLE I
LIST OF NOTATION

M Transducer array geometry
|M | Size of array M

min(M),max(M) Minimum and maximum element of array M
a Vector
A Matrix

(·)∗ Complex conjugate
∗, ∗

s
discrete linear convolution over Fourier coefficients and discrete linear convolution over spatial dimension

φm(t) Signal received at mth transducer element
φ̂m(t; θ) Dynamically delayed received signal used for beamforming in direction θ
Φ(t; θ) Beamformed signal at direction θ
um(p; θ) Normalized delayed signal at channel m

T Time duration of the receiving signal
cm[k] kth Fourier coefficient of the received signal at channel m
c[k] kth Fourier coefficient of the beamformed signal
ĉm[k] kth Fourier coefficient of the delayed signal at channel m
fs Sampling rate for traditional beamforming

Nst = bT · fs c Number of samples required for traditional beamforming
β Effective band-pass bandwidth of the recieved signal
B Cardinality of β

fsEN = B/T Nyquist sampling rate of effective band-pass bandwidth of the received signal
fsN Sub Nyquist sampling rate
βsN Subset of β used for sub-Nyquist sampling
BsN Cardinality of βsN

NsN = 2BsN − 1 Number of time samples corresponding to sub Nyquist rate

averaging the signals received by different array elements
while compensating using time shifts for alignment due to the
differences in arrival time. The delay that needs to be applied
is defined by the speed of sound in the tissue, c, and by the
distance between the reference element, m0, and the receiver,
δm. Applying an appropriate delay to φm(t), the reflection
at each receiving element is aligned to the reference point,
resulting in φ̂m(t; θ) which is the aligned signal [8], [36]:

φ̂m(t; θ) = φm(τm(t, θ)),

τm =
1

2
(t+

√
t2 − 4(δm/c)t sin θ + 4(δm/c)2). (1)

These signals are then averaged to form the beamformed signal
for direction θ:

ΦDAS(t; θ) =
1

|M |

|M |∑
m=1

φ̂m(t; θ). (2)

In practice, DAS beamforming is performed digitally. The
applied delays are on the order of nanoseconds which results in
a sampling rate that can be as high as hundreds of megahertz
[37], a requirement that is impractical. Therefore, US data
signals are sampled at lower rates, on the order of tens of
megahertz and fine delay resolution is obtained by subsequent
digital interpolation which adds an additional computational
load. Yet, these lower rates are much higher than the Nyquist
rate of the signal which is twice its’ bandwidth [4]. A well
known rule of thumb is that the sampling rate of the signal
should be 4 to 10 times the transducer central frequency. These
high sampling rates, together with the large number of array
elements used, results in a huge amount of data which makes
US channel data transmission over WIFI impossible.

B. Frequency Domain Beamforming

Frequency domain beamforming was suggested in [9] in
order to reduce the sampling rate. Chernyakova et al. showed
the equivalence of performing beamforming in time and in
the Fourier domain. It was then shown that beamforming
can be performed efficiently using a small number of Fourier
coefficients of the received signals. Let c[k] denote the kth
Fourier series coefficient of the beamformed signal and ĉm[k]
the kth Fourier series coefficient of the delayed signal at
channel m. Based on (2) and the linearity of the Fourier
transform, it can be seen that

c[k] =
1

|M |

|M |∑
m=1

ĉm[k], (3)

where ĉm[k] is defined as

ĉm[k] =
1

T

∫ T

0

I[0,TB(θ))(t)φ̂m(t; θ)e
−2πj
T ktdt. (4)

Here I[a,b) is the indicator function equal to 1 when a ≤ t < b.
The beam is supported on [0, TB(θ)), where TB(θ) < T is
defined in [8] and T is the pulse penetration depth.

According to [8] and [9], the Fourier coefficients of the
delayed signal can be expressed as

ĉm[k] =

∞∑
n=−∞

cm[k − n]Qk,m;θ[n], (5)

where cm[k] are the Fourier coefficients of the received signals
in each channel before delay. The variables Qk,m;θ[n] are
the Fourier coefficients of a distortion function which is
determined solely by the geometry of the imaging setup and
can be computed offline once and stored in memory using a
look up table (LUT) for real time calculations. By using the



Fourier coefficients of the distortion function, we effectively
transfer the beamforming delays to the frequency domain.
The summation in (5) can be replaced by a relatively small
finite summation due to the decay properties of {Qk,m;θ[n]}
and the fact that most of the energy of this set is centered
around the DC component. Thus, {Qk,m;θ[n]} decays rapidly
for n < −N1, n > N2 where N1, N2 ∈ N, leading to

ĉm[k] =

N2∑
n=−N1

cm[k − n]Qk,m;θ[n]. (6)

Combining (6) and (3) yields frequency domain beamforming
(FDBF):

c[k] =
1

|M |

|M |∑
m=1

N2∑
n=−N1

cm[k − n]Qk,m;θ[n]. (7)

Appropriate zero padding and applying an inverse Fourier
transform to {c[k]}, results in the time domain beamformed
signal.

The importance of FDBF is that it only requires the nonzero
Fourier coefficients of the received signal. Those coefficients
are obtained from sub Nyquist samples of the signal at each
receiving element. Following [9] we know that the beam-
formed signal will contain at most (B + N1 + N2) nonzeros
frequency components, where B is the cardinality of the set
of ks for which cm[k] is nonzero. In practice, due to the fast
decaying property of the distortion function, B � N1, N2

implies that the bandwidth of the beamformed signal equals
B. Hence, to perform beamforming in frequency, we need only
a portion of the Fourier coefficients of the signal. To obtain
them, we use the Xampling mechanism proposed in [7]. The
implementation of this mechanism is discussed in [13]. The
output is sampled at its effective Nyquist rate and the required
Fourier coefficients are the Fourier transform of the output.
This yields a data size reduction of Nst/B.

C. Convolutional Beamforming

Substantial data reduction can also be achieved by the
COnvolutional Beamforming Algorithm (COBA), [25], [28],
which produces images, at least as good as those obtained by
DAS, using fewer array elements. The key idea is that the
effective beampattern obtained by COBA is equivalent to the
beampattern that would have been obtained using the sum co-
array of the given physical array [38], which produces images
with better resolution and contrast.

Let φm(p, θ) denote the delayed signal at channel m,
sampled at sampling intervals Ts = 1

fs
, where p stands for

the pth sample. The beamformed signal in COBA is

ΦCOBA(p; θ) =

N−1∑
n=−(N−1)

N−1∑
m=−(N−1)

un(p; θ)um(p; θ), (8)

where
um(p; θ) = ej∠φ̂m(p;θ)

√
|φ̂m(p; θ)|, (9)

with ∠φ̂m(p, θ) and |φ̂m(p, θ)| being the phase and the mag-
nitude of φ̂m(p, θ), respectively. The operation in (9), ensures

that the amplitude of each product in (8) will be on the same
order of the received signal at each channel. The relationship
in (8) can be written equivalently as

ΦCOBA(p; θ) =

2(N−1)∑
n=−2(N−1)

sn(p; θ), (10)

where
sn(p; θ) =

∑
i,j∈U,i+j=n

ui(p; θ)uj(p; θ), (11)

with n = −2(N − 1), ..., 2(N − 1). Therefore, the vector s,
whose entries are sn can be calculated by

s(p; θ) = u(p; θ) ∗
s
u(p; θ). (12)

Convolution is obtained by zero padding u to length 2|M |−1.
Therefore, we can equivalently apply lateral convolution on the
delayed signals, and then sum the elements.

To achieve a beampattern with desired properties we exam-
ine the beampattern of the DAS beamformer [25]

HDAS(θ) =

N−1∑
n=−(N−1)

exp

(
−jω0

δn sin θ

c

)
, (13)

where ω0 is the central frequency of the transducer and δn =
nδ, with δ being the distance between two consecutive array
elements. Based on the definition of COBA in (8), we see that
HCOBA = HDASHDAS , which leads to

HCOBA(θ) =

N−1∑
n,m=−(N−1)

exp

(
−jω0

δ sin θ

c
(n+m)

)
.

(14)
Following [25], this summation can be written as a single
polynomial

HCOBA(θ) =

2(N−1)∑
n=−2(N−1)

an exp

(
−jω0

δ sin θ

c
n

)
, (15)

where an are intrinsic apodization weights given by a = IM ∗
IM . Here IM is a binary vector whose mth entry is 1 if m ∈
M .

Definition 1: Sum co-array: Consider a linear array M . We
define the set

S̃M = {n+m : n,m ∈M} . (16)

The sumset of the set M is SM and is defined to consist of
only the distinct elements of S̃M . The array with elements
located at nδ and n ∈ SI , is the sum co-array of M .
Equation (15) can be thought of as the beam pattern of the
DAS beamformer operating on the sum co-array. The sum co-
array is larger than the original array which leads to improved
imaging performance thanks to the effective beampattern.
Therefore, a thinned array, comprised of the original array
after removing some of its elements, can be used to actually
reduce the data size. By preserving the desired sum co-array,
the beampattern is not changed and might be improved.



To obtain thin arrays with desirable properties, [28] sug-
gested the use of fractal arrays [30]–[34]. Fractal arrays are
defined recursively by

W0 = 0,

Wr+1 = ∪n∈G(Wr + nLr), r ∈ N, (17)

where the array G is the generator array in fractal terminology,
with min(G) = 0. The translation factor L is given by L =
2 max(G) + 1 where r is the array order. The resulting array,
W , is composed of spatially arranged copies of G. This choice
leads to very thin arrays with desirable properties, and co-
arrays that include the ULA of size |M |.

Using thinned arrays leads to reduction in power and data
rates since less data is sampled, processed and stored.

III. FREQUENCY DOMAIN COBA

In this section, we follow [35] and show that FDBF can be
combined with COBA. This leads to an efficient beamforming
method using a small number of array elements, each sampled
at the effective Nyquist rate of the signal, without impacting
the image quality compared to DAS.

A. Implementation

Consider a ULA of desired aperture |M | and a given array
geometry U ⊆M corresponding to a desired array following
Section II-C. The signal φm(t; θ) is acquired by the receiving
element m. Let cm[k] be the kth Fourier series coefficient of
the received signal at channel m

cm[k] =
1

T

∫ T

0

I[0,TB(θ))(t)φm(t; θ)e
−2πj
T ktdt. (18)

As stated in [9], a typical ultrasound signal has one main band
of energy, of bandwidth B. The energy outside this band is
much lower, hence the sampling rate of the signal is set to
achieve a consecutive set of the Fourier coefficients of the
received signals, β, such that |β| = B. This implies that the
sampling rate of the signal is dictated by the bandwidth of the
signal, and denoted by fsEN = B/T , with T defined in II-B.

Next, as shown in (6), by multiplying the Fourier coeffi-
cients of the distortion function and the Fourier coefficients
of the received signals elementwise, an appropriate delay is
applied to the received signals, obtaining the Fourier coeffi-
cients of the delayed signal. The frequency domain delayed
(FDD) signal, φ̂FDDm (p; θ), is obtained by applying an inverse
Fourier transform on (6). Here p denotes the pth sample of
the signal on the time grid of the delayed signal, p = 1...Nst.
By plugging φ̂FDDm (p; θ) into (9) we get

uFDDn (p; θ) = uTDDn (p; θ). (19)

We refer to time domain delayed as TDD, which holds for
a signal delayed using traditional delaying as shown in (1).
The key idea is that the delay can be achieved regardless of
the array geometry. Having obtained the equivalence of the
delayed signals in time and frequency, we can easily proceed
in applying COBA.

Finally, we plug both the time domain and the frequency
domain delayed signals into (8) and proceed according to
Section II-C, which results in equivalence of the convolutional
beamforming applied to TDD signal and FDD signal.

B. Data reduction

Data size reduction and power reduction are two of the
main challenges encountered when trying to implement a
wireless US imaging system. Power and data size reduction
are achieved automatically by reducing the number of re-
ceive channels. Moreover, the modulated transmitted pulse
has one main band of energy, thus, only a consecutive set
of Fourier coefficients that is contained in this band needs to
be obtained, using the Xampling mechanism. Therefore, by
combining COBA and FDBF, one can sample using a sparse
set of array elements each sampled at the Nyquist rate of the
signal. The resulting data size reduction is therefore |M ||Ũ |

Nst
B ,

where |M |, |Ũ | are the original and the thinned arrays size,
respectively, Nst is the number of samples traditionally needed
for DAS and B is the actual signal bandwidth.

IV. COMPRESSED FREQUENCY DOMAIN COBA
We now consider reconstruction of the convolutional beam-

formed signal from partial frequency data. To this end, we first
derive a relation between the Fourier coefficients of the con-
volutionally beamformed signal and the Fourier coefficients of
the received signals. Then, we examine the FRI structure of the
convolutionally beamformed signal and prove that based on the
FRI model we can reconstruct the convolutionally beamformed
signal from only a portion of its Fourier coefficients.

A. Exploiting the Fourier Coefficients Relationship

Here we derive the relation between the Fourier coefficients
of the received signal at each channel of U , the desired
array geometry defined in Section II-C, and those of the
convolutionally beamformed signal. The calculation is done
for selected θ and for signals that correspond to FDD; those
subscripts are not written explicitly for brevity. We aim to
reduce the sampling rate further than proposed in [35], by
obtaining a set of consecutive Fourier coefficients, βsN ⊆ β.
The set βsN is acquired using an appropriate filter [7]

φm(ns) =

∫ ∞
−∞

φm(t)fr(t− nsTsN )dt, (20)

where

fr(t) =

r∑
l=−r

f(t+ lT ), (21)

r is a constant determined by the support of the transmitted
pulse, T is the duration of the received signals, and TsN is
the sampling period for sub-Nyquist sampling. The filter, f(t),
satisfies the following frequency response

F (ω) =


0, if ω =

2πk

T
, k /∈ βsN

1, if ω =
2πk

T
, k ∈ βsN

arbitrary, else.

(22)



Let NsN be the number of samples acquired by sub-Nyquist
sampling of the received signal. We define the compressed
frequency domain signal by

Φ̂(ns)CFCOBA =
∑
n∈U

∑
m∈U

φ̂n(ns)φ̂m(ns), (23)

where ns = 0, ..., NsN − 1 are the discrete time samples,
and φ̂m(ns), φ̂n(ns) are the delayed signals at channels m
and n respectively, with the delay applied in the frequency
domain. Each of the delayed signals has BsN = |βsN | Fourier
coefficients that are not zero, dictated by the filters width. The
Fourier coefficients of the acquired signals are zero padded to
length NsN = 2BsN − 1. Based on the multiplication in the
time domain, the signal Φ̂(ns)CFCOBA has 2BsN − 1 non-
zero Fourier coefficients.

Next, we write the Fourier coefficients of the convolution-
ally beamformed signal based on the NsN samples acquired

ĉ[k]CFCOBA =
∑
l∈U

∑
m∈U

NsN−1∑
ns=0

φ̂l(ns)φ̂m(ns) exp

(
−2πi

NsN
kns

)
.

(24)
By plugging the Fourier series coefficients of the delayed
signal at each channel, we get

ĉ[k]CFCOBA =
∑
l∈U

∑
m∈U

NsN−1∑
ns=0

NsN−1∑
p=0

ĉm[p] exp

(
2πi

NsN
pns

)
(25)

NsN−1∑
q=0

ĉl[q] exp

(
2πi

NsN
qns

)
exp

(
−2πi

NsN
kns

)
,

where the number of nonzero elements of {cm[p]}, {cl[q]} is
BsN . Using the fact that

NsN−1∑
ns=0

exp

(
2πi

NsN
(p+ q − k)ns

)
=

{
NsN , if q + p = k

0, else,
(26)

we get

ĉ[k]CFCOBA =NsN
∑
l∈U

∑
m∈U

∑
p+q=k

ĉm[p]ĉl[q]

=Ns
∑
l∈U

∑
m∈U

(ĉm ∗ ĉl)[k], (27)

where the last equation is obtained by setting q = k−p. Hence,
the resulting vector ĉ[k]CFCOBA has support size 2BsN −
1 = NsN , and k ∈ SβsN where SβsN is the sumset of βsN ,
following Definition 1.

Finally, plugging (6) into (27), we get the Fourier coeffi-
cients of the convolutionaly beamformed signal

ĉ[k]CFCOBA = NsN
∑
l∈U

∑
m∈U

(28)(
N2∑

w=−N1

cm [k − w]Qk,m [w] ∗
N2∑

h=−N1

cl [k − h]Qk,l [h]

)
,

where the length of the sequence cm [k − w] is NsN with
BsN elements that are not zero. To efficiently calculate (28),
we follow [25] noticing that (23) can be written as

ΦCFCOBA(ns) =
∑
l∈SU

∑
m,v∈U :m+v=l

um(ns)uv(ns)

=
∑
l∈SU

(u(ns) ∗
s
u(ns))l, (29)

where SU is the sum co-array of U . Due to the linear
operations in the temporal dimension that led to (28), we can
plug the results into (29) leading to

ĉ[k]CFCOBA = NsN
∑
l∈SU

(ĉ ∗
s
∗ĉ)l[k], (30)

which denotes two dimensional convolution operation, one
over the temporal dimension and one over the spatial dimen-
sion. This calculation can be easily calculated using IFFT and
appropriate zero padding based on the convolution theorem,
which leads to an efficient implementation with run time
complexity of order O(NsN logNsN ).

The same derivation can be applied to the convolutionally
beamformed signal, sampled at the traditional sampling rate
for DAS beamforming. The signal is defined by

Φ̂(nst)COBA =
∑
n∈U

∑
m∈U

φ̂n(nst)φ̂m(nst), (31)

where nst ∈ {0, ..., Nst − 1} is the nstth sample of the
delayed signal, and the signals are delayed in the frequency
domain based on (7). In this case, the size of the set of the
nonzero Fourier coefficients is B � BsN and Nst � NsN .
This results in

ĉ[k]COBA = Nst
∑
l∈U

∑
m∈U

(32)(
N2∑

w=−N1

cm [k − w]Qk,m [w] ∗
N2∑

h=−N1

cl [k − h]Qk,l [h]

)
,

where {cm[k]}NsN−1k=0 ⊂ {cstm[k]}Nst−1k=0 and cm[k] =
cstm[k], ∀k ∈ βsN . The resulting sub sampled signal Fourier
coefficients thus satisfy

ĉsN [k]CFCOBA = ĉst[k]COBA, ∀k ∈ SβsN . (33)

We next discuss reconstruction based on this partial set of
Fourier coefficients.

B. FRI Structure Derivation

We first show that the convolutionally beamformed signal
follows an FRI model.

Theorem 1: Let Φ̂(t)COBA be the convolutionally bead-
formed signal defined in (31) over continuous time. For any
acquiring array, U , the convolutionally beamformed signal can
be modeled as an FRI signal, i.e. it has the following structure:

Φ̂(t)COBA =

S∑
s=1

bsg(t− ts), (34)



where S is the number of scattering elements in the tissue in
certain direction θ, g(t) = h2(t) where h(t) is the transmitted
pulse shape, {bs} , {ts} are the unknown amplitudes of the
reflections and the times at which the reflection from the sth
scatterer arrived at the receiving element, respectively.

Proof: From [8] we know that the delayed signal at each
element has the form

φ̂m(t) =

S∑
s=1

as,mh(t− ts). (35)

Substituting (35) into (31) we get

ΦCOBA(t) =
∑
l∈U

∑
m∈U

( S∑
s=1

as,lh(t−ts)
)( S∑

s′=1

as′,mh(t−ts′)
)
.

(36)
Next, we assume that h(t) is supported on a compact interval
[0,∆),∆ > 0, meaning that h(t− ts) is supported on [ts, ts+
∆). We also assume that ts � ∆ so that in (36), all pairwise
multiplications of h(t− ts) that involve s 6= s′ are zero. Thus,
the beamformed signal is of the form

ΦCOBA(t) =
∑
l∈U

∑
m∈U

( S∑
s=1

as,las,mh
2(t− s)

)
=

S∑
s=1

(∑
l∈U

∑
m∈U

as,las,m

)
h2(t− ts)

=

S∑
s=1

bsg(t− ts) (37)

where g(t) = h2(t).
Using the FRI structure of the convolutionally beamformed

signal we now address its reconstruction.
Corollary 1.1: Let {ĉ[k]CFCOBA}k∈SβsN be the set of size

2BsN−1 > 2S nonzero consecutive Fourier coefficients of the
compressed frequency domain convolutionally beamformed
algorithm (CFCOBA) signal defined in (23). Based on the
FRI model, this signal can be recovered from a partial set of
its Fourier coefficients, by solving

ĉCFCOBA = GV b, (38)

where ĉCFCOBA is a vector of size 2BsN−1 with the nonzero
{ĉ[k]CFCOBA}k∈SβsN as its entries, G is a diagonal matrix of
size (2BsN−1)×(2BsN−1) with G( 2πk

T ) on its diagonal, V
is a Fourier matrix of size 2BsN −1×S with (k, s)th element
e−j((2π)/T )kts , and b the S-length vector with the amplitudes,
{bs}, as its entries.

Proof: We begin by noticing that the signal is completely
defined by 2S unknown parameters which are the amplitudes,
{bs} and the delays, {ts}. For a duration T , the Fourier series
expansion of (37) can be written as

ĉ[k]CFCOBA =
1

T

∫ T

0

S∑
s=1

bsg(t− ts)dt (39)

= G

(
2πk

T

) S∑
s=1

bse
−j((2π)/T )kts ,

where ĉ[k]CFCOBA are the Fourier coefficients of the convo-
lutionally beamformed signal, and G(ω) is the continuous time
Fourier transform of g(t). Writing (39) in matrix form results
in (38). This problem is invertible as long as 2BsN − 1 > S
and the time delays ts 6= ts′ , ∀s 6= s′. The formulation in (38)
is a standard spectral analysis problem and can be solved for
the unknown parameters {ts, bs}Ss=1, using methods like the
annihilating filter [39].

In practice, the recovery problem can solved using CS
methods as will be discussed next.

C. Reconstruction using Compressed Sensing

To address recovery using CS methods we begin with (39).
By quantizing the delays with step Ts = 1

fs
, such that ts =

qsTs, and letting Nst = bT/Tsc, the Fourier coefficients can
be written as

ĉ[k]CFCOBA = G

(
2πk

T

)Nst−1∑
s=0

b̃se
−j((2π)/Nst)ks. (40)

We define the vector b̃ of length Nst to consist of

b̃s =

{
bs, if s = qs.

0, else.
(41)

The recovery problem then reduces to determining the S-
sparse vector b̃ from

ĉCFCOBA = GDb̃ = Ab̃, (42)

where D is a (2BsN − 1) × Nst matrix, formed by taking
the set SβsN of rows from an Nst × Nst FFT matrix. This
formulation is a classic CS problem and can be solved using
many CS techniques. Choosing NsN ≥ CL(logNst)

4 rows
uniformly at random for some constant C > 0, the matrix A
obeys the RIP with high probability [40].

In practice, due to speckle, the coefficient vector b, defined
in (41), is only approximately sparse. To reconstruct b we use
the l1 norm, leading to

min
b̃
||b̃||1 s.t ||Ab̃ − ĉCFCOBA||2 ≤ ε, (43)

with ε being an appropriate noise level. This optimization
problem can be solved using various known techniques, such
as interior point methods [41] or iterative shrinkage ideas [42],
[43]. This optimization problem results in reconstruction of
both strong and weak reflectors, as will be shown next through
various examples.

V. EVALUATION RESULTS

We now demonstrate the performance of the proposed
beamforming algorithm in comparison to DAS and the non-
compressed version of Fourier domain COBA. The methods
are applied to simulated data, tissue mimicking phantoms
Gammex 403GSLE and 404GSLE, and RF data acquired from
healthy volunteers. For verifying the wide variety of possible
usages, we tested the methods on different data sets, each of
different body parts. We present here in vivo cardiac data,
kidney data, liver data, and bladder data.



Fig. 1. Point scatterers simulated images obtained with (a) DAS (b) Compressed frequency domain COBA - fractal geometry (36-fold reduction).

Fig. 2. Anechoic cyst phantom images obtained with (a) DAS (b) Compressed frequency domain COBA - fractal geometry (36-fold reduction).

Fig. 3. GE US machine cardiac images obtained with (a) DAS (b) COBA - full ULA (c) Non-compressed frequency domain COBA - fractal geometry
(35-fold reduction), (d) Compressed frequency domain COBA - fractal geometry (142-fold reduction).

Fig. 4. Verasonics US machine kidney images obtained with (a) DAS (b) COBA - full ULA (c) Non-compressed frequency domain COBA - fractal geometry
(17-fold reduction), (d) Compressed frequency domain COBA - fractal geometry (36-fold reduction).

Acquisition was performed using the GE breadboard ul-
trasonic scanner and the Verasonics Vantage 256 system. The
scans made with the GE US machine were performed using 64
channels phased array probe, with a radiated depth of 16 cm.
The probe carrier frequency was 3.4 MHz and the sampling

rate was 16 MHz leading to 3328 samples per image line. The
scans made with the Verasonics US machine were done using
the 64-element phased array transducer P4-2v, with frequency
response centered at 2.72 MHz and a sampling rate of 10.8
MHz. For the Verasonics setup, 1920 samples per image line



Fig. 5. Verasonics US machine liver images obtained with (a) DAS (b) COBA - full ULA (c) Non-compressed frequency domain COBA - fractal geometry
(17-fold reduction), (d) Compressed frequency domain COBA - fractal geometry (36-fold reduction).

Fig. 6. Verasonics US machine bladder images obtained with (a) DAS (b) COBA - full ULA (c) Non-compressed frequency domain COBA - fractal geometry
(17-fold reduction), (d) Compressed frequency domain COBA - fractal COBA geometry (36-fold reduction).

were used. The images were generated using standard steps,
including log-compression and interpolation.

For the fractal array geometry, we used the generator array
G = {0, 1} and array order 4, leading to 15 elements. To
perform beamforming in frequency, with the GE imaging
setup, we used 400, 100 samples at each of the channels of the
fractal array geometry, leading to non compressed and com-
pressed frequency COBA images, respectively. This implies a
142-fold reduction in data size. For the Verasonics machine
480, 230 samples were used to perform non compressed
and compressed imaging using the sparse arrays leading to
a reduction as high as 36 times less data. To solve (43) we
used the NESTA algorithm [44], [45].

Figs. 1-2 show the beamformed US images obtained from
point scatterers simulation and phantom scans data sets. In
both figures (a) stands for standard DAS and, (b) represents
the proposed beamforming method, CFCOBA. The resulting
images clearly show that the proposed method outperforms
standard methods for US imaging. It can be seen that in the
point scatterers simulated data, the points are less blurred and
the center of the reflector can be easily noticed. In the phantom
setup scans, the strong reflectors are seen as good as in DAS
images, and large noise reduction can be observed.

The resulting in vivo US images are shown in Figs. 3-
6. The images show four different frames of different body
parts, where in each figure (a) corresponds to standard DAS,

(b) stands for COBA [25] with full ULA, (c) stands for non-
compressed Fourier domain COBA [35], and (d) presents the
proposed compressed beamforming method. It can be easily
seen that although the images are not identical, the resulting
images, using compressed frequency domain COBA, outper-
form those produced by standard DAS, not only in terms of
image resolution and contrast but also in terms of image noise,
using two orders of magnitude less data. When comparing the
results to the former proposed method, non compressed FDBF,
the outcome images do not differ much. These results validate
that a significant reduction in both the number of acquiring
elements and the sampling rate can be achieved using the
proposed technique without degrading image quality and even
improving it when compared to traditional DAS.

VI. CONCLUSION

In this paper, we proposed a new beamforming method
for high quality B-mode US images. The suggested technique
is based on Xampling, frequency domain beamforming, CS,
sparse arrays, and convolutional beamforming all implemented
efficiently. This combination allows producing a beamformer
that can outperform the widely used DAS using much less
power and data.

We extended frequency domain COBA presented in [35] and
showed that the convolutional beamforming algorithm can be
done directly in the frequency domain. This results in up to



33-fold reduction in sampling rate and 142 times less data
combining with sparse convolutional beamforming, without
impacting image quality and even improving it. The huge
reduction is achieved by sampling the signals at sub-Nyquist
rate and using the Xampling mechanism. To reconstruct the
signal from partial frequency data, we derived an FRI model
for the convolutionally beamformed signal, that resulted in
replicas of the square of the known transmitted pulse. This
result enabled usage of CS recovery methods.

Finally, we validated our technique both on simulated data
and on in-vivo channel data of a variety of body parts, acquired
by two different US machines, resulting in high quality B-
mode US images, using orders of magnitude less data.

Our results prove that the idea of compressed US imaging
is feasible for practical use, leading to potential reduction in
US cost, power consumption and size, paving the way towards
wireless US imaging.
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