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Blind Multiband Signal Reconstruction: Compressed
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Abstract—We address the problem of reconstructing a multi-
band signal from its sub-Nyquist pointwise samples, when the
band locations are unknown. Our approach assumes an existing
multi-coset sampling. To date, recovery methods for this sampling
strategy ensure perfect reconstruction either when the band
locations are known, or under strict restrictions on the possible
spectral supports. In this paper, only the number of bands and
their widths are assumed without any other limitations on the sup-
port. We describe how to choose the parameters of the multi-coset
sampling so that a unique multiband signal matches the given
samples. To recover the signal, the continuous reconstruction
is replaced by a single finite-dimensional problem without the
need for discretization. The resulting problem is studied within
the framework of compressed sensing, and thus can be solved
efficiently using known tractable algorithms from this emerging
area. We also develop a theoretical lower bound on the average
sampling rate required for blind signal reconstruction, which is
twice the minimal rate of known-spectrum recovery. Our method
ensures perfect reconstruction for a wide class of signals sampled
at the minimal rate, and provides a first systematic study of com-
pressed sensing in a truly analog setting. Numerical experiments
are presented demonstrating blind sampling and reconstruction
with minimal sampling rate.

Index Terms—Landau–Nyquist rate, multiband, multiple mea-
surement vectors (MMV), nonuniform periodic sampling, sparsity.

I. INTRODUCTION

T HE well-known Whittaker, Kotelńikov, and Shannon
(WKS) theorem links analog signals with discrete repre-

sentations, allowing signal processing in a digital framework.
The theorem states that a real-valued signal bandlimited to
Hertz can be perfectly reconstructed from its uniform samples if
the sampling rate is at least samples per second. This state-
ment highlights the basic ingredients of a sampling theorem.
First, a signal model which appears in practical applications
and relates to physical properties. In this case, the maximal fre-
quency parameterizes a bandlimited signal model. Second,
a minimal rate requirement to allow perfect reconstruction,
referred to as the Nyquist rate in the WKS setting. Finally, a
design of sampling and reconstruction stages which is based on
the model parameters.
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In this paper, we consider the class of multiband signals,
whose frequency support resides within several continuous
intervals, spread over a wide spectrum. This model naturally
arises when observing the sum of a few narrowband trans-
missions which are modulated by relatively high carriers,
with different frequencies. When the band locations and their
widths are known prior to sampling, the signal model defines a
subspace of possible inputs. Landau [1] developed a minimal
rate requirement for an arbitrary sampling method that allows
perfect reconstruction in this setting. The Landau rate equals
the sum of the band widths, which is below the corresponding
Nyquist rate. Several works proposed sampling and reconstruc-
tion stages, designed according to the specific spectral support
of the input signal. Low-rate uniform sampling was studied in
[2] for a real bandpass signal, whereas [3] suggested periodic
nonuniform sampling at the same average sampling rate. Lin
and Vaidyanathan [4] extended this approach to multiband sig-
nals. These methods allow exact recovery at rates approaching
that derived by Landau.

A much more challenging problem is to design a blind sam-
pling and reconstruction system, that does not rely on knowl-
edge of the band locations. Blindness is important whenever
detecting the spectral support, prior to sampling, is impossible
or too expensive to implement. Reconstruction under partial
knowledge of the support was addressed in a series of confer-
ence papers [5]–[7]. These works do not assume the exact sup-
port but require that the band locations obey a certain math-
ematical condition. Sampling is carried out by a multi-coset
strategy, independent of the band locations. In order to recover
the signal, [5], [6] identified similarities with direction of ar-
rival problems, implying potential use of techniques from this
field, such as MUSIC [8]. An alternative method was proposed
in [7] under the assumption that the support obeys a strict math-
ematical condition. Similar results were derived in [9]. This ap-
proach, however, suffers from two main drawbacks. First, as de-
tailed in Section V-B, if the support violates the condition of [7],
then the samples match many possible input signals, thus hin-
dering any chance for recovery. Since this condition depends on
the band locations which are unknown, it cannot be validated in
practice. The difficulty arises form the fact that this requirement
is not directly related to simple physical properties of a multi-
band model (i.e., the number of bands and their widths). Second,
even when the condition is met, exact recovery is not guaran-
teed. This is a result of the fact that the proposed sampling rate
approaches that dictated by Landau. As we prove in Section III,
perfect blind reconstruction requires a higher sampling rate.

In subsequent publications, Herley and Wong [10] suggested
a half-blind system. Similar ideas were later suggested in [11].
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Fig. 1. Three RF transmissions with different carriers � . The receiver sees a
multiband signal (bottom drawing). In this example the real-valued signal con-
tains� � � bands, and the modulation techniques of the transmitters determine
the maximal expected width �.

In this case, the signal is sampled using a multi-coset sampling
strategy, independent of the band locations. However, recovery
is based on knowledge of the spectral support. This approach
guarantees perfect (nonblind) recovery under the same condi-
tion of [7]. Thus, to date, there exist no spectrum-blind method
that is guaranteed to recover a multiband signal (with arbitrary
band positions) at rates lower than the Nyquist rate.

A. Main Contributions

Following the ingredients of the WKS theorem, we begin by
formulating a multiband model which contains signals with
at most bands, whose widths do not exceed . Fig. 1 depicts
a typical communication application that obeys the model .
Once the signal model is established, we develop a minimal rate
requirement for blind perfect reconstruction of signals from
with an arbitrary system. As we show, the lower bound is twice
the Landau rate and no more than the Nyquist rate.

The body of this paper focuses on spectrum-blind reconstruc-
tion (SBR) assuming a preceding multi-coset stage which sat-
isfies the minimal rate requirement. Our first main result de-
scribes a parameter selection for the sampling stage such the
every signal in matches a unique digital representation. This
selection relies on the known values , but does not impose
any restrictions on the band locations. We show that this choice
is also valid for known-spectrum reconstruction with half the
sampling rate.

Our approach to blind recovery is to first determine the spec-
tral support from the given samples. Once the support is recov-
ered, the reconstruction has a closed form solution, which mo-
tivates this paradigm. Theoretical tools are developed in order
to transform the continuous support recovery problem into a fi-
nite-dimensional program without any discretization. We then
prove that the solution can be obtained by finding the unique
sparsest solution matrix from multiple measurement vectors.
This set of operations is grouped under a block we name Con-
tinuous to Finite (CTF). This block is the cornerstone of two
SBR algorithms we develop. One is entitled SBR4 and uses a
single instance of the CTF. SBR4 guarantees perfect reconstruc-
tion when sampling at twice the minimal rate. The other is re-
ferred to as SBR2 and involves a bi-section process and several
uses of the CTF block. SBR2 works at the minimal rate, but
does not guarantee exact recovery for certain multiband signals.
Other differences between the algorithms are also discussed.
Both SBR4 and SBR2 can easily be implemented in DSP pro-
cessors or in software environments.

The CTF block requires finding a sparsest solution matrix
which is an NP-hard problem [13]. Several suboptimal efficient
methods have been developed for this problem in the com-
pressed sensing (CS) literature [13], [14]. In our algorithms,
any of these techniques can be used. However, when using a
suboptimal technique in SBR4, exact recovery is no longer
guaranteed. Fortunately, numerical experiments on random
constructions of multiband signals from show that both
SBR4 and SBR2 maintain a satisfactory exact recovery for min-
imal sampling rate even when suboptimal implementations of
the CTF block are used. In addition, SBR4 is accompanied with
a nice feature which indicates the recovery success, allowing
to switch between suboptimal techniques in case of a failure.
While discussing experimental results, we also address stability
under measurement noise and emphasize the advantages of
SBR4 and SBR2 over a simple inexact discretization-based
reconstruction.

B. Compressed Sensing for Analog Signals

In his seminal work on compressed sensing [15], Donoho
posed the ultimate goal of merging compression and sampling.
In such an approach, the actual information contents dictate
the sampling rate, rather than the dimensions of the ambient
space in which the signal resides. This goal triggered a surge
of research on various mathematical and algorithmic aspects
of sensing sparse signals, which were mainly studied for dis-
crete and finite vectors. The present work takes a first step to-
wards sensing in a truly continuous environment. An adapta-
tion of CS results to continuous signals was also considered in
a series of conferences papers (see [16] and [17] and the refer-
ences therein). However, these papers did not address the case
of multiband signals. In [16], a vector signal was assumed, but
the generalization to continuous signals was not studied, while
in [17] an underlying discrete model was used so that the contin-
uous signal is a linear combination of a finite number of known
functions. Here, there is no discrete model as the signals are
treated in a continuous framework without any discretization.1

A second aspect that distinguishes our work from main-
stream CS papers relates to tractability of the recovery. From
a sampling viewpoint, perfect reconstruction is a desired goal
even when yielding a difficult recovery stage (i.e., an NP-hard
problem). The WKS theorem, for example, suggests an ideal
lowpass filter for reconstruction, whose practical implementa-
tion is highly demanding. The approach in compressive sensing
promotes the opposite viewpoint and strives for tractable
recovery algorithms at the expense of suboptimality in the
sampling rate [13]–[15], [24].

C. Outline

The paper is organized as follows. In Section II, we formu-
late the signal model and the reconstruction goals. The minimal
rate theorem for blind reconstruction is stated and proved in
Section III. A brief overview of multi-coset sampling is pre-
sented in Section IV. We develop our main theoretical results
on spectrum-blind reconstruction and present the CTF block in

1Since submission of the report [18] and the conference version [19], we
have further expanded the analog CS framework in several follow-up papers;
see [20]–[23].
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TABLE I
NOTATION

Section V. Based on these results, in Section VI, we design and
compare the SBR4 and SBR2 algorithms. Numerical experi-
ments are described in Section VII.

II. SIGNAL MODEL AND PROBLEM FORMULATION

A. Multiband Signal Model

Common notation, as summarized in Table I, is used
throughout the paper. It is assumed that is a continuous
function of , and that the Fourier transform

(1)

is (piecewise) continuous in .
The following multiband model is the prime focus of our

work.
Definition 1: The set contains all complex-valued signals

satisfying the following:
1) is bandlimited to , namely

;
2) is further restricted to have a support on no more than

disjoint intervals (bands) in ; and
3) the band widths do not exceed .
Fig. 2 depicts a typical spectral support of a multiband signal

. The Nyquist rate corresponding to any is
. Note that each band is uniquely represented by its edges

; however, the band positions of are arbitrary,
and in particular, unknown in advance.

Fig. 2. Typical spectrum support of ���� � �.

Although our interest is mainly in signals , our results
are applicable to a broader class of signals, as explained in the
relevant sections. In addition, the results of the paper are easily
adopted to real-valued signals supported on .
The required modifications are detailed in Appendix A.

B. Problem Formulation

We wish to perfectly reconstruct from a set of
pointwise samples under two constraints. One is blindness, so
that the information about the band locations is not used while
acquiring the samples and neither can it be used in the recon-
struction process. The other is that the sampling rate required to
guarantee perfect reconstruction should be minimal.

This problem is solved if either of the constraints is removed.
Without the rate constraint, the WKS theorem allows perfect
blind-reconstruction for every signal bandlimited to
from its uniform samples at the Nyquist rate. Alter-
natively, if the exact number of bands and their locations are
known, then under mild conditions on the band positions the
method of [4] allows perfect reconstruction at the minimal
sampling rate provided by Landau’s theorem [1].

III. MINIMAL SAMPLING RATE

We begin by quoting Landau’s theorem for the minimal
sampling rate of an arbitrary sampling method that allows
known-spectrum perfect reconstruction. We then develop a
similar theorem for blind reconstruction, which proves that
twice the Landau rate is required to allow for exact recovery.

A. Known Spectrum Support

Consider the space of bandlimited functions whose Fourier
transform is restricted to a known support :

(2)

A set is called a sampling set for if the sequence
of samples is stable, namely there exist con-
stants and such that

(3)

Landau [1] proved that if is a sampling set for then it must
have a density , where

(4)

is the lower Beurling density, and is the Lebesgue measure
of . The numerator in (4) counts the number of points from
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in every interval of width of the real axis.2 The Beurling
density (4) reduces to the usual concept of average sampling
rate for uniform and periodic nonuniform sampling. The Landau
rate, , is the minimal average sampling rate for .

B. Unknown Spectrum Support

Consider the set of signals bandlimited to with band-
width occupation no more than , so that

(5)

The Nyquist rate for is . Note that is not a subspace
so that the Landau theorem does not apply here. Nevertheless,
it is intuitive to argue that the minimal sampling rate for
cannot be below as this value is the Landau rate had the
spectrum support been known.

A blind sampling set for is a stable sampling set whose
design does not assume knowledge of . Similarly to
(3) the stability of requires the existence of and
such that

(6)

Theorem 1 (Minimal Sampling Rate): Let be a blind sam-
pling set for . Then

(7)

Proof: The set is of the form

(8)

where is defined by (2) and

(9)

Clearly, is an uncountable union of subspaces. Sampling
signals that lie in a union of subspaces has been recently treated
in [12]. For every define the subspaces

(10)

Since is a sampling set for , (6) holds for some constants
. It was proved in ([12], Proposition 2) that (6) is

valid if and only if

(11)

holds for every . In particular, is a sampling set for
every with .

Now, the space is of the form (2) with .
Applying Landau’s theorem for each results in

(12)

2The numerator is not necessarily finite but as the sampling set is countable
the infimum takes on a finite value.

Choosing

(13)

we have that for ,

(14)

If , then and

(15)

Combining (14) and (15) completes the proof.
In [12], the authors consider minimal sampling requirements

for a union of shift-invariant subspaces, with a particular
structure of sampling functions. Specifically, they view the
samples as inner products with sampling functions of the form

, which includes multi-coset sampling.
Theorem 1 extends this result to an arbitrary pointwise sam-
pling operator. In particular, it is valid for aperiodic sampling
sets that are not covered by [12].

An immediate corollary of Theorem 1 is that if then
uniform sampling at the Nyquist rate and reconstruction with
an ideal lowpass filter satisfies the requirements of our problem
formulation: sampling and reconstruction are independent of the
band locations, and the sampling rate is minimal. Since is
contained in the space of bandlimited signals, this choice pro-
vides perfect reconstruction for every . Therefore, in
the sequel we assume that so that the minimal sampling
rate is twice the Landau rate.

It is easy to see that is a true subset of for .
The Proof of Theorem 1 can be adapted to show that sampling
at an average rate of is necessary to allow blind perfect
reconstruction for all signals from (for ).
For known spectral support of , the Landau rate is

.
Both Landau’s theorem and Theorem 1 state a lower bound

but do not provide a method to achieve the bound. An important
distinction between the two theorems is that for known spectrum
the set is linear (namely, closed under linear combinations)
and known reconstruction schemes [4], [11] are also linear. Con-
sequently, the stability condition (3) suffices to ensure stability
of the reconstruction. In contrast, is a nonlinear set (as is

), and our proposed reconstruction scheme is also nonlinear.
Theorem 1 states the necessary density for a blind stable sam-
pling set while a higher density may be required to ensure stable
reconstruction.

The rest of the paper is devoted to developing a reconstruction
method that approaches the minimal sampling rate of Theorem
1 while ensuring perfect reconstruction. We address stability in
Section VII-C.

IV. UNIVERSAL SAMPLING

This section reviews multi-coset sampling which is used in
our development. We also briefly explain the fundamentals of
known-spectrum reconstruction as derived in [11].
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A. Multi-Coset Sampling

Uniform sampling of at the Nyquist rate results in sam-
ples that contain all the information about . Multi-
coset sampling is a selection of certain samples from this grid.
The uniform grid is divided into blocks of consecutive sam-
ples. A constant set of length describes the indexes of
samples that are kept in each block. The set is re-
ferred to as the sampling pattern where

(16)

Define the th sampling sequence for as

otherwise
(17)

The sampling stage can be implemented by uniform sampling
sequences with period , where the th sampling sequence
is shifted by from the origin.

Direct calculations link the known discrete-time Fourier
transform of to the unknown Fourier trans-
form of :

(18)

for every , and every in the interval

(19)

It is convenient to express (18) in matrix form as

(20)

where is a vector of length whose th element is
is a matrix with th element given by

(21)

and the vector contains unknowns for each

(22)

Fig. 3 illustrates the relation between and . The
problem of recovering is equivalent to determining
from for all .

Dealing with real-valued multiband signals requires simple
modifications to (20). These adjustments are detailed in
Appendix A.

The average sampling rate of a multi-coset sampling set is

(23)

Fig. 3. Vector ���� is constructed by slicing ���� into � equal-length inter-
vals, and rearranging them in vector form.

which is lower than the Nyquist rate for . However, an
average sampling rate above the Landau rate is not sufficient
for known-spectrum reconstruction. Additional conditions are
needed as explained in the next section.

B. Known-Spectrum Reconstruction and Universality

Presentation of the reconstruction is simplified using CS spar-
sity notation. A vector is called -sparse if the number of
nonzero values in is not greater than . We also
use the following definition of the Kruskal-rank of a matrix [25]:

Definition 2: The Kruskal-rank of , denoted , is the
maximal number such that every set of columns of is
linearly independent.

Observe that for every the system (20) has fewer
equations than unknowns. However, when incorporating the
structure of as prior, the number of unknowns may be
reduced. As evident from Fig. 3, every band can contribute
several nonzero values to . Thus, in order to match the
number of equations to the number of unknowns, it is necessary
that

-sparse (24)

In [11] it is assumed that the information about the band lo-
cations is available for reconstruction, so that the support set

is known for every . In this setting, a sufficient
condition for a unique solution in (20) can be formulated using
the Kruskal-rank of :

-sparse (25)

The known-spectrum reconstruction of [11] basically restricts
the columns of to and inverts the resulting matrix in
order to recover .

A sampling pattern that yields a fully Kruskal-rank
, is called universal and corresponds to

[11]. Therefore, the set of signals that are consistent with (25)
is the broadest possible if a universal sampling pattern is used.
As we show later, choosing and a universal
pattern makes (25) valid for every signal .
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Finding a universal pattern , namely one that results in a
fully Kruskal-rank , is a combinatorial problem. Several spe-
cific constructions of sampling patterns are proved to be uni-
versal [11], [26]. In particular, choosing a prime integer ren-
ders every pattern universal [26]. In addition, a random pattern

drawn uniformly among all combinations is universal
with high probability; see [24] for details.

V. SPECTRUM-BLIND RECONSTRUCTION

In this section, we develop the theory needed for SBR. These
results are then used in the next section to construct two efficient
algorithms for blind signal reconstruction.

A. Setting Up the Sampling Stage

In the blind setting, our only information is that is sparse
since every band contributes only a few nonzero values. How-
ever, the support is unknown. The following theorem
from the CS literature is used to provide a sufficient condition
for a unique solution in (20).

Theorem 2: Suppose is a solution of . If
then is the unique sparsest solution of the system.

Theorem 2 and its proof are given in [13], [27] with a slightly
different notation of instead of the Kruskal-rank of

. Note that the condition of the theorem is not necessary as
there are examples in which the sparsest solution of
is unique while .

Using Theorem 2, it is evident that perfect reconstruction is
possible for every signal satisfying

-sparse (26)

As before, choosing a universal pattern makes the set of signals
that conform with (26) the widest possible. Note that a factor
of two distinguishes between the sufficient conditions (25) and
(26) reflecting the missing information on the nonzero locations
of .

For a given number of sampling cosets and a universal pat-
tern , (26) implies that certain spectral supports can be re-
covered. However, these supports are defined in (26) using the
unknown values of . The following theorem proposes a
parameter selection for the multi-coset strategy, based on the
known values , such that every can be per-
fectly reconstructed. The theorem is valid for both known and
blind reconstruction with a slight difference resulting from the
factor of two in the sufficient conditions.

Theorem 3 (Uniqueness): Let be a multiband
signal. If:

1) ;
2) for nonblind reconstruction or for blind;
3) is a universal pattern

then, for every , the vector is the unique -sparse
solution of (20).

Proof: If then for the th band ,

(27)

Therefore, implies

(28)

According to (22) and Fig. 3 for every the vector
takes the values of on a set of points spaced by
. Consequently, the number of nonzero values in is

not greater than the number of bands, namely is -sparse.
Since is a universal pattern, . This implies that

conditions (25) and (26) are satisfied.
The parameter selection of Theorem 3 required to ensure

uniqueness for every is not restrictive as the min-
imal sampling rate is still allowed. Indeed, from (23):

nonblind reconstruction
blind reconstruction

(29)

Equality is achieved when is minimal and is an
integer.

B. Reconstruction Paradigm

The goal of our reconstruction scheme is to perfectly recover
from the set of sequences , or equiv-

alently, to reconstruct for every from the input
data . Although the problem is similar to that described in
the CS literature, here finding the unique sparse vector must be
solved for each value in the continuous interval , which
clearly cannot be implemented.

A straightforward approach is to find the sparsest vector
over a dense grid of and then approximate the solution over
the entire continuous interval . However, this discretization
strategy cannot guarantee perfect reconstruction.

Our reconstruction paradigm is targeted at finding the set

(30)

referred to as the diversity of . With the knowledge of
perfect reconstruction of is possible for every by
noting that (20) can be written as

(31)

If the diversity set of satisfies

(32)

then the matrix has full column rank and

(33)

Multiplying both sides of (31) by results in

(34)

From (30)

(35)
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Thus, once is known, and as long as (32) holds, perfect recon-
struction can be obtained by (34)–(35). We point out that once
the set is recovered there is no essential difference between
known and blind reconstruction.

This recovery paradigm is also used in [7]. However, it is

assumed that the band locations obey . Since
of (30) involves the unknown , this condition cannot be

checked in practice, as is true for (24), (25) and (26). Moreover,
when , it is well known that (20) has many nonunique
solutions ([28], Theorem 2). Therefore, is necessary
but imposes a strict limitation on the possible band locations.
Our model and Theorem 3 circumvent these limitations by
relying on the values , which are known in practical
applications (see Fig. 1). We also note that it is now clear why
exact recovery is only almost surely guaranteed in [7]. Using

represents a support measure with sampling
rate approaching that of Landau. Theorem 1 proves, however,
that exact recovery necessitates sampling at twice the Landau
rate.

As we shall see later, (32) is implied by the condition required
to transform the problem into a finite dimensional one. Further-
more, the following proposition shows that for , (32)
is implied by the parameter selection of Theorem 3.

Proposition 1: If then . If in addition
and is universal then for every , the set

satisfies (32).
Proof: The bands are continuous intervals upper bounded

by . From (22) and Fig. 3, it follows that is constructed
by dividing into equal intervals of length . Therefore,
if is limited according to Theorem 3, then each band can either
be fully contained in one of these intervals or it can be split
between two consecutive intervals. Since the number of bands
is no more than it follows that . With the additional
conditions, we have that .

C. Formulation of a Finite-Dimensional Problem

The set of (20) consists of an infinite number of linear sys-
tems because is a continuous variable. Furthermore, the diver-
sity set given in (30) involves a union over the same contin-
uous variable. The SBR algorithms developed in the next section
show that can be recovered exactly using only one finite-di-
mensional problem. We now develop the underlying theory be-
hind these algorithms.

Consider a given . Multiplying each side of (20) by
its conjugate transpose, we have

(36)

Integrating both sides over the continuous variable gives

(37)

with the matrix

(38)

and the matrix

(39)

Define the diversity set of the interval as

(40)

Now,

(41)

Since is piecewise continuous in if and only
if , which implies that .

The next proposition sets the conditions for to be deter-
mined by the known matrix . The proposition is stated for
general matrices .

Proposition 2: Suppose a matrix and a
matrix are given. Let be an matrix satisfying

(42a)

(42b)

(42c)

Then, . In addition, there can be only a
single matrix satisfying (42a)–(42b) and

(42d)

Proof: Suppose satisfies (42a)–(42c). Define
. Since it can be

decomposed as with of size having
orthogonal columns. From (42a)

(43)

It can be easily be concluded that , and thus
. The following lemma whose proof is given

in Appendix B ensures that the matrix of size also
has full column rank.

Lemma 1: For every two matrices , if
then .

Since for every matrix it is true that
, (43) implies .

For the second part of Proposition 2 suppose that both
satisfy (42a), (42b), and (42d). The previous arguments ensure
that

(44)

Following the earlier decompositions, we write

(45)

In addition,

(46)
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Fig. 4. CTF block determines the diversity set � of ���� in a given interval � .

From (42a),

(47)

which implies that

(48)

for some unitary matrix . It is easy to see that (46) results in
. Therefore, the matrix has at most

rows that are nonidentically zero. Applying Lemma 1 to
(48) results in . Substituting this into (45), we have
that .

The following proposition shows how to construct the matrix
by finding the sparsest solution of a linear system.
Proposition 3: Consider the setting of Proposition 2 and as-

sume satisfies (42a), (42b), and (42d). Let
and define a matrix of size using the decomposition

, such that has orthogonal columns. Then the
linear system

(49)

has a unique sparsest solution matrix . Namely,
and is minimal. Moreover, .

Proof: Substitute the decomposition into (42a)
and let . The result is for some unitary

. Therefore, the linear system (49) has a solution .
It is easy to see that , thus (42d) re-
sults in . Applying Theorem 2 to each of the
columns of provides the uniqueness of . It is trivial that

.
Using the same arguments as in the proof it is easy to con-

clude that , so that can be found directly from
the solution matrix . In particular, we develop the Continuous
to Finite (CTF) block which determines the diversity set of
a given frequency interval . Fig. 4 presents the CTF block that
contains the flow of transforming the continuous linear system
(20) on the interval into the finite dimensional problem (49)
and then to the recovery of . The role of Propositions 2 and
3 is also illustrated.

The advantage of our approach is that by defining the re-
covery problem within the CS framework, we may use theo-
retical results and algorithms from this field. Specifically, the
linear system (49) is referred to as multiple measurement vec-
tors (MMV) in the CS literature. Proposition 3 guarantees that
the CTF produces an MMV with a unique sparsest solution. It
is however a well-known CS result that finding is solvable
but NP-hard [13]. Several suboptimal efficient algorithms for
finding are given in [13], [14], [20], [29], and [30]. Some of
them can indicate a success recovery of . We explain which
class of algorithms has this property in Section IV-A.

VI. SBR ALGORITHMS

The theoretical results developed in the previous section are
now used in order to construct the diversity set which enables
the recovery of via (34)–(35).

We begin by defining two conceptual set of signals .
These sets do not represent a valid signal model since their
definition involves the unknown size . Specifically, an input
signal cannot be determined to lie in either set, when band
locations are unknown. We use only for the theoretical
analysis of our algorithms. Recovery within , which parame-
terizes signals according to their physical properties, is then ac-
complished based on deriving appropriate relations to .

For a given multi-coset system with sampling channels,
SBR4 guarantees perfect reconstruction for every signal in
and every . SBR2 is proved to recover signals
from for the same range of , except for certain examples
which are detailed in the text. Universal patterns, , are
assumed throughout this section as they lead to the largest sets

for a given sampling rate. We show that
which implies that SBR4 can recover every signal in when

. This requirement on translates to twice the min-
imal sampling rate of Theorem 1. To improve on this result, it
is proved that , thus recovery from minimal sampling
rate is possible with SBR2 up to the above exceptions. Fig. 5
depicts the relation between the various signal classes.

A. The SBR4 Algorithm

Let be an integer and define the signal class

and (50)
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Fig. 5. SBR algorithms are developed to allow recovery within the signal sets
� �� . The relation to the model� is drawn on the right.

with given by (30). In words, is the class of signals that
upon slicing into intervals, only (or less) out of them
are nonidentically zero. For brevity, the dependency on the fixed
value is omitted. We point out that is a set of signals with a
specific property and the definition does not enforce multi-coset
sampling. It can be verified that the minimal rate requirement for

is .
Consider a multi-coset sampling with a period that coin-

cides with the value defining . Let , and observe that
ensures that all the conditions of Proposition 2 are valid

for every . Thus, applying the CTF block on
results in a unique sparsest solution , with . The
reconstruction of the signal is then carried out by (34)–(35). We
note that for which implies (32).

Algorithm 1, named SBR4, follows the steps of the CTF block
in Fig. 4 to recover the diversity set from , for any

. Clearly, SBR4 guarantees perfect reconstruction of signals
in from samples at the minimal rate . The algorithm
also outputs an indication flag which we discuss later on.

Algorithm 1: SBR4

Input: , Assume:
Output: the set

1: Set
2: Compute the matrix by (38)
3: Decompose according to Proposition 3
4: Solve for the sparsest solution
5:
6:
7: return

It is easy to see that for every signal in , since
SBR4 guarantees perfect reconstruction within this class. How-
ever, when a suboptimal algorithm is used to solve the MMV in
step 4, exact recovery cannot be guaranteed and SBR4 may end
with . This indication for means a failure
with the particular MMV method. A different MMV approach
can subsequently be used instead.

Existing algorithms for MMV systems can be classified into
two groups. The first group contains algorithms that seek the
sparsest solution matrix , e.g., convex relaxations from the
basis pursuit family [13], [30], [31] or matching pursuit [14],
[29], [32] with a termination criterion based on the residual. The
other group contains methods that approximate a sparse solu-
tion according to user specification, e.g., matching pursuit with
a predetermined number of iterations [14]. Using a technique

from the latter group neutralizes the indication flag as the ap-
proximation is always sparse. Therefore, this set of algorithms
should be avoided if an indication is desired.

An important advantage of algorithm SBR4 is that the corre-
lation matrix can be computed in the time domain from the
known sequences as described in [5]. Recon-
struction based on time-domain computations is demonstrated
in Section VII-E.

Proposition 1 shows that for the set satisfies
if . Thus, under this condition on we

have , which in turn implies as a minimal
value for . Consequently, SBR4 guarantees perfect reconstruc-
tion for when choosing and . The cor-
responding sampling rate is

(51)

In contrast, it follows from Theorem 3 that sampling at rate
is sufficient for uniqueness of the solution. The reason for

the factor of two in the sampling rate is that is -sparse
for each specific ; however, when combining the frequencies,
the maximal size of is . The SBR2 algorithm, developed
in the next section, capitalizes on this difference to regain the
factor of two in the sampling rate, and thus achieves the min-
imal rate, at the expense of a more complicated reconstruction.

B. The SBR2 Algorithm

To reduce the sampling rate, we introduce a set for which
SBR2 allows perfect reconstruction if , and then prove
that .

Consider a partition of into consecutive intervals de-
fined by

(52)

For a given partition and integer we define the set

and

(53)

where the dependency on the fixed value of is omitted for
brevity. Next, We define the set as

(54)

which is the union of over all choices of partition sets
and integers . It can be verified that both and re-
quire minimal sampling rate of . Clearly, if
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then we can perfectly reconstruct every by ap-
plying the CTF block to each of the intervals . As a
consequence, for , if the specific partition which
corresponds to is found by any means, then exact recovery
is accomplished within the appropriate set .

The following proposition shows that if the parameters are
chosen properly, then .

Proposition 4: If are selected according to Theorem
3 then .

Proof: In the Proof of Theorem 3 we showed that under the
conditions of the theorem, is -sparse for every .
The proof then follows from the following lemma.

Lemma [11]: If is a multiband signal with bands sam-
pled by a multi-coset system then there exists a partition set

with intervals such that is
a constant set over the interval for .

Lemma 2 implies that for every
which means that .

We now assume that and . Ob-
serve that lies in according to Proposition 4
and from Proposition 1, which motivates this ap-
proach. We aim at finding a partition such that .
The existence of at least one such partition is ensured since

. Once is found,

(55)

is equal to . The CTF block is used to recover the diversity set
of each subinterval in the union (55). Condition (32)
is implied by and thus exact recovery is obtained
by (34)–(35). It can be verified that Propositions 2–3 guarantee
a unique diversity set for each subinterval of (55).

In order to find we suggest a bi-section process on . We
initialize and seek . If ,
then we halve into and and recursively determine
and . The bi-section process is continued until ultimately
each subinterval corresponds to a diversity set of size at the
most. To ensure termination, an interval width of less than is
not halved. The set is then determined according to (55).

Consider an interval . The matrix of (39) satisfies
the constraints (42a)–(42b). Since and
(42c) is also valid. However, the last constraint (42d) of Propo-
sition 2 is not guaranteed as it requires a stronger condition

. This condition is satisfied for each subin-
terval of the correct . However, during the execution of SBR2,
it is likely to encounter with . This typically hap-
pens on initialization when . To avoid the unpredicted
output of the CTF block in these cases, we detect them in ad-
vance. We suggest to approximate by ,
and solve the MMV system for the sparsest solution only if

. This approximation is motivated by the fact
that for any it is true that . From Propo-
sition 2 we have that which results in

(56)

However, only special multiband signals result in strict in-
equality in (56). Therefore, an interval that produces

is halved. Otherwise, we apply the CTF
block for this assuming that (56) holds with equality. These
reconstruction steps are detailed in Algorithm 2, named SBR2.

Algorithm 2: SBR2

Input: , Initialize: , Assume:
Output: a set

1: if then
2: return
3: end if
4: Compute the matrix by (38)
5: if then
6: Decompose
7: Solve for the sparsest solution
8:
9:

10: end if
11: if or then
12: split into two equal width intervals
13:
14:
15:
16: end if
17: return

Two error sources may lead SBR2 to produce and
fail the recovery of . One reason this can happen is if strict
inequality holds in (56) for some interval . In this scenario
step 7 is executed even though does not satisfy (42d). For
example, a signal with two equal width bands
and such that

(57)

and . If also satisfies

(58)

then it can be verified that while
on the interval . This is of course

a rare special case. Another reason is a signal for which the al-
gorithm reached the termination step 1 for some small enough
interval. This scenario can happen if two or more points of
reside in an interval width of . As an empty set is returned
for this interval, the final output may be missing some of the
elements of . Clearly, the value of influences the number of
cases of this type. We note that since we do not rely on
the missing values are typically recovered from other intervals.
Fortunately, both these sources of error are very uncommon (in
the sense that random signals from do not have these excep-
tional structures with high probability).

So far, we have shown that when using brute-force optimal
algorithms for the MMV in Step 7, exact recovery is ensured

Authorized licensed use limited to: Technion Israel School of Technology. Downloaded on June 7, 2009 at 06:02 from IEEE Xplore.  Restrictions apply.



MISHALI AND ELDAR: BLIND MULTIBAND SIGNAL RECONSTRUCTION 1003

TABLE II
SPECTRUM-BLIND RECONSTRUCTION METHODS FOR MULTI-BAND SIGNALS

for every up to the above exceptional exam-
ples. Consequently, perfect reconstruction within is ensured
if and up to the same exceptions. The choice
allows to reach the minimal rate, in contrast to the requirement

of SBR4.
The analysis of SBR2 becomes more complicated when

incorporating suboptimal algorithms. Besides the increased
number of iterations, suboptimal MMV solutions contribute
another source for errors . Interestingly, we found in
simulations that a suboptimal algorithm may fail to recover
for some , and still succeed for each of its subsections, even
though . We therefore also halves every interval
for which the CTF produces an indication . Evidently,
the CTF indication plays a crucial role in refining the partition

and in compensating for the practical limitations of MMV
techniques.

The complexity of SBR2 is dictated by the number of iter-
ations of the bi-section process, which is also affected by the
behavior of the MMV algorithm that is used. Numerical exper-
iments in Section VII show that empirically SBR2 converges
sufficiently fast for practical usage.

Finally, we emphasize that SBR2 does not provide an indica-
tion whether even for since there is no way to
know in advance if is a signal of the special type that SBR2
cannot recover.

C. Comparison Between SBR4 and SBR2

Table II compares the SBR algorithms of the previous sec-
tions. The WKS theorem is also included in the comparison,
since sampling at the Nyquist rate allows blind recovery of sig-
nals from . The upper part of the table considers the prop-
erties of each method with respect to the applicable signal set.
Observe that an indication of correct recovery of is available
only for SBR4 and only if the signals are known to lie in . In
addition, since is a true subset of , SBR2 is ap-
plicable to a wider set of signals for the same average sampling
rate.

Considering signals from our model allows to design a
fully-blind system based on the known model-parameters .
The specific behavior for this scenario is compared in the bottom

part of Table II. In particular, SBR4 requires twice the min-
imal rate and guarantees perfect reconstruction when using a
brute-force MMV method. It is important to note that subop-
timal MMV algorithms typically require an increase in sampling
rate to allow recovery.

Fig. 6 summarizes the design flow of a fully blind system.
This figure together with Table II can be used in order to decide
on the most appropriate implementation of the system. Clearly,
for it should be preferred to sample at the Nyquist
rate and to reconstruct with an ideal lowpass filter. For
we have to choose between SBR4 and SBR2 according to the
preferred complexity.

The tradeoff presented here between complexity and sam-
pling rate also exists in the known-spectrum reconstruction.
Sampling at the minimal rate of Landau requires a recon-
struction that consists of piecewise constant filters [11]. The
number of pieces and the reconstruction complexity grow with

. This complexity can be prevented by doubling the value of
which also doubles the average sampling rate according to

(23). Then, (34)–(35) are used to reconstruct the signal by only
one inversion of a known matrix [5].

VII. NUMERICAL EXPERIMENTS

We now provide several experiments in which we examine
the following aspects of the reconstruction of using
algorithms SBR4 and SBR2:

1) recovery for different sampling rates where the MMV pro-
duced by the CTF block is solved using either an optimal
(exponential time) method or a suboptimal (polynomial
time) technique;

2) reconstruction with measurement noise;
3) comparison with a discretization-based method;
4) sampling and reconstruction in the time domain.

A. Setup

To test our results, we would like to sample and perfectly
reconstruct a continuous time signal . However, an
experiment of this type requires implementing both stages in
hardware. In this section, we describe computer simulations for
which several simplifications are required.
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Fig. 6. Spectrum-blind reconstruction scheme.

1) A multiband signal has an infinite support in
the time-domain as follows from the uncertainty principle.
Since only finite length signals can be simulated, we prefer
to generate the test case signals directly in the frequency
domain, where the support of is confined to the finite
interval . In the last experiment we qualitatively examine
our method on a truncated length signal in the time domain.

2) The interval is finite but continuous and thus uncount-
able. A digital representation of on is possible
only over a finite grid. We choose a dense grid to represent
the continuous case. Note that the model remains contin-
uous, and only the experiments necessitate discretization.
To clarify, we compare our approach with a method that
also discretizes the model.

3) In practice, only a finite (though extensive) set of signals
from can be simulated. We choose to simulate random
realizations of .

The setup described hereafter is used as a basis for all the
experiments. The parameter values are chosen differently for
each simulation.

Consider an example of the class where
with exactly bands of width each. In order to evaluate the
reconstruction of our algorithms, 500 test cases from this class
were generated randomly according to the following steps:

1) draw uniformly at random from ;
2) set for , and ensure that the bands

do not overlap;
3) generate an equal-spaced grid over whose density is 100

grid points per interval length ;

4) generate on the chosen grid by

otherwise

For every , the values of and are drawn
independently from a normal distribution with zero mean
and unit variance. The constants are chosen uniformly
from the interval [1,5], independently for each band.

A single multi-coset system is designed by selecting the
values of according to Theorem 3. The multi-coset
system is not changed during the experiment.

An experiment is conducted by recovering the unknown vec-
tors from the measurement vectors of (20) over the
chosen grid. To simulate different sampling rates, SBR4 and
SBR2 are executed using only the first cosets (while ig-
noring the rest). The reconstruction is initially carried out for a
small value of and then repeated while gradually increasing

until the maximal value of . For each value of , the em-
pirical success rate is calculated as the ratio of simulations in
which the signal was recovered up to machine precision
over the chosen grid. The empirical recovery rate reported in
our results is only an average measure of recovery success of a
typical . The reader is referred to [24] and [28] for
further discussion on this issue. In addition, we collect run time
data to qualitatively compare the reconstruction complexity.

B. Recovery for Different MMV Solvers

We set and 1.05 GHZ and select the largest
possible value for satisfying the requirement of Theorem 3:

Authorized licensed use limited to: Technion Israel School of Technology. Downloaded on June 7, 2009 at 06:02 from IEEE Xplore.  Restrictions apply.



MISHALI AND ELDAR: BLIND MULTIBAND SIGNAL RECONSTRUCTION 1005

Fig. 7. Empirical recovery rate for different sampling rates when the MMV
solution is obtained (a) by a brute-force method or (b) by the M-OMP algorithm.

(59)

In addition, we choose . The sampling pat-
tern is selected uniformly at random among the combi-
nations. Since is prime, is guaranteed to be universal [26].
Therefore, for a unique solution is guaranteed by
Theorem 3. Note that in this setting, corresponds to a
sampling rate that is slightly more than the minimal rate of The-
orem 1, i.e., 6.315 GHz 6.3 GHz.

Fig. 7 depicts the empirical recovery rate for
and for two selections of an MMV solver. One is a brute-force
method [13] and the other uses multi-orthogonal matching pur-
suit (M-OMP) [14]. Recall that from Proposition 1.
However, in this experiment a typical signal has
since . As the results show, for SBR4 a high-re-
covery rate (empirically 100%) is achieved with
for the brute-force solver, or with for M-OMP.
These thresholds conform with known results regarding these
recovery methods [14], [28].

The average run time is reported in Fig. 8, in which it is ap-
parent that recovery based on M-OMP is faster. For M-OMP,
the run time of SBR2 is approximately one order above SBR4
in the range . The reason is that in this range the re-
covery rate of M-OMP is low (as the recovery curve of SBR4
testifies). Consequently, the recursion depth of SBR2 grows as it
is difficult to find a suitable partition set . For the brute-force
solver, the number of rows in that are nonidentically zero
dictates the run time, thus SBR2 is sometimes even faster than
SBR4 for this solver.

C. Performance With Measurement Noise

Algorithms SBR4 and SBR2 are readily generalized to deal
with noisy measurements by ignoring the noise eigenvectors in

. Specifically, in step 3 of SBR4 the matrix is chosen as the
set of eigenvectors of whose eigenvalues are above a certain
threshold ( is used in the simulation). While this method
may not be optimal for noise rejection, it is quite simple. A
detailed analysis of methods for noise suppression is beyond
the scope of this paper. For SBR2, the same approach is used
for computing in step 5 and for the decomposition in
step 6.

To simulate the noisy measurements, we create a noise signal
over the entire grid, such that both real and imaginary

Fig. 8. Average run time for SBR4 and SBR2 with different MMV solvers.

Fig. 9. Image intensity represents the empirical recovery rate for different sam-
pling rates � and for several SNR ratios. The setup of this experiment is the same
as of the first experiment, i.e., � � �� � � ���� GHz, � � ��� � � ��.

parts of are drawn independently from a Gaussian dis-
tribution with zero mean and unit variance. The noise energy

is scaled to a desired signal-to-noise ratio, defined as
dB . The empirical re-

covery rate is reported as the fraction of simulations in which
the set of the noise-free was recovered correctly. The
results, depicted in Fig. 9, show a similar behavior for both al-
gorithms, while SBR2 is slightly more sensitive since failures
from subintervals may propagate to the final recovered support.
Here we used only M-OMP.

The stability of SBR4 and SBR2 is dictated by the underlying
CS algorithms that is used to recover . Consequently, a robust
algorithm, such as M-OMP which was studied in [29], implies
robustness of the entire recovery procedure. This demonstrates
that formulating the recovery problem within the CS frame-
work, as implied by Proposition 3, is beneficial since other ro-
bust methods can be adapted, e.g., [15], [24], and [33].

D. Comparison With Discretization

We now describe a discretization approach for blind recovery
and compare it with SBR4 and SBR2. In the computer simula-
tions our approach is also performed over a discrete grid of .
We show that our method outperforms discretization in terms of
recovery rate and run time in simulations. In addition, we detail
the prominent benefits of SBR4 and SBR2 when reconstruction
is carried out in hardware.
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Fig. 10. Comparison with discretization: (a) Empirical recovery rate and
(b) run time for brute-force solvers.

Fig. 11. Comparison with discretization: (a) Empirical recovery rate and
(b) run time for M-OMP solvers.

A naïve approach to overcome the continuous nature of (20)
is to discretize the frequency interval to an equally
spaced finite grid and to solve only for

. The parameter selection of Theorem 3 guarantees unique-
ness of the -sparse vectors . The resulting finite dimen-
sional problem can be solved within the regular CS framework.
The missing values of between the grid points, that is for

, can be interpolated if additional smoothness as-
sumptions on are used. Alternatively, we can approximate
the set of (30) by and then apply (34)–(35).
Since our model and experiments do not assume smoothness, we
compare algorithms SBR4 and SBR2 with the latter method.

Consider a computer experiment with 10 MHz and
as before. This selection produces multiband signals

with narrow bands (relative to the slice width ). In Figs. 10
and 11, we compare recovery rates and run times of SBR4,
SBR2 with discretization. Two significant differences between
these approaches are evident. First, for a comparable run time,
SBR4 and SBR2 achieve higher recovery rate. Second, to im-
prove the recovery rate of discretization, a dense grid of

is required which increases run time beyond that of SBR4,
SBR2. A dramatic increase of is typically required when
is only an upper-bound and not the exact band width as in sim-
ulations. We note that recovery rate of discretization decreases
for higher than few hundreds since machine precision limits
the matrix dimension that can be used in matching pursuit. In
contrast, 200 000 frequency bins are used in this simulation for
SBR4 and SBR2. Evidently, a high frequency resolution hardly
affects the recovery and run time of our SBR algorithms.

Besides improved performance in simulations, our approach
has obvious advantages in hardware implementation. Dis-
cretization requires working in the frequency domain and
necessitates additional assumptions on the content of

Fig. 12. Amplitude of the Nyquist rate sequence ���� � ���� � is plotted in
(a) for � � � � ��	. In this example� � �
� �� �� and � � ���	��� 

� ns.
The support of ��	� is centered around 	 � ����� 
��
���� GHz as shown
in (b). The diversity set is 
 � ����� 
��

�
��
��.

Fig. 13. Frequency response of ���� (magnitude only) for � � 
	
.

to approximate a solution. For SBR4, can be computed
in analog hardware and in the time-domain (as discussed in
the sequel). Moreover, in noisy environments discretization is
inherently problematic since the noise amplitude can be locally
higher than the signal and typically the recovered support is
incorrect. In contrast, the SBR algorithms are based on the
aggregated energy of the signal in each spectrum slice and thus
are more effective in noisy environments. This distinction also
holds for computer simulations with measurement noise.

E. Sampling and Reconstruction in the Time-Domain

Consider the following choice of with
1.05 GHz, 20 GHz:

(60)

where . The th band of defined
in (60) has -energy , exact support width , time offset

and carrier frequency . The exact values appear in Fig. 12.
The signal is observed on a time frame of 28.5 ns starting at

, which corresponds to Nyquist rate
samples.

In order to sample , we set and
a random sampling pattern . The sampling sequences ,
given by (17), are padded by zeros between the nonzero
samples. Interpolating values for the zeros is carried out
by a convolution [5]

(61)

with an appropriate lowpass filter . We used Matlab
command to create a
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Fig. 14. Amplitude of the reconstructed Nyquist rate sequence ����� is plotted
for time points � � ��� � � � � ��� and for (a) � � 	�	 and
(b) � � 
�	. The relative reconstruction error ����� � ��������� �
����� is 2:5%; 1:7% respectively.

real-valued (nonideal) low-pass filter of length ,
which is frequency-shifted to obtain the complex filter

. Fig. 13 depicts the frequency
response of .

To recover the diversity set , we follow the steps of Fig. 4,
where is computed in the time-domain by [5]

(62)

In our experiment, the infinite sum is truncated to
, thus producing an approximation with several negligible

eigenvalues. The corresponding eigenspaces are removed from
as in Section VII-C. Applying the CTF block to the dominant

eigenvectors of outputs which is
the exact diversity set of .

Once is recovered, the remaining steps coincide with the
known-spectrum recovery of [5]. Specifically, is inverted
and the sampling sequences are combined accordingly.
The reconstruction of the Nyquist rate sequence requires
another lowpass filtering [5]. We used the nonideal filter
for this purpose. Fig. 14 depicts the recovered signal for two se-
lections of . Additional analog lowpass filter is required
to obtain the continuous-time .

VIII. CONCLUSION

In this paper, we suggested a method to reconstruct a multi-
band signal from its samples when the band locations are un-
known. Our development enables a fully spectrum-blind system
where both the sampling and the reconstruction stages do not re-
quire knowledge of the spectral support.

We address the fundamental aspects of multiband sampling: a
signal model, a minimal rate requirement and explicit sampling
and reconstruction stages. The proposed signal model is param-
eterized by the number of bands and their widths and relates to
known physical properties of these signals in practical applica-
tions. We do not assume the spectral support nor any restriction
on the possible band locations.

Our main contributions describe the setup of the sampling
stage and concrete blind reconstruction algorithms. We derive a
clear connection between signal model and the choice of param-
eters for the multi-coset strategy. A unique solution is guaran-
teed under this choice without any further mathematical restric-

tions on the band locations. The blind recovery is accomplished
by a finite dimensional problem which is formulated within the
framework of compressed sensing. This result makes no use of
discretization. The SBR algorithms developed here suggest a
tradeoff between recovery complexity and sampling rate.

In addition, we proved a lower bound on the sampling rate for
spectrum-blind reconstruction. One of the algorithms we pro-
posed indeed approaches this minimal rate for a wide class of
multiband signals from our model.

Numerical experiments demonstrated various practical as-
pects regarding the blind recovery, such as the influence of
suboptimal CS algorithms, stability in noisy environment and a
comparison with discretization techniques.

The machinery developed in this work extends compressed
sensing beyond the finite framework on which it has been fo-
cused. In particular, multiband signals are only a representa-
tive example for sparsity of analog signals. Subsequent publica-
tions since submission of this paper already incorporate this ap-
proach to develop low-rate sampling strategies for other classes
of sparse analog signals.

APPENDIX A
REAL-VALUED SIGNALS

In order to treat real-valued signals the following definitions
replace the ones given in the paper. The class is changed to
contain all real-valued multiband signals bandlimited to

with no more than bands, where each band
width is upper bounded by as before. The Fourier transform
is conjugate symmetric for real-valued signals, and thus is
always even. The Nyquist rate remains and the minimal
rate requirement is (if less than the Nyquist rate).

Repeating the calculations of [11] that lead to (18), it can
be seen that several modifications are required. To form ,
the interval is still divided into equal intervals. However, a
slightly different treatment is given for odd and even values of

, because of the aliasing of positive and negative frequencies.
Define the set of consecutive integers:

odd
even

(63)

and redefine the interval by

odd
even .

(64)

The vector is then given by

(65)

The dimensions of remain with th entry

(66)

The definition of remains the same with respect to
defined in (64). The results of the paper are thus extended to
real-valued multiband signals since (20) is now valid with re-
spect to these definitions of , and .

Note that, filtering out the negative frequencies of the given
real-valued signal results in a complex-valued version
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whose support is . Treating the latter in the regular
complex-valued framework leads to a Nyquist rate and
also halves the minimal rate requirement. Nevertheless, the
information rate is the same for both versions, as each sample
of a complex-valued signal is represented by two real numbers.

APPENDIX B
PROOF OF LEMMA 1

Let . Reorder the columns of so that the
first columns are linearly independent. This operation does
not change the rank of nor the rank of . Define

(67)

where contains the first columns of and the rest are
contained in . Therefore,

(68)

The inequalities result from the properties of the rank of con-
catenation and of multiplication of matrices. So it is sufficient
to prove that has full column rank.

Let be a vector such that . It remains to prove
that this implies . Since the vector

is -sparse for . However, and
its null space cannot contain a -sparse vector unless it is the
zero vector. Since contains linearly independent columns
this implies .
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During the review of this paper, we were provided with the
thesis [9]. This work, which unfortunately was never cited and is
available only on microfilms, follows the ideas of [5]–[7]. The
current paper differs from [9] at the early step of defining the
signal model. Consequently, our theorems and algorithms do
not require the restriction on band locations of [7], which also
appears in [9].
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