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Abstract— Ground-penetrating radar (GPR) target detection
and classification is a challenging task. Here, we consider
online dictionary learning (DL) methods to obtain sparse
representations (SR) of the GPR data to enhance feature
extraction for target classification via support vector machines.
Online methods are preferred because traditional batch DL like
K-times singular value decomposition (K-SVD) is not scalable to
high-dimensional training sets and infeasible for real-time oper-
ation. We also develop Drop-Off MINi-batch Online Dictionary
Learning (DOMINODL), which exploits the fact that a lot of the
training data may be correlated. The DOMINODL algorithm
iteratively considers elements of the training set in small batches
and drops off samples which become less relevant. For the case of
abandoned anti-personnel landmines classification, we compare
the performance of K-SVD with three online algorithms: classical
online dictionary learning (ODL), its correlation-based variant,
and DOMINODL. Our experiments with real data from L-band
GPR show that online DL methods reduce learning time by
36%-93% and increase mine detection by 4%-28% over K-SVD.
Our DOMINODL is the fastest and retains similar classification
performance as the other two online DL approaches. We use a
Kolmogorov—Smirnoff test distance and the Dvoretzky—Kiefer—
Wolfowitz inequality for the selection of DL input parameters
leading to enhanced classification results. To further compare
with the state-of-the-art classification approaches, we evaluate a
convolutional neural network (CNN) classifier, which performs
worse than the proposed approach. Moreover, when the acquired
samples are randomly reduced by 25%, 50%, and 75%, sparse
decomposition-based classification with DL remains robust while
the CNN accuracy is drastically compromised.

Index Terms— Adaptive radar, deep learning, ground-
penetrating radar (GPR), online dictionary learning (ODL),
radar target classification, sparse decomposition.
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I. INTRODUCTION

GROUND penetrating radar (GPR) is used for probing

the underground by transmitting radio waves from an
antenna held closely to the surface and acquiring the echoes
reflected from subsurface anomalies or buried objects. As the
electromagnetic wave travels through the subsurface, its veloc-
ity changes due to the physical properties of the materials
in the medium. By recording such changes in the velocity
and measuring the travel time of the radar signals, a GPR
generates profiles of scattering responses from the subsurface.
The interest in GPR is due to its ability to reveal buried
objects non-invasively and detect non-metallic scatterers with
increased sensitivity to dielectric contrast [1]. From the record-
ings of the previously observed regions, GPR surveys can also
extrapolate subsurface knowledge for inaccessible or unexca-
vated areas. This sensing technique is therefore attractive for
several applications, such as geophysics, archeology, forensics,
and defense (see [1], [2] for some surveys). Over the last
decade, there has been a spurt in GPR research because of
advances in electronics and computing resources. GPR has
now surpassed traditional ground applications and has become
a more general ultra-wideband (UWB) remote sensing system
with proliferation to novel avenues, such as through-the-wall
imaging, building construction, food safety monitoring, and
vegetation observation.

In this paper, we consider the application of detecting buried
landmines using GPR. This is one of the most extensively
investigated GPR applications due to its obvious security
and humanitarian importance [3]. Mine detection GPR usually
operates in the L-band (1-2 GHz) with UWB transmission in
order to achieve sufficient resolution to detect small targets
(5-10-cm diameter) and penetrate solid media at shallow
depths (15-30 cm) [4].

Even though a lot of progress has been made on GPR
for landmine detection, discriminating them from natural and
man-made clutter remains a critical challenge. In such applica-
tions, the signal distortion due to inhomogeneous soil clutter,
surface roughness, and antenna ringing hampers target recog-
nition. Moreover, the constituting material of many models of
landmines is largely plastic and has a very weak response to
radar signals due to its low dielectric contrast with respect to
the soil [2]. Finally, a major problem arises due to low radar
cross section (RCS) of some landmine models [5]. A variety
of signal processing algorithms have been proposed for the
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detection of low metal-content landmines in realistic scenarios;
approaches based on feature extraction and classification are
found to be the most successful [6]-[8], yet false-alarm rates
remain very high.

Sparse representation (SR) is effective in extracting the
mid- or high-level features in image classification [9], [10].
In the context of anti-personnel landmines recognition using
GPR, our prior work [11], [12] has shown that frameworks
based on SR improve the performance of support vector
machine (SVM) classifiers in distinguishing different types
of mines and clutter in highly corrupted GPR signals. In
this approach, the signal-of-interest is transformed into a
domain where it can be expressed as a linear combination
of only a few afoms chosen from a collection called the
dictionary matrix [13], [14]. The dictionary may be learned
from the data it is going to represent. Dictionary learning (DL)
techniques (or sparse coding in machine learning parlance)
aim to create adaptive dictionaries, which provide the sparsest
reconstruction for given training sets, i.e., a representation with
a minimum number of constituting atoms. DL methods are
critical building blocks in many applications, such as deep
learning, image denoising, and super-resolution (see [15]-[17]
for further applications.)

Classical DL algorithms, such as method of optimal direc-
tions (MOD) [18] and K-times singular value decomposi-
tion (K-SVD) [13], operate in batches, dealing with the entire
training set in each iteration. Although extremely successful,
these methods are computationally demanding and not scalable
to high-dimensional training sets. An efficient alternative is
the online dictionary learning (ODL) algorithm [19] that has
faster convergence than batch DL methods. In this paper,
we develop a new approach toward classification based on
online DL-SR framework for the specific case of GPR-based
landmine identification.

The main contributions of this paper are as follows.

A. Faster DL for GPR Landmine Classification

We investigate the application of DL toward GPR-based
landmine classification. To the best of our knowledge, this
has not been investigated previously. Furthermore, online
DL! methods have been studied more generally in GPR.
Only one other previous study has employed DL (K-SVD)
using GPR signals [20], although for the application of iden-
tifying bedrock features. We employ online DL methods
and use the coefficients of the resulting sparse vectors as
input to an SVM classifier to distinguish mines from clut-
ter. Our comparison of K-SVD and online DL using real
data from L-band GPR shows that online DL algorithms
present distinct advantages in speed and low false-alarm rates.
We propose a new Drop-Off MINi-batch Online Dictionary
Learning (DOMINODL), which processes the training data in
mini-batches and avoids unnecessary update of the irrelevant
atoms in order to reduce the computational complexity. The
intuition for the drop-off step comes from the fact that some
training samples are highly correlated and, therefore, in the

'We use the term “online DL to imply any algorithm that operates in online
mode. From here on, we reserve the term ODL solely to refer to the method
described in [19].
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interest of processing time, they can be dropped during training
without significantly affecting performance.

B. Better Statistical Metrics for Improved Classification

Contrary to previous studies [20] which determine DL para-
meters (the number of iterations, atoms, and so on) based
on bulk statistics, such as normalized root-mean-square error
(NRMSE), we consider statistical inference for parameter
analysis. Our methods based on Kolmogorov—Smirnoff (K-
S) test distance [21] and Dvoretzky—Kiefer—Wolfowitz (DKW)
inequality [22], [23] are able to fine-tune model selection
resulting in improved mine classification performance.

C. Experimental Validation for Different Landmine Sizes

Our comparison of K-SVD with three online DL
algorithms—ODL, its correlation-based variant [24], and
DOMINODL—shows that online methods successfully detect
mines with very small RCS buried deep into clutter and
noise. Some recent studies [25]-[28] employ the state-of-the-
art deep learning approaches such as a convolutional neural
network (CNN) to classify GPR-based mines data. Our com-
parison with CNN illustrates that it has poorer performance in
the detection of small mines than our online DL approaches.
This may also be caused by the relatively small dimensions
of our training set which, even if perfectly adequate for DL,
may not meet the expected requirements for a CNN [29].
We also show that the classification performance of online DL
methods does not deteriorate significantly when signal samples
are reduced.

The rest of this paper is organized as follows. In Section II,
we formally describe the classification problem and GPR
specific challenges. In Section III, we explain various DL algo-
rithms used in our methodology and also describe DOMIN-
ODL. We provide an overview of the GPR system and field
campaign to collect GPR data sets in Section IV. In Section V,
we introduce our techniques for DL parameter selection.
Section VI presents classification and reconstruction results
using real radar data. We conclude in Section VII.

Throughout this paper, we reserve boldface lowercase and
uppercase letters for vectors and matrices, respectively. The
ith element of a vector y is y;, while the (i, j)th entry
of the matrix Y is Y; ;. We denote the transpose by T
We represent the set of real and complex numbers by R and C,
respectively. Other sets are represented by calligraphic letters.
The notation || - ||, stands for the p-norm of its argument and
|| - IF is the Frobenius norm. A subscript in the parenthesis
such as ()(;) is the value of the argument in the fth iteration.
The convolution product is denoted by *. The function diag(-)
outputs a diagonal matrix with the input vector along its
main diagonal. We use Pr{-} to denote probability, E{-} is the
statistical expectation, and | - | denotes the absolute value.
The functions max(-) and sup(-) output the maximum and
supremum value of their arguments, respectively.

II. PROBLEM FORMULATION

A pulsed GPR transmits a signal into the ground and
receives its echo for each point in the radar coverage area.
The digital samples of this echo constitute a range profile
designated by the signal vector y € R, where M is the
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number of range cells. Formally, the SR of y can be described
by y = Dx, where D = [dy, --- ,dy] € R¥*VN with column
vectors or atoms {d;} is a redundant or overcomplete (M < N)
dictionary, and x € R¥ is the SR vector. The SR process finds
the decomposition that uses the minimum number of atoms to
express the signal. If there are L range profiles available, then
the SR of the data Y = [y, --- ,yr] is described as Y = DX,
where X =[x, - -+ ,x.] € RV*L,

Our goal is to classify different mines (including the ones
with small RCS) and clutter based on the SR of range
profiles using fast, online DL methods. The GPR range profiles
from successive scans are highly correlated. We intend to
exploit this property during the DL process. In the follow-
ing, we describe the SR-based classification and mention its
challenges.

A. GPR Target Classification Method

We use SVM to classify sparsely represented GPR range
profiles using the learned dictionary D. Given a predefined
collection of labeled observations, SVM searches for a func-
tional f : R" — R that maps any new observation to a class
¢ € R. A binary classifier with linearly separable data, for
example, would have ¢ € {1, —1}. In this paper, we use X,
i.e., the sparse decomposition of a given set of signals (the
“training” signals) Y using the learned dictionary D, as a set
of labeled observations for the SVM. SVM transforms the data
into a high-dimensional feature space, where it is easier to
separate between different classes. The kernel function that
we use to compute the high-dimensional operations in the
feature space is the Gaussian radial basis function (RBF):
k(X;,X;) = exp(—y (||x; — xj||)2 + C), where y > 0 is the
free parameter that decides the influence of the support data
vector X; on the class of the vector x; in the original space and
C 1is the parameter for the soft margin cost function, which
controls the influence of each individual support vector [30].
To optimally select the SVM input parameters, we arrange the
original classification set into training and validation vectors in
v different ways (v-fold cross validation with v = 10) to arrive
at a certain mean cross-classification accuracy of the validation
vectors. The folds were randomly selected and their number
was found empirically by determining the limit above which
the accuracy improvement was negligible. We refer the reader
to [30] for more details on SVM.

B. Basic Framework of DL

In many applications, the dictionary D is unknown and has
to be learned from the training signals coming from the desired
class. A DL algorithm finds an overcomplete dictionary D that
sparsely represents measurements Y such that Y >~ DX. Each
of the vectors x; is an SR of y; with only K nonzero entries.
A non-tractable formulation of this problem is

min [|Y — DX||F
D,X
st Ixillo < Ks, 1<i=<L. (D

Since both D and X are unknown, a common approach is
to use alternating minimization in which we start with an
initial guess of D and then obtain the solution iteratively
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by alternating between two stages—sparse coding [31] and
dictionary update [32]—as follows:

1) Sparse Coding: Obtain X,y as
X = min Y = DX

st Ixi_ llp < K5y 1<i<L )

where X(;) is the SR in zth iteration. This can be solved
using greedy algorithms such as orthogonal matching
pursuit (OMP) (p = 0), convex relaxation methods like
basis pursuit denoising (BPDN) (p = 1), or a focal
underdetermined system solver (FOCUSS) (0 < p < 1).

2) Dictionary Update: Given X(;), update D such that
D) = min ||Y — DX 3
(n) = min I wllF (3)

where D is a set of all dictionaries with unit column
norms, ||d;|l> = 1 for 1 < j < N. This subproblem is
solved by methods such as singular value decomposition
or gradient descent [19], [31].
Classical methods such as MOD [18] and K-SVD [13] retain
a guess for D and X and iteratively update either X using basis
pursuit/matched pursuit (BP/MP) or D using a least squares
solver. Both MOD and K-SVD operate in batches, i.e., they
deal with the entire training set in each iteration, and solve the
same DL model but differ in the optimization method. Since
the initial guesses of D or X can be far removed from the actual
dictionary, the BP step may behave erratically. While there are
several state-of-the-art results that outline DL algorithms with
concrete performance guarantees [16], [33], [34], they require
stronger assumptions on the observed data. In practice, heuris-
tic DL, such as MOD and K-SVD, does yield overcomplete
dictionaries although provable guarantees for such algorithms
are difficult to come by.

Several extensions of batch DL have been proposed,
e.g., label consistent (LC) K-SVD [35] and discriminative
K-SVD [36] introduced label information into the procedure
of learning dictionaries to make them more discriminative. The
performance of K-SVD can be improved in terms of both com-
putational complexity and obtaining an incoherent dictionary if
the learning process enforces constraints such as hierarchical
tree sparsity [37], structured group sparsity (StructDL) [38],
Fisher discrimination (FDDL) [39], and low-rank-and-Fisher
(D?L2R?) [40]. Often objects belonging to different classes
have common features. This has been exploited in improving
K-SVD to yield methods such as DL with structured incoher-
ence and shared features (DLSI) [41], separating the common-
ality and the particularity (COPAR) [42], convolutional sparse
DL (CSDL) [43], shift-invariant DL [44], principal component
analysis DL [45], convolutional DL [46], and low-rank shared
DL (LRSDL) [47]. A recent review of various DL algorithms
can be found in [48].

In general, batch DL methods are computationally demand-
ing at test time and not scalable to high-dimensional train-
ing sets. On the other hand, online methods such as ODL [19]
converge fast and process small sets. A few improvements
to ODL have already been proposed. For example, [49] con-
sidered a faster online sparse dictionary learning (OSDL)
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to efficiently handle bigger training set dimensions using a
double-sparsity model. A recent study [24] notes that even
though online processing reduces computational complexity
compared to batch methods, ODL performance can be further
improved if the useful information from previous data is
not ignored in updating the atoms. In this paper, a new
online DL called correlation-based weighted least square
update (CBWLSU) was proposed, which employs only part of
the previous data correlated with current data for the update
step. The CBWLSU is relevant to GPR because the latter often
contains highly correlated range profiles.

In this paper, our focus is to investigate such fast DL
methods in the context of GPR-based landmine detection
and classification. We also propose a new online DL. method
that exploits range profile correlation as in CBWLSU but
is faster than both ODL and CBWLSU. Our inspiration is
the K-SVD variant called incremental structured DL (ISDL)
that was used earlier in the context of SAR imaging [50].
In ISDL, at each iteration, a small batch of samples is
randomly drawn from the training set. Let R; C {1,---, L} be
the set of indices of the mini-batch training elements chosen
uniformly at random at the tth iteration. Then, ISDL updates
the dictionary D using the mini-batch Yz, = {y; : [ € R}
and the corresponding representation coefficient X. The fast
iterative shrinkage-thresholding algorithm (FISTA) [51] and
block coordinate descent methods solve the sparse coding and
dictionary update, respectively. As we will see in Section VI,
the mini-batch strategy that we employed in our DOMINODL
reduces computational time without degrading performance.

III. ONLINE DL

We now describe the DL techniques used for GPR tar-
get classification and then develop DOMINODL in order to
address the challenges of long training times in the context of
our problem.

A. K-SVD, LRSDL, ODL, and CBWLSU

As mentioned earlier, the popular K-SVD algorithm [52]
sequentially updates all the atoms during the dictionary update
step using all training set elements. For the sparse coding step
at iteration 7, K-SVD employs OMP with the formulation

min [|x;llo
X;
st lyi —De-nxil3 <o, Vi<i<L ()

where ¢ is the maximum residual error used as a stopping
criterion. For the dictionary update at iteration t, K-SVD
solves the global minimization problem (3) via K sequential
minimization problems, wherein every column d; of D and its
corresponding row of coefficients X;ow,« of X are updated as
follows:

{Xrow,k(,) 5 dk(,) }

= min

X Y- Z dl,,lxrow,l(,_l) - derow,k(,_”
row,k(l_l) ,dk

Ik F

)
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The update process employs SVD to find the closest
rank-1 approximation (in Frobenius norm) of the error term
Y— 3" i, Xrow, i,y subject to the constraint [k [l2 = 1.

Another recent batch method of interest is the LRSDL [47].
This is a discriminative batch DL algorithm (others being
D-KSVD [36] and LC-KSVD [35]) that learns by promot-
ing the generation of a dictionary D which is separated
in blocks of atoms associated with different classes as
D = [D,---,Dc] € RM*N where C is the num-
ber of classes present in the training set Y. The resultant
coefficient matrix X has a block diagonal structure. The
assumption of non-overlapping subspaces is often unrealistic
in practice. Techniques, such as COPAR [42], joint dictio-
nary learning [53], and CSDL [43], exploit common patterns
among different classes even though different objects possess
distinct class-specific features. These methods produce an
additional constituent Dy which is shared among all classes
so that D = [Dy,---,D¢c,Dg] € RM*N_ The drawback of
these strategies is that the shared dictionary may also contain
class-discriminative features. To avoid this problem, LRSDL
requires that the shared dictionary must have a low-rank
structure and that its sparse coefficients have to be almost
similar. Once the data are sparsely represented with such
dictionaries, an SR-based classifier (SRC) is used to predict
the class of new data. The LRSDL update process employs
alternating direction method of multipliers (ADMM) [54] and
FISTA for the sparse decomposition step.

ODL is an interesting alternative for inferring a dictionary
from large training sets or ones which change over time [19].
ODL also updates the entire dictionary sequentially, but uses
one element of training data at a time for the dictionary update.
Assuming that the training set Y is composed of independent
and identically distributed samples of a distribution p(Y),
ODL first draws an example of the training set y; from Y.
Then, the sparse coding is the Cholesky-based implementation
of the LARS-LASSO algorithm [55]. The latter solves a
{1-regularized least-squares problem for each column of Y.
In the dictionary update, we consider all the training set
elements analyzed so far, namely, y; with i =1...¢

o1
x; = min —||yr—De_1xI13 + A|Ix|]1. (©6)
xeCn 2

In the next step, each column of D is sequentially updated via
gradient descent using the dictionary computed in the previous
iteration. Before receiving the next training data, the dictionary
update is repeated multiple times for convergence.

CBWLSU is an online method that introduces an inter-
esting alternative for the dictionary update step [24]. Like
ODL, CBWLSU evaluates one new training data y;. However,
to update the dictionary, it searches among all previous training
data and uses only the ones which share the same atoms
withy; LetYg, ={y;:/ € Q;} with Q; ={y; : 1 <l <11}
be the set of previous training elements at iteration i. Define
Ne={l:1<1<t,(x %) # 0} CQ as the set of
indices of all previous training elements that are correlated
with the new element such that |N;| = N,. The new training
setis Yo, ={y; : [ € N} Uy;. Then, CBWLSU employs
a weighting matrix W(y;) to evaluate the influence of the
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selected previous elements y; for the dictionary update step
and solves the optimization problem therein via weighted least
squares. Unlike K-SVD and ODL, CBWLSU does not require
the dictionary pruning step to replace the unused or rarely used
atoms with the training data. The sparse coding in CBWLSU
is achieved via batch OMP.

B. Drop-Off Mini-Batch Online Dictionary Learning

We now introduce our DOMINODL approach for online
DL, which not only leads to a dictionary (D) that is tuned
to sparsely represent the training set (Y) but is also faster
than other online algorithms. The key idea of DOMINODL
is as follows: when sequentially analyzing the training set,
it is pertinent to leverage the memory of previous data in the
dictionary update step. However, algorithms such as CBWLSU
consider all previous elements. Using all previous training
set samples is computationally expensive and may also slow
down convergence. The samples that have already contributed
in the dictionary update do not need to be considered again.
Moreover, in some real-time applications (such as highly
correlated range profiles of GPR), their contribution may not
be relevant anymore for updating the dictionary.

In DOMINODL, we save computations by considering only
a small batch of previous elements that are correlated with the
new elements. The two sets are defined correlated if, in their
sparse decomposition, they have at least one common nonzero
element. The time gained from considering fewer previous
training elements is used to consider a mini-batch of new
training data (instead of a single element as in ODL and
CBWLSU). The sparse coding step of DOMINODL employs
batch OMP, selecting the maximal residual error J in (4)
using a data-driven entropy-based strategy as described later
in this section. At the end of each iteration, DOMINODL
also drops-off those previous training set elements that have
not been picked up after a certain number of iterations, N,.
The mini-batch drawing combined with dropping off training
elements and entropy-based criterion to control sparsity results
in an extremely fast online DL algorithm that is beneficial for
real-time radar operations.

We initialize the dictionary D using a collection of K
training set samples that are randomly chosen from Y. We then
perform a sparse decomposition of Y with the dictionary D.
Let the iteration count # indicate the th element of the training
set. We define the mini-batch of N, new training elements as
Yp, = {y; : [ € B}, where B, = {y; : i <1 < t+ Np}
with |B;| = Np. When t > L — Np, we simply take the
remaining new elements to constitute this mini-batch.> We
store the set of dictionary atoms participating in the SR of
the signals in Yp, as Dg,. We define Yo, = {y; : [ € Q;}
with @, = {y; : 1 <1 < t — 1} as the set of previous
training elements at iteration 7. We consider a randomly
selected mini-batch Y, = {y; : [ € M;} with M, C Q,
such that |[M;| = N,. Let Y4, = {y; : | € A;} where
A, C M, such that A, = {l : | € M,,(x] -x;) # 0} be

2In numerical experiments, we observed that the condition t > L — N,
rarely occurs because DOMINODL updates the dictionary and converges in
very few iterations. The algorithm also ensures that the number of previous
samples > 2N, before the dictionary update. If this condition is not fulfilled,
then it considers all previous training samples.
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a subset of previous training elements that are correlated with
the mini-batch of new elements. In order to avoid multiple
occurrences of the same element in consecutive mini-batches,
DOMINODL ensures that M;NM,_1 = . Let D 4, be the set
of dictionary atoms used for SR of Y 4,. Our new training set
is Ye, = Y 4, U Yp,. Both mini-batches of new and previous
elements are selected such that the entire training set size
(Np + N,) is still smaller than that of CBWLSU where it
is Np, + 1.
The dictionary update subproblem reduces to considering
only the sets Y¢,, D¢,, and X¢,
De

t

= min_||Ye, — D¢ Xe,|[%. 7
oot [1Yc, — D¢, Xe, e (7)
Assume that the sparse coding for each example is known and
define the errors as

.,en, ] )

We can update D¢,, such that the above error is minimized,
with the assumption of fixed X¢,. A similar problem is consid-
ered in MOD, where error minimization is achieved through
least squares. Here, we employ weighted least squares inspired
by the fact that it has shown improvement in convergence over
standard least squares [24]. We compute the weighting matrix
W, using the SR error Ec,

1 1
Wczdiag( ) )
' [lerll2 llew, |13

We then solve the optimization problem

Ec, =Y¢, — D¢ Xc, = [ey, ..

t

A 1
De, = min_|[(Ye, —De,Xc,)WE 17 (10)
D¢, €D !
This leads to the weighted least squares solution
o ~1
D¢, = Yo, We, Y (Yo, We Ye,) . (11)

The dictionary D is then updated with the atoms ﬁc, and its
columns are normalized by their {>-norms.

D is next used for updating the sparse coding of Y¢, using
batch OMP. Selecting a value for the maximal residual error
0 in (4) is usually not straightforward. This value can be
related to the amount of noise in the observed data but this
information is not known. The samples of our training set
can be seen as the realizations of a statistical process with an
unknown distribution; therefore, one can associate with these
realizations as the concept of statistical entropy. We compute
the normalized entropy of the mean vector of all the training
set samples as

M
E(uy) = =Y P(py,)log P(py,) (12)
i=1

where py is the mean vector of all training samples, M is the
number of features for each training sample, and P(-) is the
probability mass function. In our case, P(-) is obtained as
the normalized histogram of wy. Here, E(uy) is an indicator
of the randomness of the data due to noise. We use E(py)
as the maximal residual error J while applying batch OMP
in DOMINODL. Algorithm 1 summarizes all major steps of
DOMINODL.
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TABLE I
COMPARISON OF DL STEPS

DL step K-SVD LRSDL ODL CBWLSU DOMINODL

Training method Batch Batch Online Online Online

Sparse coding method OMP FISTA LARS Batch OMP Entropy-thresholded batch OMP
Dictionary update Entire D atom-wise  Entire D Entire D group-wise  Entire D atom-wise Partial D adaptively group-wise
Training samples per iteration Entire Y Entire Y Y, Y, Ye,

Optimization method SVD ADMM Gradient descent Weighted least squares ~ Weighted least squares
Post-update dictionary pruning  Yes No Yes No No

Training-set drop-off No No No No Yes

Algorithm 1 DOMINODL

Input: Training set (Y), number of trained atoms (K),
mini-batch dimension for new training data (Np),
mini-batch dimension for previous training data
(N,), drop-off value (N,), convergence threshold
(x €R)

Output: Learned dictionary (D), sparse decomposition

of the training set (X)

1 Generate initial dictionary D of dimension K using
training samples

2 Normalize the columns of Y and D by their £3-norms

3 Sparsely decompose Y with the initial dictionary using
entropy-thresholded batch OMP

4 Loop

5 | Gather a mini-batch of new training set elements

Y =1y :leB}with B, ={y;:i <[ <i+ Np}

and |B;| = Np

6 | SR of Yp, with the dictionary D using

entropy-thresholded batch OMP

7 | Store the set of atoms Dp, participating in the SR of

Yp,

8 | Randomly select a mini-batch of previous training set

elements Y, = {y; : | € M,;} with |[M;| = N, and

M[ ﬂ M[_l - (/)

9 | Consider a subset Y 4, = {y; : [ € A;} where

A; € M, such that A, = {l : 1 € My, (x] - x;) # 0}

10 | Form Y, =Y 4, UYp, and store D¢, the atoms of D
shared by B, and M,

11 | Compute the errors
Ec, =Y¢, — D¢, X, =[eq,...,en,]

12 | Form the weighting matrix

: 1 1

Wa, = diag (W e Hemn%)

13 | Update lA)CIZ lA)CI =Y, We, Ygt (Y, We, Ygt)*1 and
normalize its columns

14 | Replace the updated atoms D¢, into D and normalize
its columns

15 | Perform SR of selected signals used in the previous
step using entropy-thresholded batch OMP

16 | Eliminate previous training set elements which have
not been used for the last N, iterations

17 | if |[(Ye,—DiXc,)(Wi)?3||% < x then break

18 EndLoop

Table 1 summarizes the important differences between
DOMINODL and other related algorithms. Like MOD and
CBWLSU, DOMINODL uses a weighted least squares

solution in the dictionary update. The proof of convergence
for the alternating minimization method in MOD was pro-
vided in [34], where it is shown that alternating minimiza-
tion converges linearly as long as the following assumptions
hold true: sparse coefficients have bounded values, spar-
sity level is on the order of O(M!/®), and the dictionary
satisfies the RIP property. In [24], these assumptions have
been applied for CBWLSU convergence. Compared with
CBWLSU, the improvements in DOMINODL include mini-
batch-based data selection and data reduction via a drop-off
strategy but the update algorithms remain the same. Numerical
experiments in Section VI suggest that DOMINODL usually
converges in far fewer iterations than CBWLSU.

Although we developed and tested DOMINODL on a highly
correlated GPR data set (see Section IV), this technique may
be employed in other applications where real-time learning is
necessary and the signals are correlated. Our tests demonstrate
that DOMINODL converges faster than other online DL
approaches (see Section VI) because of the combined strategy
of drawing more new elements for each iteration, considering
less previous elements in search for correlation and dropping
off the unused previous elements. The entropy-based calcu-
lation of o, although not exclusive for DL applications as
mentioned above, also helps in improving the SR of the data,
thus learning a more representative dictionary.

Computational complexity of DOMINODL is very low
compared with other online approaches. As mentioned earlier,
there are K atoms in the dictionary. Assume that every signal
is represented by a linear combination of K atoms, K; < K.
Empirically, among all possible combinations of K, atoms
from K, the probability to have a common atom in the SR
is Kg/K. Given L training elements, the number of training
data which have a specific atom in their representation is
proportional to LK /K. Suppose our mini-batch has elements
that reduce the number of training data by a factor f < 1
(depending on the values of N, and Np). Furthermore, assume
that the dropping off step reduces the training set elements
by a factor p < 1. The number of training data L; in the
tth iteration is proportional to fpiK;/K. Then, the worst
estimate of DOMINODL’s computational complexity is due to
the sparse coding batch OMP which is of order O(L,K?) =
OPptKsK) ~ O(fptK). This is much smaller than the
complexity of ODL (= O(K?3)) or CBWLSU (= O(tK)).
Fig. 1 shows the computational complexity of online DL
approaches. Fig. 1(a) shows that, for a fixed number of
iterations (¢ 60), the general trend of complexity with
respect to the increase in the number of atoms (K) is similar
for all algorithms. However, the complexity of ODL is higher
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Fig. 1. Computational complexity of online DL strategies for an increasing
number of (a) iterations and (b) trained atoms.

Dummy Target

Fig. 2. L-band GPR system is attached to a movable trolley platform. It is
mounted along a rail system and scans the target from above.

than CBWLSU and DOMINODL; the latter being the least
complex. When the number of iterations is increased, the com-
plexity of ODL and CBWLSU has a similar increasing trend
[see Fig. 1(b)]. In the case of DOMINODL, its complexity is
similar to the increasing trend of CBWLSU and determined
largely by N,. When DOMINODL iterations begin accounting
for N, previous elements, its complexity stays constant. The
value of f changes for every iteration, while p depends on
the data itself. In general, after a few dozens of iterations,
DOMINODL’s complexity always stays lower than CBWLSU.

IV. MEASUREMENT CAMPAIGN

In this section, we first provide details of our GPR system
and the field measurement campaign. We then describe the
procedure to organize the entire data set for our application.

A. Ground Penetrating Radar System

Our GPR (see Fig. 2) is the commercially available
SPRScan system manufactured by Electrical Research Associ-
ation (ERA) Technology. It is an L-band, impulse waveform,
UWRB radar that is mounted on a movable trolley platform.
Pulsed GPRs are more effective in terms of offering penetra-
tion depth and wide bandwidth with respect to the standard
stepped-frequency continuous wave (SFCW) systems. The
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TABLE 11
TECHNICAL CHARACTERISTICS OF IMPULSE GPR

Parameter Value

Operating frequency 2 GHz

Pulse repetition frequency 1 MHz

Pulse length 0.5 ns

Sampling time 25 ps

Spatial sampling along the beam 1 cm

Cross-beam resolution 4 cm

Antenna height 59 cm

Antenna configuration Perpendicular broadside
Samples/A-scan 512

former is also more robust to electronic interference and does
not suffer from unequal balancing of antenna signals [56].

Table II lists the salient technical parameters of the system.
The radar uses an 8 x8 cm dual bow-tie dipole antenna for both
transmit (Tx) and receive (Rx) sealed in a metallic shielding
filled with an internal absorber. The central frequency of the
system (f.) and its bandwidth (Af) is 2 GHz. The pulse
repetition frequency (PRF) and the sampling of the receiver
ADC are 1 MHz. The scanning system has a resolution of 1 cm
toward the perpendicular broadside (or X-direction) and 4 cm
toward the cross-beam (Y-direction). In our field campaigns,
the SPRScan system moves along the survey area over a rail
system, which allows accurate positioning of the sensor head
in order to obtain the aforementioned resolution in X and Y
(see also Section IV).

The transmit pulse of the GPR system is a monocycle. Given
the Gaussian waveform

s6(t) = Ae R0 € [0, +00] (13)

where f. is the central frequency, A is the peak amplitude,
and © = 1/f,, and the monocycle waveform is its first
derivative [57]

sr(t) =—4n 2 f2A(—1)e 2T D’ e [0, 400]. (14)
In these UWB systems, both the central frequency and the
bandwidth are approximately the reciprocal of the pulselength.

The scattering of UWB radar signals from complex targets
that are composed of a finite number of scattering centers can
be described in terms of the channel impulse response (CIR).
Here, the CIR is considered as a linear, time invariant,
causal system, which is a function of the target shape, size,
constituent materials, and scan angle. The CIR h(z) of a
GPR target, with M scatterers, is expressed as a series of
time-delayed and weighted Gaussian pulses [58]

M
h(t) = Z ame*4ﬂ[(f*tm)/ATm]z 15)
=1

where each scatterer located at range r, from the radar is
characterized by the reflectivity a,,, duration A7,,, and relative
time shift t,, = 2r,, /v, where vy = c/,/€, is the speed of the
electromagnetic wave in the soil, ¢ = 3 x 103 m/s is the speed
of light, and ¢, is the dielectric constant which depends on the
soil composition and moisture.
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(Right) LIAG test field in Hannover along with its (Left) layout. The scan directions X and Y of the radar are indicated on the photograph and

layout. The radar coverage region is indicated by solid red lines with a red circle showing the origin of the scan. The white arrows in the photograph indicate
that specific lanes scanned in the X-direction are separated in the Y-direction by 4 cm. In the layout, each gray dot represents the location of a buried test
target. An individual survey area unit of 1 m x 1 m that contains two targets is also indicated on the layout (solid black lines) and the photograph (dotted
black lines). The solid black arrow over the middle rail in the photograph is where the SPRScan was mounted.

The response of the target to the Gaussian monocycle is the
received signal

y(@) = s7(1) * h(1)

also regarded as the target image or range profile. For each
X/Y position, the system receives a radar echo (range profile)
from the transmitted pulse. In order to deal with the exponen-
tial signal attenuation during the propagation through the soil
medium, the dynamic range of the signal is enhanced via stro-
boscopic sampling [2], [59], [60]. This technique comprises
integrating N receiver samples (generated by transmitting a
sequence of N pulses) at the ADC receiver sampling rate but
with a small time offset ¢ for each of them. To achieve the
desired stroboscopic sampling rate T, the time offset must be
selected accordingly, i.e., 0 = Ty/N [60]. Our GPR system
employs stroboscopic sampling to reach a pseudo sampling
frequency of f; = 1/T; = 40 GHz (much above the Nyquist
rate) to yield the discrete-time signal y[n] = y(nTy).

The receiver has the ability to acquire a maximum
of 195 profiles per second, each one consisting of 512 range
samples. Prior to the A/D conversion, the signal is averaged to
improve the signal-to-noise ratio (SNR). A time-varying gain
correction can be applied to compensate for the soil attenuation
and increase the overall dynamic range of the system. The
receiver averages 100 range profiles for each antenna position.

(16)

B. Test Field Measurements

We evaluated the proposed approach with the measurement
data from a 2013 field campaign at the Leibniz Institute

for Applied Geophysics (LIAG) in Hannover, Germany [6];
Fig. 3 shows the test field for detailed ground truth informa-
tion. The soil texture was sandy and highly inhomogeneous
(due to the presence of material such as organic matter
and stones), thereby leading to a high variability in the
electrical parameters. We measured the dielectric constant at
three different locations of the testbed with a time-domain
reflectometer (TDR) to obtain an estimate of its mean value
and variability. The average value oscillated between 4.6 and
10.1 with 15% standard deviation and correlation length [6] of
20 cm. These large variations in soil dielectric characteristics
pose difficulties in mine detection.

During the field tests, the SPRScan system moved on two
plastic rails with the scan resolution in the X- and Y -directions
being 1 and 4 cm, respectively. The entire survey lane was
divided into 1 x 1 m sections (see Fig. 3), each containing
two targets in the center. The targets on the left-hand and
right-hand sides of the lane were buried at approximately
10- and 15-cm depths, respectively.

Our testbed contains standard test targets (STT) and simu-
lant landmines (SIM) of different sizes and shapes. An STT
is a surrogate target used for testing landmine detection
equipment. It is intended to interact with the equipment in
an identical manner as a real landmine does. An SIM has
the representative characteristics of a specific landmine class
although it is not a replica of any specific model. In this paper,
we study three STTs (PMA2, PMN, and Type-72) and one
SIM (ERA). All of these test objects are buried at a depth
of 10-15 cm in the test field [61]. For classification purposes,
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Fig. 4. Details of the SIM and the STT buried in the test field.

we group PMN and PMA?2 together as the largest targets while
T72 mines are the smallest (Fig. 4).

C. Data Set Organization

The entire LIAG data set consists of 27 aforementioned
survey sections (or simply, “surveys”) of size 1 x 1 m. Every
survey consists of 2500 range profiles. We arranged the data
into the training set (Y) to be used for both DL and classifi-
cation (as explained in Section II-A) and a test set (YTgsT) to
evaluate the performance of the proposed algorithms.

The training set Y € RM*L is a matrix whose L

columns {y,-}iL=1 consist of sampled range profiles y; =

[y[0], -, y[M —1]] Tof M range profiles each. The profiles
are selected from different surveys and contain almost exclu-
sively either a particular class of landmine or clutter. In total,
we have 463, 168, 167, and 128 range profiles for clutter,
PMA2/PMN, ERA, and Type-72, respectively. An accurate
separation of these classes was very challenging because of
the contributions from the non-homogeneous soil clutter that
often masked the target responses completely. A poor selection
would lead the DL to learn a dictionary that is appropriate for
sparsely representing clutter, instead of landmines. The test
set Yrest € RM*/ is a matrix with J = 15000 columns
{yTEST, }l-/: | that correspond to sampled range profiles from six
surveys, two for each target class. The test and training sets
contain data from separate surveys to enable fair assessment
of the classification performance.

We denote by the matrices X € RX*L and Xtgst € RE*/
the SRs of Y and YtgsT, respectively and K by the number
of atoms of the learned dictionary D € RM*K,

V. PARAMETRIC ANALYSIS

In practice, the SR-based classification performance is sen-
sitive to the input parameters of DL algorithms thereby making
it difficult to directly apply DL with arbitrary parameter
values. Previous works set these parameters through hit-and-
trial or resorting to metrics that are unable to discriminate
the influence of different parameters [20]. In this section,
we propose methods to investigate the effect of the various
input parameters on the learning performance and then preset
the parameter to optimal values that yield the dictionary D
(for each DL method) optimized to sparsely represent our
GPR data, therefore improving the quality of the features for
classification (i.e., the sparse coefficients).

Table IIT lists these parameters (see Section III): the num-
ber of iterations N;, the number of trained atoms K, and
DOMINODL parameters Np, N,, and N,,. We applied K-SVD,
LRSDL, ODL, CBWLSU, and DOMINODL separately on the
training set for different combinations of parameter values.
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TABLE III
DL PARAMETERS

DL algorithm ‘ Input parameters
K-SVD Ny, K

LRSDL N, K

ODL N, K
CBWLSU K

DOMINODL K, Ny, Ny, Ny

In order to compare the dictionaries obtained from various
DL algorithms, we use a similarity measure that quantifies the
closeness of the original training set Y with the reconstructed
set Y obtained using the sparse coefficients of the learned dic-
tionary D. From these similarity values, empirical probability
density functions (EPDFs) for any combination of parameter
values are obtained; we evaluate these EPDFs using statistical
metrics described in Section V-B. These metrics efficiently
characterize the similarity between Y and Y and lead us to
an optimal selection of various DL input parameters for our
experimental GPR data set.

A. Similarity Measure

Consider the cross correlation between the original train-
ing set vector y; and its reconstruction y;: ry. 511 =

:ﬁ'ioo yi[nlyiln + 1]. The normalized cross correlation is
defined as
ry. o.[1]
Ty, 5,101 = Yi.i . (17)
Yoy vV Xyiyi [Olrg, 5, (0]
For the vector y;, we define the similarity measure s; as
si = max|ry, 3. ()] (18)

where a value of s; closer to unity demonstrates greater
similarity of the reconstructed data with the original training
set. We compute {s,-}l-L=1 for all vectors {y,-}l-L=1 and then
obtain the normalized histogram or EPDF p,,,, of all similarity
measures. Here, the subscript DL represents the algorithm used
for learning D, e.g., “K”,“0”,“C,” and “D” for K-SVD, ODL,
CBWLSU, and DOMINODL, respectively. Various parameter
combinations for a specific DL method result in a collection
of EPDFs. For a given DL method, our goal is to compare
the EPDFs by varying these parameters and arrive at the
thresholds of parameter values after which the changes in
psp, are only incremental. For instance, Fig. 5 shows the
EPDFs of {s,-}iL=1 obtained from the GPR mines data, where
optimal parameters for different DL methods were deter-
mined using the statistical methods described in Section V-
B. We note that the online DL approaches (ps,, psc, and
Dsp) yield distributions that are more skewed toward unity
than K-SVD (psy).

B. Statistical Metrics

We are looking for parameter values for which pg, is
skewed toward unity and has small variance. The individual
comparisons of mean (x) and standard deviation (o), as used
in previous GPR DL studies [20], are not sufficient to quantify



GIOVANNESCHI et al.: DL FOR ADAPTIVE GPR LANDMINE CLASSIFICATION

0.03
K-SVD

5 oDbL
5 CBWLSU
5 DOMINODL
30.02
e
Y
o Po(N1,K)
g Pc(K)
= Pp(K,Np, Ny, Ny
©
§0.01
g rk(Nr1, K)

0

0 0.2 04 06 0.8 1

Similarity measure, s

Fig. 5. Normalized histograms of similarity measure using the following
optimal parameters for the DL algorithm: N; = 100, K = 640, N, = 30,
Ny = 10, and N, = 10. See Section V-C on the process to select these
optimal values.

the observed dispersion in the EPDFs obtained by varying
any of the parameter values. Some DL studies [20], [50], [62]
rely on bulk statistics such as NRMSE but these quantities
are insensitive to large changes in parameter values and,
therefore, unhelpful in fine-tuning the algorithms. For this
evaluation, we will use three different metrics: the coefficient
of variation, the two-sample K-S distance, and the DKW
inequality.

1) Coefficient of Variation: We choose to simultaneously
compare both (x) and variance (o) of a single EPDF by
using the coefficient of variation, CV = ¢ /u; in our analysis,
it represents the extent of variability in relation to the mean
of the similarity values.

2) Two-Sample Kolmogorov—Smirnov Distance: In the con-
text of our application, it is more convenient to work with
the cumulative distribution functions (CDFs) rather than with
PDFs because the well-developed statistical inference theory
allows for convenient comparison of CDFs. Therefore, our sec-
ond metric to compare similarity measurements obtained by
successive changes in parameter values is the two-sample K-S
distance [21], which is the maximum distance between two
given empirical CDFs (ECDFs). Larger values of this metric
indicate that samples are drawn from different underlying dis-
tributions. Given two random variables s; and s>, suppose 1’:}1
and G s, are their ECDFs of the same length and correspond to
their EPDFs fsl and gs,, respectively. Then, the K-S distance is

dks(ﬁsl,ész): sup |ﬁ51(i)_ész(i)|

1<i<L

19)

where sup denotes the supremum over all distances and L is
the number of i.i.d. observations (or samples) to evaluate both
distributions. In our case, L is the number of range profiles
in the training set. We first compute a reference ECDF (Gsref)
for each DL algorithm and fixed parameter values. For our
purposes, this reference ECDF will be obtained by a particular
combination of input parameters of the selected DL algorithm.
Then, we vary parameter values from this reference and
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obtain the corresponding ECDF 1':"3lest
Finally, we calculate the K-S distance dj; of Fsm
to Gy, as

dis = dis (FS[es[) GSref) = Ssup IFsles[ (i)— GSref @)l

1<i<L

of similarity measure.
with respect

(20)

For our evaluation, dj, states how much the selection of certain
input parameters of DL changes the ECDFs of similarity
values (i.e., how different is the result of DL) with respect
to the reference.

3) Dvoretzky—Kiefer—Wolfowitz Inequality Metric: As a
third metric, we exploit the DKW inequality [22], [23], which
precisely characterizes the rate of convergence of an ECDF
to a corresponding exact CDF (from which the empirical
samples are drawn) for any finite number of samples. Let
dis (és, F;) be the K-S distance between ECDF GS and the
continuous CDF F; for a random variable s and L samples.
Since G changes with the change in the L random samples,
dis (GS, F;) is also a random variable. We are interested in
the conditions that provide desired confidence in verifying
if F and G are the same distributions for a given finite L.
If the two distributions are indeed identical, then the DKW
inequality bounds the probability that di, is greater than any
number ¢, with 0 < ¢ < 1 as follows>:

Pr{dis (G, F) > €} < 2e72L¢ 1)

Consider a binary hypothesis testing framework where we
use (21) to test the null hypothesis Hy : F = G for a given €.
The probability of rejecting the null hypothesis when it is true
is called the p-value of the test and is bounded by the DKW
inequality. Assuming the p-value is smaller than a certain
confidence level a, the following inequality must hold with

probability at least 1 — a:
1 o
L (@),
2L 2

Our goal is to use the DKW inequality to compare two
ECDFs Fs[esl and Gy, as in (20) to verify if they are drawn

from the same underlying CDF. By the triangle inequality,
the K-S distance satisfies

dis (B> Gnt) = dis (Fy» F) + dics (G, F)

dis (Gy, F) < 22)

(23)

where G and F are the underlying CDFs corresponding to
G and F. We now bound the right-hand side using DKW

A N 1 o 1 o
dkS(FStest’ GSref) = \/_iln (E) T \/_iln (E)

/ 21 (a) (24)
= —In|—
L \2
which is the maximum distance for which Fsm and (A;sref

are identical with probability 1 — a. The DKW metric is the
difference

2
dar =\ =710 (3 ) ~dis(Frs Go). (29)

3The corresponding asymptotic result that as L — oo, dyg — 0 with
probability 1 is due to the Glivenko—Cantelli theorem [63], [64].
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Fig. 6. (a) CV, (b) K-S distance, and (c) DKW metric for K-SVD, LRSDL,
and ODL parameter analyses as a function of the number of iterations N;.

Larger values of this metric imply greater similarity between
the two ECDFs; a negative value implies that the null hypoth-
esis is not true.

C. Parametric Evaluation

We evaluated the performance of the aforementioned DL
algorithms by analyzing the influence of the various DL input
parameters using the metrics introduced in Section V-B for
the reconstruction of the training set Y. There are various
soil types and scenarios for a landmine contaminated site.
The LIAG test data provide an accurate representation of
a practical scenario. Our metrics are general and derived
from widely accepted statistical studies. Thus, their relevance
to similar scenarios is very likely. As shown in Table III,
the number of iterations N; is not relevant to CBWLSU and
DOMINODL, while the latter requires additional parameters to
specify the mini-batch dimensions and the iterations required
to drop-off unused training set elements. We compute the K-S
distance and the DKW metric for all methods with respect to
a reference distribution pref. This reference, different for each
DL algorithm, is obtained using the following parameters as
applicable: Ny = 1, K = 300, N, = 30, N, = 10, and
N, = 10.

1) Number of Iterations: Fig. 6(a)—(c) shows the effect of
N; on the CV, K-S test distance dj;, and the DKW metric dw,
for K-SVD, ODL, and LRSDL. We have skipped CBWLSU
and DOMINODL from this analysis because they do not
accept N; as an input. For ODL, the CV remains relatively
unchanged with an increase in N;. However, the K-SVD CV
exhibits an oscillating behavior and generally high values.
In case of the K-S distance, ODL shows slight increase in
drs while K-SVD oscillates around a mean value that is
higher than ODL. The DKW metric provides better insight:
even though the ODL distributions differ from p¢ with an
increase in the iterations, the null hypothesis always holds
because dgi,, remains positive. The dgi,, for K-SVD is also
positive but much smaller than ODL. It also does not exhibit
any specific trend with an increase in iterations. We also
observed a similar behavior with the mean of similarity values.
The influence of the number of iterations in LRSDL had
the same oscillating behavior as in K-SVD but with larger
variation. We conclude that the number of iterations N; does
not significantly influence the metrics for these algorithms and
choose N; = 100.

2) Number of Trained Atoms: Fig. 7(a)—(c) compares
all three metrics with change in the number of trained
atoms K, a parameter that is common to all DL methods.
We observe that CV generally decreases with an increase in K.
This indicates an improvement in the similarity between the
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Fig. 7. (a) CV, (b) K-S distance, and (c¢) DKW metric for various DL
algorithms as a function of the number of trained atoms K.

reconstructed and the original training set. K-SVD shows an
anomalous pattern for lower values of K but later converges
to a trend that is identical to other DL approaches. The K-S
distance exhibits a linear change in the distributions with
respect to the reference. Since diy quantifies the difference
between the distributions rather than stating which one is
better, combining its behavior with CV makes it evident that an
increase in K leads to better distributions of similarity values.
The DKW metric dgi,, calculated with the same reference,
also expectedly shows a linear change. It is clear that even a
slight change in K leads to more negative values of dgky,
implying that the null hypothesis does not hold true. This
shows the significant influence of the parameter K on the
distributions. It was interesting to see a slight improvement in
the coefficient of variation when using LRSDL with respect to
the other strategies. However, KS-distance and DKW metric
indicated that the distributions of similarity values for LRSDL
were sensitive to the number of trained atoms only up to a
certain value.

3) DOMINODL Parameters : It is difficult to evaluate
DOMINODL EPDFs by varying all four parameters together.
Instead, we fix the parameter that is common to all algorithms,
i.e., the number of trained atoms K, and then determine
optimal values of Ny, N, and N,,. Fig. 8 shows the coefficient
of variation CV of the distribution of similarity values as a
function of DOMINODL parameters. The drop-off value N,
appears to have a greater influence than mini-batch dimensions
Np and N,. Our analysis of the computational times of
DOMINODL showed that it is essentially independent of
N, and N, but slightly increases with N,. This is expected
because we also increased the number of steps for sparse
decomposition (see Algorithm 1), which is the source of bulk
of computations in DL algorithms [24]. Furthermore, in order
to ensure that the correlation and the drop-off steps kick off
from the very first iteration, DOMINODL should admit several
new samples for each iteration, thereby increasing N, as well
as the number of previous elements accordingly. Taking into
account these observations, we choose N, = 30, N, = 10,
and N, = 10.

According to the results of the parametric evaluation,
we choose the following combination of “optimal” parameters
for testing our DL strategies: N, = 100, K = 640, N, = 30,
N, =10, and N, = 10.

VI. EXPERIMENTAL RESULTS AND ANALYSIS

After selecting the input parameters of the proposed DL
strategies, we proceed with the trained dictionaries for sparse
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learned using (b) K-SVD, (c) LRSDL (SRC), (d) LRSDL (SVM), (e) ODL, (f) CBWLSU, and (g) DOMINODL algorithms and optimally selected input

parameters.

decomposition of both training and test sets. The result-
ing sets of sparse coefficients are the input to the SVM
classifier. As mentioned in Section II-A, the threshold C
and the kernel function parameter y for SVM have been
selected through cross validation. Our key objective is to
demonstrate that online DL algorithms may lead to an
improvement in the classification performance over batch
learning strategies. In particular, we want to analyze the
performance of DOMINODL in terms of classification accu-
racy and learning speed. As a comparison with a popu-
lar state-of-the-art classification method, we also show the
classification results with a deep-learning approach based
on CNN. Finally, we demonstrate classification performance
when the original samples of the range profiles are randomly
reduced.

A. Classification With Optimal Parameters

For a comprehensive analysis of the classification perfor-
mance, we provide both classification maps and confusion
matrices for the test set Ytgst using the optimal DL input
parameters that we selected following our parametric evalua-
tion in Section V. The classification maps depict the predicted
class of each range profile of the survey under test. The
pixel dimension of these maps is dictated by the sampling
of the GPR in X- and Y -directions (see Table II). We stitched
together three of the six surveys from the test set YTgst, where

each survey had two buried landmines from a specific target
class (PMN/PMA2, ERA, and Type-72).

Fig. 9 shows the classification maps for different DL meth-
ods along with the raw data at the depth of 15 cm. The
selected survey area covers a total of 2880 range profiles.
The raw data in Fig. 9(a) show that only four of the six
mines exhibit a strong reflectivity while the other two mines
have echoes so weak that they are not clearly visible in the
raw data. Fig. 9(b)—(d) shows the results of the SR-based
classification approaches using DL. All methods clearly detect
and correctly classify the large PMN/PMA?2 mines. In the case
of the medium-size ERA, the echoes are certainly detected as
non-clutter but some of its constituent pixels are incorrectly
classified as another mine. It is remarkable that the left ERA
mine is recognized by our method even though it cannot be
discerned visually in the raw data. Most of the false alarms in
the map belong to the smallest Type-72 mines. This is expected
because their small sizes produce echoes very similar to the
ground clutter. On the other hand, when T-72 is the ground
truth, it is correctly identified.

Using accurate ground truth information, we defined farget
halos as the boundaries of the buried landmines. The dimen-
sion of the target halos varied depending on the mine size. Let
the number of pixels and the declared mine pixels inside the
target halo be n; and n,,, respectively. Similarly, we denote the
number of true and declared clutter pixels outside the target
halo by n. and ng, respectively. Then, the probabilities of
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TABLE IV
CONFUSION MATRIX WITH OPTIMAL DL INPUT PARAMETER SELECTION

| Clutter | PMN/PMA2 | ERA | Type-72

Clutter 0892 | 0.044 025 | 037
K.SVD PMN/PMA2 | 0.022 | 0.938' 0.166 | 0.074

ERA 0.021 | 0017 0472°| 0.018

Type-72 0064 | 0 0.111 |70:537

Clutter 0435 | 0.061 0.111 | 0351

LRSDL (SRC) | PMN/PMA2 | 0.155 | 70.289 0319 | 0259
ERA 0172 | 0372 0361 | 0278

Type-72 0237 | 0272 0208 0111

Clutter 0889 | 0.114 0333 | 0463

LRSDL (SvM) | PMNVPMA2 | 0.026 | 0877 0.186 | 0.185
ERA 0.027 0 0.444 | 0.926

Type-72 0.058 | 0.008 0.041 | 70426

Clutter 0871 | 0 0.194 | 0333

ODL PMN/PMA2 | 0022 | 0973 0.139 | 0

ERA 0018 | 0.026 05837 0.018

Type-72 0088 | 0 0.083 | 0.648

Clutter 0872 | 0.017 0.181 | 0314

CBWLSU PMN/PMA2 | 0.023 | 0973 0.153 | 0
ERA 0.025 | 0.008 0528 0

Type-72 0.08 0 0.138 |70:685

Clutter 0876 | 0017 0.167 | 0315

poMINODL | PMN/PMA2 | 0023 |10974 0.138 | 0
ERA 0.027 | 0.008 058 | 0

Type-72 0077 | 0 0.11 [ 70:685

! Gray denotes the Pcc value for a specified class and DL algorithm

correct classification (Pcc) for each target class and clutter
are, respectively
Nm nq
= and PCCclutter =
ny c

PCCoines (26)
The Pcc being the output of a classifier should not be mistaken
as the radar’s probability of detection P, which is the result
of a detector. A detector declares the presence of a mine
when only a few pixels inside the halo have been declared
as mine; Pcc provides a fairer and more accurate evaluation
of the classification result. This per-pixel information can be
easily used to improve the final detection result. For instance,
the operator could set a threshold for the minimum number of
pixels to be detected in a cluster so that a circle with center
at the cluster centroid could be used as the detected mine.
However, such a circle may exclude some of the mine pixels
leading to a potential field danger. The per-pixel classification
is then employed to determine the guard area around the mine
circle.

A confusion matrix is a quantitative representation of the
classifier performance. The matrix lists the probability of
classifying the ground truth as a particular class. The classes
listed column-wise in the confusion matrix are the ground
truths, while the row-wise classes are their predicted labels.
Therefore, the diagonal of the matrix is Pcc while off-diagonal
elements are the probabilities of misclassification.

For the classification map of Fig. 9, Table IV shows the
corresponding confusion matrices for each DL-based classifi-
cation approach. In general, we observe an excellent classifica-
tion of PMN/PMA2 landmines (~98%), implying that almost
every range profile in the test set which belongs to this class
is correctly labeled. The P for the clutter is also quite high
(~90%). This can also be concluded from the classification
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maps where the false alarms within the actual clutter regions
are very sparse (i.e., they do not form a cluster) and, therefore,
unlikely to be interpreted as an extended target. As noted
previously, most of the clutter misclassification is associated
with the Type-72 class. The ERA test targets show some
difficulty with correct classification. But most of the pixels
within its target halo are declared, at least, as some type of
mine (which is quite useful in terms of issuing safety warnings
in the specific field area). This result can be explained by the
fact that ERA test targets do not represent a specific mine
but have general characteristics common to most landmines.
The Type-72 mines exhibit P, which is slightly higher with
respect to ERA targets. This is a remarkable result because
Type-72 targets were expected to be the most challenging to
classify due to their small size.

Conventionally, as mentioned in [47], LRSDL is used with
an SR-based classification. However, applying this approach
to our problem resulted in very low accuracy (an aver-
age of ~20% across all classes as evident from Table IV)
and semi-random classification maps (Fig. 9). This can be
explained by the extreme similarity between the training set
examples of different classes; mines and clutter are only
slightly dissimilar in their responses and mine responses
are generally hidden in the ground reflections. Each learned
“block” D, differed only slightly from the other; therefore,
poor classification results are achieved with this data set.
On the other hand, when we used the dictionary learned with
LRSDL with our SVM-based technique, we obtained better
classification accuracy (see Table IV and Fig. 9). However,
this performance is still inferior to K-SVD and, hence, even
worse than the other online DL approaches.

All DL algorithms used for our sparse classification
approach show very similar results for the clutter and
PMN/PMA?2 classes. However, online DL methods show
higher Pcc for the ERA and Type-72 targets than K-SVD.
From Table IV, the detection enhancement using the best
of the online DL algorithms for PMN/PMA2 over K-SVD
is ((0.974 — 0.938) x 100)/0.938 ~ 4%. The improvements
for ERA and T-72 are computed similarly as 23% and 28%,
respectively.

B. Classification With Non-Optimal Parameters

In order to demonstrate how the quality of the learned
dictionary affects the final classification, we now show the
confusion matrices for a non-optimal selection of input para-
meters in different DL algorithms. Our goal is to emphasize
the importance of learning a good dictionary by selecting the
optimal parameters rather than specifying how each parameter
affects the final classification result. We arbitrarily selected
the number of trained atoms K to be only 300 for all DL
approaches and reduced the number of iterations to 25 for
ODL and KSVD and, for DOMINODL, we use N, = 30,
Np = 5, and N, = 2. Table V shows the resulting confusion
matrix. While the clutter classification accuracy is almost the
same as in Table IV, the P, for PMN/PMA2 landmines
decreased by ~10% for most of the algorithms except ODL
where it remains unchanged. The classification accuracy for
ERA and Type-72 mines is only slightly worse for online
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CONFUSION MATRIX WITH NON-OPTIMAL DL
INPUT PARAMETER SELECTION
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TABLE VII

CONFUSION MATRICES USING A COARSE SELECTION
FOR Y INCLUDING SRC

[ Clutter [ PMN/PMA2 [ ERA [ Type-72

‘ Clutter ‘ PMN/PMA2 ‘ ERA ‘ Type-72

Clutter 0853 | 0.07 0305 | 0.222
K.SVD PMN/PMA2 | 0.037 | 0851 0222 | 0.111
ERA 0032 | 0 0.194 | 0.241
Type-72 0.077 | 0.078 0.277 | 0426
Clutter 0.86 0.017 0.181 | 0.444
ODL PMN/PMA2 | 0016 | 0973 0097 | 0
ERA 0022 | 0.008 0638 | 0
Type-72 0.1 0 0.083 | 0.555
Clutter 0.887 | 0.078 0319 | 0352
CBWLSU | PMNPMA2 [ 0019 [10877 0.097 | 0
ERA 0018 | 0.043 0541 | 0
Type-72 0074 | 0 0.042 | 0:648
Clutter 0.888 | 0.078 0319 | 0352
DOMINODL | PMNPMA2 | 0.019 10877 0.097 | 0
ERA 0018 | 0.043 054 | o
Type-72 0074 | 0 0.042 701648
TABLE VI

COMPUTATIONAL TIMES FOR DL ALGORITHMS

[ DOMINODL [ CBWLSU [ ODL [ K-SVD [ LRSDL
| 16.49 [ 5.75 [ 25.8

Time (seconds) | 1.75" [ 1057

! Blue denotes the best performance among all DL algorithms

DL approaches. However, in the case of K-SVD, the Pcc
reduces by ~30% and ~10% for ERA and Type-72, respec-
tively. Clearly, the reconstruction and correct classification
of range profiles using batch algorithms such as K-SVD is
strongly affected by a non-optimal choice of DL input para-
meters. As discussed earlier in Section V-C, this degradation
is likely due to the influence of K rather than N;.

C. Computational Efficiency

We used MATLAB 2016a platform on an 8-Core CPU
Windows 7 desktop PC to clock the times for DL algo-
rithms. The ODL algorithm from [19] is implemented as mex
executable and, therefore, already fine-tuned for speed. For
K-SVD, we employed the efficient implementation from [52]
to improve computational speed. Table VI lists the execution
times of the five DL approaches. Here, the parameters were
optimally selected for all the algorithms. The LRSDL is the
slowest of all, while ODL is more than four times faster
than K-SVD. The CBWLSU provided better classification
results but is three times slower than ODL. This could be
because the dictionary update step always considers the entire
previous training set elements that correlate with only one new
element (i.e., there is no mini-batch strategy). This makes the
convergence in CBWLSU more challenging.

The DOMINODL is the fastest DL method clocking three
times speeder than ODL and 15 times than K-SVD. This is
because the DOMINODL updates the dictionary by evaluating
only a mini-batch of previous elements (instead of all of
them as in CBWLSU) that correlate with a mini-batch of
several new elements (CBWLSU uses just one new element).
Furthermore, DOMINODL drops out the unused elements

Clutter 0912 | 0017 025 | 0925
SRC PMN/PMA2 | 0.037 | 0:456" 0042 | 0
ERA 0.025 | 0.526 0278 | 0.074
Type-72 0025 | 0 043 |0
Clutter 0729 | 0017 0.083 | 0.241
DOMINODL | PMN/PMA2 | 0.041 0,982 0139 | 0
ERA 0054 | 0 0.667 | 0.074
Type-72 0176 | 0 0.111 | 0:685
Clutter 0584 | 0 0.125 | 0.185
CBWLSU | PMNPMA2 [ 0.063 [ 0.982 0.153 | 0.11
ERA 0.106 | 0 0.625 | 0.185
Type-72 0247 | 0017 0.097 | 0:518
Clutter 0.71 0.035 0.153 | 0.259
ODL PMN/PMA2 | 0.036 [70912 0.069 | 0.074
ERA 0.088 | 0.008 0.667 | 0.074
Type-72 0.165 | 0.044 0.111 [70:593
Clutter 0617 | 0 0.111 | 0.148
K.SVD PMN/PMA2 | 0.044 | 0.982 0.194 | 0.056
ERA 0113 | 0 0.667 | 0.241
Type-72 0226 | 0017 0.027 | 0.444

! Gray denotes the Pcc value for a specified class and DL algorithm

leading to a faster convergence. We note that, unlike ODL
and K-SVD implementations, we did not use mex executables
of DOMINODL, which can further shorten current execution
times. From Table VI, the reduction in DOMINODL computa-
tional time over K-SVD is ((25.8 —1.75) x 100)/25.8 ~ 93%.
The reduction for ODL and CBWLSU is computed similarly
as 8% and 36%, respectively.

The computational bottleneck of mines classification lies
in the training times. In comparison, the common steps of
sparse decomposition and SVM-based classification during
testing take just 0.4 and 1 s, respectively, for an entire survey
(I m x 1 m area with 2500 range profiles). Thus, time taken
per range profile is ~0.59 ms. The average scan rate of our
GPR system is 0.19 m/s (or 1 cm/52.1 ms). This can go as
high as 2.7 m/s (or 1 cm/3.61 ms) in other GPRs used for
landmines application. Therefore, the test times do not impose
much computational cost.

D. Comparison With Sparse-Representation-
Based Classification

We compared our proposed DL-based approach with the
SRC method proposed in [11]. The SRC needs a labeled
dictionary but the dictionary that we learn from Y does
not have label information anymore thereby making SRC
infeasible here. Therefore, we adopt the following steps for a
reasonable comparison of the two methods. We feed SRC with
Y as the dictionary D. As indicated in Section IV-C, a metic-
ulously selected collection of mines/clutter responses as Y is
meaningful for comparing different DL approaches. But it does
not highlight the benefits of employing DL per se. Therefore,
we generate a coarser selection, i.e., more profiles than the
handpicked case, as Y for both approaches. Table VII shows
the confusion matrix for the residual-based classification along
with the proposed DL-based approaches. The DL-based mine
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Fig. 10. (a) Raw data at 15-cm depth. (b) Classification maps of the same
area containing six buried landmines using CNN-based classification.

classification is consistent with previous results—even better
with DOMINODL—but with some tradeoff of decreasing
clutter accuracy. The accuracy of the residual-based classifier
is severely degraded for all mine classes, dropping by at
least 45%, 39%, and 55% for PMA/PMA2, ERA, and T72,
respectively. This renders the increase in clutter classification
accuracy of this method not usable.

E. Deep-Learning-Based Classification

The core idea of SR-based classification is largely based
on the assumption that signals are linear combinations of
a few atoms. In practice, this is often not the case. This
has led to a few recent works [65] that suggest employing
deep learning for radar target classification. However, these
techniques require significantly large data sets for training.

We compared classification results of our methods with
a deep learning approach. In particular, we constructed a
CNN because these networks are known to efficiently exploit
structural or locational information in the data and yield
comparable learning potential with far fewer parameters [66].
We modeled our proposed CNN framework as a classification
problem wherein each class denotes the type of mine or clutter.
The training data set for our CNN structure is the matrix Y
(see Section IV). Building up a synthetic database is usually
an option for creating (or extending) a training set for deep
learning applications. However, accurately modeling a GPR
scenario is still an ongoing challenge in the GPR community
because of the difficulties in accurately reproducing the soil
inhomogeneities (and variabilities), the surface and under-
ground clutter, the antenna coupling and ringing effects, and so
on. Even though some applications have been promising [67],
this remains a cumbersome task.

The input layer of our CNN took 1-D sample set of
size 211. It was followed by two convolutional layers with
20 and 5 filters of size 20 and 10, respectively. The output layer
consisted of four units wherein the network classifies the given
input data as clutter or one of the three mines. There were
rectified linear units (ReLU) after each convolutional layer;
the ReLU function is given by ReLU(x) = max(x, 0) [68].
The architecture of the CNN was selected through an arduous
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TABLE VIII
CONFUSION MATRIX FOR CNN-BASED CLASSIFICATION

[ Clutter [ PMN/PMA2 [ ERA [ Type-72

Clutter 0909 | 0.14 0.016 | 0.574
PMN/PMA2 | 0.032 [70:807 0.181 | 0

ERA 0 0.053 0319 | 0315
Type-72 0033 | 0 0.111 70370

process of testing many combinations of layers/filters and
hyperparameters, which would lead to better accuracy during
training. A deeper network slightly increased the accuracy
in the training phase but led to poorer performance when
classifying new data (i.e., the test set Yies). Since our data
are limited, adding more layers (i.e., more weights) only led
to overfitting and made the network incapable to generalize on
new data sets. A multi-dimensional CNN formed by clustering
2-D and 3-D data would have further reduced the training set.
Augmenting the data was also envisioned but commonly used
transformations such as scaling/rotations are not useful in our
case because the mines were always in the same inclination
and their dimension defines the class itself. We also attempted
adding different levels of noise but this did not lead to better
results, considering that the available data are already very
noisy.

We trained the network with the labeled training set Y,
selecting ~20% of the training data for validation. Specifically,
the validation set employed 100, 25, 25, and 25 range profiles
for clutter, PMN/PMA2, ERA, and Type-72, respectively.
We used a stochastic gradient descent algorithm for updating
the network parameters with the learning rate of 0.001 and
mini-batch size of 20 samples for 2000 epochs.

We realized the proposed network in TensorFlow on a
Windows 7 PC with 8-core CPU. The network training took
3.88 min. Fig. 10 shows the classification map obtained
using the CNN. The corresponding confusion matrix is listed
in Table VIII. We note that the CNN classifier shows worse
Pcc than our SR-based techniques, particularly for ERA and
Type-72 target classes.

FE. Classification With Reduced Range Samples

We now analyze the robustness of our DL-based adaptive
classification method to the reduction of the number of sam-
ples in the raw data. Assuming that the collected data YTgsT
are sparse in dictionary D, we undersampled the original
raw data YTgst in range to obtain its row-undersampled
version YTgst by randomly reducing the samples. We then
applied the same random sampling pattern to the dictionary D
for obtaining the sparse coefficients. We also analyzed the
CNN classifier when the signals are randomly reduced in the
same way. Fig. 11 shows the classification map for all DL
approaches when the sampling is reduced by 50%. Table IX
clubs together the confusion matrices when undersampling by
25%, 50%, and 75%.

In comparison to the results in Table IV which used all
samples of the raw data, the DL approaches maintain similar
classifier performance even when we reduce the samples by
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Fig. 11.

(a) Raw data at 15-cm depth. The classification maps of the same area containing six buried landmines using an SR-based approach with dictionary

learned using (b) K-SVD, (c) ODL, (d) CBWLSU, and (¢) DOMINODL algorithms. The input parameters were optimally selected and the number of samples
were reduced by 50%. (f) Corresponding result with reduced samples for CNN-based classification.

TABLE IX
CONFUSION MATRICES FOR DIFFERENT DL ALGORITHMS AND CNN WITH REDUCED SIGNAL SAMPLES

25% Reduction 50% Reduction 75% Reduction
Clutter ‘ PMN/PMA2 ‘ ERA ‘ Type-72 Clutter | PMN/PMA2 ‘ ERA ‘ Type-72 Clutter ‘ PMN/PMA2 ‘ ERA ‘ Type-72
Clutter 0.892 0.078 0.319 | 0.389 0.882 0.026 0.291 0.37 0.877 0.061 0.402 | 0.426
K-SVD PMN/PMA2| 0.021 0.921 0.153 | 0.055 0.018 0.947 0.153 | 0.037 0.02 0.912 0.125 | 0.074
ERA 0.021 0 0.486 | 0.018 0.021 0.026 0.5 0 0.021 0.026 0.333 | 0.018
Type-72 0.065 0 0.041 | 0.537 0.078 0 0.055 | 0.592 0.08 0 0.138 | 0.481
Clutter 0.872 0.088 0.208 | 0.315 0.868 0 0.208 | 0.333 0.862 0.02 0.319 | 0.296
ODL PMN/PMA2| 0.021 0.973 0152 | 0 0.021 0.965 0.18 0.018 0.023 0.964 0.138 | 0.018
ERA 0.018 0.017 0.527 | 0.018 0.018 0.035 0.5 0 0.021 0.008 0416 | 0.074
Type-72 0.087 0 0.111 0.666 0.09 0 0.111 0.648 0.091 0 0.125 | 0.611
Clutter 0.871 0.026 0.194 | 0.351 0.872 0.017 0.25 0.40 0.855 0.088 0.388 | 0.370
CBWLSU PMN/PMA2| 0.024 0.956 0.139 | 0 0.023 0.973 0.111 0 0.024 0.974 0.111 0
ERA 0.025 0.017 0541 | 0 0.02 0.008 0541 | 0 0.027 0.017 0.333 | 0.018
Type-72 0.79 0 0.125 | 0.648 0.083 0 0.097 | 0.592 0.091 0 0.125 | 0.611
Clutter 0.88 0.017 0.236 | 0.277 0.868 0.035 0.194 | 0.296 0.864 0.035 0278 | 0.444
DOMINODL PMN/PMA2| 0.022 0.964 0.138 | 0 0.023 0.929 0.138 | 0 0.027 0.938 0152 | 0
ERA 0.018 0.017 0527 | 0 0.024 0.035 0.527 | 0.018 0.026 0.026 0.5 0
Type-72 0.078 0 0.097 | 0.722 0.083 0 0.138 | 0.685 0.082 0 0.069 | 0.556
Clutter 0.708 0.359 0.236 | 0.407 0.265 0.166 0.645 | 0.148 0.162 0.105 0.647 | 0.129
CNN PMN/PMA2| 0.026 0.41 0.097 | 0.018 0.062 0.096 0.069 | 0.018 0.015 0.061 0013 | 0
ERA 0 0.21 0.5 0.426 0 0.72 0.73 0.75 0 0.71 0.708 | 0.759
Type-72 0.029 0.017 0.069 | 0.148 0.027 0.088 0.014 | 0.074 0.17 0.12 0.12 0.11

75% (i.e., just 52 samples in total). In contrast, the CNN
classifier result that is already heavily compromised with a
reduction of 25% fails completely for 50% and 75% sampling
rate. Reducing the number of signal samples when using a
dictionary which minimizes the number of nonzero entries in
the SR still assures an exact reconstruction of the signal itself
and, consequently, its correct classification. The features for
classifying the traces are robust to the reduction of the original
samples. Deep learning strategies use the signal samples
directly as classification features. They also require enormous
amount of data for training. Therefore, the degradation in their
performance is expected. The confusion matrix in Table IX
indicates that CNN has the highest Pcc for ERA. This is
a false trail because the network mis-classified almost every

pixel as ERA. Overall, DOMINODL and CBWLSU provide
excellent results for small mines. However, as seen earlier,
CBWLSU is not very well-suited for real-time operation
because of longer execution times.

We also assessed the performance of different methods
when, instead of sampling fewer range samples per profile,
we include all samples in every range profile but reduce
the overall number of training set elements randomly from
926 to 694, 464, and 232 range profiles (which, respectively,
correspond to 25%, 50%, and 75% reduction). From the cor-
responding confusion matrices listed in Table X, we note that
CNN-based classification results have improved with respect
to Table IX. However, the classification accuracy of CNN is
still poorer than the DL-based classification. In general, all
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TABLE X
CONFUSION MATRICES FOR DIFFERENT DL ALGORITHMS AND CNN WITH REDUCED TRAINING SET ELEMENTS

25% Reduction 50% Reduction 75% Reduction
Clutter ‘ PMN/PMA2 ‘ ERA ‘ Type-72 Clutter ‘ PMN/PMA2 ‘ ERA ‘ Type-72 Clutter ‘ PMN/PMA2 ‘ ERA ‘ Type-72
Clutter 0.887 0.044 0.236 | 0.370 0.868 0 0.417 0.556 0.885 0.097 0.444 | 0426
K-SVD PMN/PMA2| 0.019 0.912 0.139 | 0 0.023 0.912 0.153 0.037 0.019 0.746 0.014 | 0.130
ERA 0.023 0.044 0.528 | 0.019 0.010 0.070 0.306 | 0.019 0.012 0.088 0319 | O
Type-72 0.071 0 0.097 0.611 0.099 0.018 0.125 0.389 0.084 0.070 0.222 | 0444
Clutter 0.865 0.009 0.167 0.315 0.865 0.009 0.375 0.611 0.857 0.070 0.375 0.352
ODL PMN/PMA2| 0.016 0.939 0.181 0 0.023 0.991 0.111 0 0.027 0.851 0.056 | 0.093
ERA 0.020 0.053 0.583 0.019 0.011 0 0.431 0 0.016 0.079 0444 | 0
Type-72 0.096 0 0.069 | 0.667 0.101 0 0.083 0.389 0.101 0 0.125 0.556
Clutter 0.865 0.035 0.250 | 0.426 0.874 0.009 0.347 0.407 0.834 0.035 0.500 | 0.685
CBWLSU PMN/PMA2| 0.021 0.912 0.167 | 0 0.033 0.904 0.069 | 0.241 0.020 0.851 0.056 | 0
ERA 0.026 0.053 0.542 | 0.019 0.014 0.088 0.500 | O 0.015 0.105 0.403 0
Type-72 0.088 0 0.042 | 0.556 0.080 0 0.083 0.352 0.131 0.089 0.042 | 0.315
Clutter 0.841 0.026 0.222 | 0.296 0.864 0.053 0.333 0.574 0.815 0.175 0.431 0.519
DOMINODL PMN/PMA2| 0.021 0.921 0.167 0 0.023 0.868 0.069 | 0.074 0.027 0.746 0.069 | 0
ERA 0.026 0.053 0.542 | 0.019 0.014 0.079 0486 | 0 0.017 0.079 0486 | 0
Type-72 0.112 0 0.070 | 0.685 0.099 0 0.111 0.352 0.142 0 0.014 | 0.482
Clutter 0.838 0.026 0.040 | 0.333 0.819 0.088 0.047 0.315 0.644 0.035 0.109 | 0.463
CNN PMN/PMA2| 0.062 0.868 0.208 0.537 0.059 0.851 0.319 | 0.463 0.080 0.693 0.181 0.019
ERA 0 0.053 0.250 | 0.074 0 0 0.153 0.130 0 0.193 0.306 | 0.019
Type-72 0.106 0.053 0.208 0.556 0.120 0.061 0.250 | 0.500 0.105 0.079 0.097 0

methods show performance degradation as the training set
elements are reduced. Among the online DL. methods, ODL
is more robust to the range profile reduction than K-SVD.

VII. CONCLUSION

In this paper, we proposed effective online DL strategies
for sparse decomposition of GPR traces of buried landmines.
The online methods outperform K-SVD, thereby making them
a good candidate for SR-based classification. Our algorithm
DOMINODL is always the fastest providing near real-time
performance and high clutter rejection while also maintaining
classifier performance that is comparable to other online DL
algorithms. DOMINODL and CBWLSU generally classify
smaller mines better than ODL and K-SVD. Unlike previous
works that rely on RMSE, we used metrics based on statistical
inference to tune the DL parameters for enhanced operation.

Fast ODL computations pave the way toward
cognition [69]-[71] in GPR operation, wherein the system
uses previous measurements to optimize the processing
performance and is capable of sequential sampling
adaptation [72] based on the learned dictionary. For example,
in a realistic landmine clearance campaign, an operator
could gather the training measurements over a safe area
next to the contaminated site, hypothetically placing some
buried landmine simulants over it in order to have a faithful
representation of the soil/targets interaction beneath the
surface. In other words, this paper allows the operator to
calibrate the acquisition by providing a good training set to
learn the dictionary.
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