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Abstract—In applications such as multi-receiver radars and ul-
trasound array systems, the observed signals are often modeled
as the convolution of the transmit pulse signal and a set of sparse
filters representing the sparse target scenes. A sparse multichannel
blind deconvolution (MBD) problem simultaneously identifies the
unknown signal and sparse filters, which is in general ill-posed. In
this paper, we consider the identifiability problem of sparse-MBD
and show that, similar to compressive sensing, it is possible to
identify the sparse filters from compressive measurements of the
output sequences. Specifically, we consider compressible measure-
ments in the Fourier domain and derive deterministic identifiability
conditions. Our main results demonstrate that L-sparse filters can
be identified from 2L2 Fourier measurements from two or more
coprime channels. We also show that 2Lmeasurements per channel
are necessary. The sufficient condition sharpens as the number of
channels increases and is asymptotically optimal, i.e., it suffices
to acquire on the order of L Fourier samples per channel. We
also propose a kernel-based sampling scheme that acquires Fourier
measurements from a commensurate number of time-domain sam-
ples. The gap between the sufficient and necessary conditions is
illustrated through numerical experiments including comparing
practical reconstruction algorithms. The proposed compressive
MBD results require fewer measurements and fewer channels for
identifiability compared to previous results, which aids in building
cost-effective receivers.

Index Terms—Sparse multichannel blind deconvolution,
identifiability, deterministic sparsity model, subsampling, blind
gain and phase calibration.

I. INTRODUCTION

IN A wide range of applications, an unknown signal is
observed through multiple channels. The output signal in

each channel is given as the linear convolution of the unknown
signal and the filter corresponding to the impulse response of the
channel. The problem of identifying both the unknown signal
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and the filters is known as multichannel blind deconvolution
(MBD). In general, this problem is ill-posed. It can often be
solved by imposing structural constraints on the source and
the filters. In this paper, we consider the sparse-MBD problem,
where the filters are assumed to be sparse.

Sparse-MBD models ubiquotously arise in many practical
applications such as radar imaging [1], [2], seismic signal
processing [3], room impulse response modeling [4], sonar
imaging [5], and ultrasound imaging [6], [7], where a transmit
signal is observed through multiple receivers after reflecting
from sparsely located targets. The filters indicate the locations of
the targets relative to the position of the receivers. Typically, the
transmit signal is assumed to be known, however, in practice, it is
often distorted during transmission and propagation [8]. Hence,
the output signals from the receivers can be modeled well by the
sparse MBD framework.

In the aforementioned applications, the implementation cost
is determined by the number of receivers (or equivalently the
number of channels) and the computational cost is governed
by the length of the output sequences. Hence, it is desirable to
solve the MBD problem from a minimal number of channels and
minimal number of samples per channel. We study the problem
of identifying the sparse filters from fewer measurements of
the output sequences compared to their ambient dimension,
which we call compressive MBD. We show that compressive
MBD is possible by combining the deterministic MBD approach
developed for the non-sparse case [9] and the sparse signal iden-
tifiability results from the compressive sensing framework [10],
[11].

Blind deconvolution of linear measurements suffers from shift
and scaling ambiguity. Despite redundant observations from
multiple channels, this fundamental ambiguity still remains in
MBD. Therefore, even in the absence of measurement noise,
the source and filters can be exactly determined only up to
this fundamental ambiguity class, which is referred to as the
identifiability of MBD. Determining a set of conditions for
identifiability is fundamental since it governs the performance of
any method regardless of noise. In the literature, identifiability
has been studied by imposing structural assumptions on the
source and filters in MBD.

During the 90s various practical reconstruction algorithms
for MBD have been studied, largely in the context of blind
channel identification, where the goal is to uniquely identify
the filters [9], [12]–[17]. These methods are classified as statis-
tical [12]–[15] or deterministic [9], [16] (cf. [17] for a compre-
hensive review of classical MBD approaches). The statistical
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approaches estimate the filters from second-order statistics of
the output sequences. The performance critically depends on
accurate estimate of the second-order statistics, which is not
available when the source varies fast over time or the observation
period is limited. In contrast, the deterministic approaches are
free from the need of this expensive estimate.

Our study of compressive-MBD is motivated by the deter-
ministic approach of Xu et al. [9], who considered least-squares
approach to MBD from the outputs of a deterministic source
through multiple FIR channels of orderMx over a finite interval.
They derived identifiability assuming at least 3Mx consecutive
time samples under the following assumptions: i) the filters are
coprime, i.e., their z-transform do not share any common zeros
except the zeros at z = 0; ii) the linear complexity of the source,
within the observation interval, is greater than 2Mx. The linear
complexity of any sequence is a measure of its predictability
and is given by the minimum number of exponentials which
the signal consists of. We provide an improvement over their
result so that identifiability is achieved from fewer time samples
(2Mx − 1) and under a less stringent condition on the source.

During the last decade, there has been renewed interest
in MBD and, particularly in blind gain and phase calibra-
tion (BGPC) problems with sparsity and subspace constraints
(e.g., [18]–[30]). BGPC is a bilinear inverse problem arising
in multi-sensor systems, where the objective is to determine
the unknown gains and phases of the sensors as well as the
unknown signals from the sensor outputs. Multichannel blind
deconvolution is a special case of BGPC in the Fourier domain.
In this case, the unknown gains and phases correspond to the
Fourier coefficients of the common source sequence, and the
unknown signals are the Fourier transforms of the filters. Recent
results analyzed the case of uniform samples in the Fourier
domain under the assumption that the sparse filters are random
or generic [20]–[23]. In these works, it is assumed that the output
sequences are obtained by the circular convolution between
the source and the sparse filters. Assuming that all the output
samples are available and the filters are random and sparse,
identifiability results have been derived in terms of a sufficient
number of channels. Specifically, in [22] and [23], it is shown
that the sparse MBD problem is uniquely identifiable provided
that the filter coefficients are modeled as independent and
identically distributed Bernoulli-Gaussian random variables and
all M output samples are available from N = O(M log4 M)
channels. In addition, they have shown that sparse MBD and
the corresponding BGPC problem can be solved by a practical
algorithm [22], [26]. However, there are limitations in existing
identifiability results on sparse-MBD [21]–[23] from the follow-
ing perspectives:
� The methods therein require access to the entire output

sequences whereas only partial observation is available in
compressive-MBD.

� The identifiability result holds under a conservative suf-
ficient condition that the number of channels is at least
proportional to the signal length. Empirically sparse-MBD
can be solved with fewer channels (even from only two
channels).

� The specific stochastic models therein do not describe the
filters arising in practical applications.

Our main results provide a set of identifiability conditions
for compressive-MBD that overcome the aforementioned limi-
tations. In particular we show that the simultaneous recovery of
the sparse filters and the source is possible from a small number
of linear measurements. Upper and lower bounds on a sufficient
number of measurements for identifiability are derived under a
set of deterministic conditions, which are satisfied by instances
of several practical applications. Importantly, our identifiability
results are purely deterministic in the sense that they apply to
any instance satisfying given conditions. This is in contrast to
generic identifiability results in the literature apply except for a
null set, which is of zero measure. Unfortunately, this null set of
undesirable instances is typically not identified and can include
signals of interest.

We consider the following two scenarios of compressive-
MBD. The first scenario aims to identify only the sparse filters in
the context of radar and sonar applications, where the filters con-
tain useful information about the targets. We combine the ideas
of Xu et al. [9] and compressive sensing to derive identifiability
results. Via a cross-convolution approach, the identifiability
problem reduces to recovery of a superposition of convolutions
of sparse filters from their partial Fourier measurements. Our
main results follow by applying the full spark property of partial
Fourier matrices and the coprimeness of the filters. We show
that 2L2 Fourier measurements per channel are sufficient for
the identifiability whenever the number of channels N is at least
2. We also show that 2L measurements per channel is necessary
for identifiability. Moreover, asymptotically in N , i.e., with a
very large number of distinct channels, we show that on average
O(L)measurements per channel are sufficient for identifiability.

Second, we consider the simultaneous identification of both
the source and filters. We propose a pairwise measurement strat-
egy, where we consider different Fourier measurements from
each unique pair of channels. The identifiability of this approach
follows from the results in the first scenario. We show that 2L2

Fourier measurements are sufficient from max{Ms−L2−1
L2−1 , 2}

channels and 2L from the rest, where Ms is the source length.
Additionally, we provide analogous identifiability results from
time-domain observations based on a sampling-kernel-based
technique [6], [31].

In the special case where the filters are FIR without further
structure, our results provides an improvement over the prior
identifiability result by Xu et al. [9]. First, our frequency-domain
approach requires fewer measurements. Second, our approach
is guaranteed when the Fourier transform of the source signal
does not vanish at the observed frequencies, which is a milder
condition than the condition on the linear complexity of the
source [9].

In addition to the theoretical guarantees, we also discuss
practical algorithms to identify the source and the filters in the
two-channel case. In particular, we consider the truncated power
iteration method [26] and blind dictionary calibration (BDC)
methods [30] to discuss the gap between the necessary and suffi-
cient conditions through simulations. In addition, for completion
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of the experimental analysis, we also consider identifiability in
the presence of measurement noise. In the presence of noise,
several algorithms are presented. For example, Rietsch [32]
proposed an algorithm based on combination of eigenvectors
related to homogeneous equation in the FIR case, in [33], [34],
the authors considered sparsity priors for sparse MBD problem,
and in [35], [36] structures total least squares is applied for a
single channel blind deconvolution. However, since the main
objective of this paper is to establish the identifiability results
for sparse MBD problem from compressive measurements in
the absence of measurement noise and not analyzing different
algorithm, we analyzed the noise case through algorithms in [26]
and [30].

The rest of the paper is organized as follows. In the next
section, we present the problem formulation along with relevant
mathematical preliminaries. In Section III, we show how to
achieve compressive Fourier measurements from a finite set
of time-domain samples. Identifiability results for compressive
MBD are discussed in Section IV. In Section V, we present
a detailed comparison of the proposed results with the recent
sparse and classical non-sparse results. Simulations are provided
in Section VI followed by the proof of the main results in
Section VII.

Throughout the paper, we use the following notations. For a
positive integer M , let [M ] denote the set {0, 1, . . . ,M − 1}.
For a sequence x, its support denoted by supp(x) is defined
by {k ∈ Z|x[k] �= 0}. The �0 pseudo-norm of x, denoted ‖x‖0,
counts the number of its nonzero elements. The z-transform
and the discrete-time Fourier transform (DTFT) of x are written
as X(z) and X(ejω) respectively. Pointwise multiplication is
denoted as �.

II. COMPRESSIVE MBD FROM FOURIER MEASUREMENTS

In this section, we formulate the compressive MBD problem
and discuss the assumptions made in deriving the main results.

A. Problem Statement

Let y1, . . . , yN denote multichannel output sequences from a
common source sequence s. Let x1, . . . , xN denote the filters
corresponding to the impulse responses of the channels. Then

yn = s ∗xn, n = 1, . . . , N, (1)

where ∗ denotes linear convolution. The MBD problem is to
identify s and {xn}Nn=1 from the output sequences {yn}Nn=1.

Let

C (s, {xn}Nn=1

)
=

{(
α−1S−m(s), {αSm(xn)}Nn=1

)
∣∣α �= 0,m ∈ Z

}
(2)

denote the orbit of (s, {xn}Nn=1) by the actions of shift and
scaling, where Sm denotes a shift operator that maps a se-
quence to its shifted version by m samples. Then any element
in C(s, {xn}Nn=1) generates the same output sequences. There-
fore, we aim to identify (s, {xn}Nn=1) up to the fundamental-
ambiguity class given by (2), that is, to find any element in

C(s, {xn}Nn=1) that satisfies (1). Unique identification hereafter
will be referred to as this case.

When all time-samples of yn are available, one can uniquely
identify the filters (resp. both the source and the filters) by the
method of Xu et al. [9] (resp. recent sparse MBD methods
by [21]–[23]) provided that the assumed conditions on s and
{xn}Nn=1 therein are satisfied (cf. Section V for details).

The main question of our interest is whether one can de-
convolve s and {xn}Nn−1 from compressive measurements of
{yn}Nn=1, which will be referred to as compressive MBD.

We specifically consider partial Fourier measurements given
as the DTFT of yn at selected frequencies, that is, the set of
linear measurements is written as

{Yn(e
jkω0)|k ∈ Kn, n = 1, . . . , N}, (3)

whereKn denotes the index set {mn,1,mn,2, . . . ,mn,Kn
} ⊂ Z

for n = 1, . . . , N . We are particularly interested in the setting
where |Kn| �M where M is the length of yn.

Our choice of partial Fourier measurements is motivated by
the following two reasons. First, in the Fourier-domain, the
measurements in (3) are written as the product of the Fourier
transforms of the source and the filters, that is,

Yn(e
jkω0) = S(ejkω0)Xn(e

jkω0), k ∈ Kn, n = 1, . . . , N. (4)

The entrywise product form in (4) allows the flexibility to design
sampling patterns. For any n1 �= n2 and k ∈ Kn1

∩ Kn2
, we

have

Yn2
(ejkω0)Xn1

(ejkω0) = Yn1
(ejkω0)Xn2

(ejkω0),

which enables applying the cross-convolution approach by Xu
et al. [9] even with sampling in the Fourier domain for any
{Kn}Nn=1. Second, due to the uncertainty principle, the Fourier
transforms of the filters are well spread in the Fourier domain as
they are sparse in the time domain. This helps recover the filters
from fewer Fourier coefficients.

In order to uniquely identify the solution to compressive
MBD, we impose the following structural assumptions on the
filters {xn}Nn=1 and the source s:

A1) Sparse filters: ‖xn‖0 ≤ L and supp{xn} ⊂ [Mx] for
n = 1, . . . , N .

A2) Finite-length source: s is supported within [Ms].
A3) Coprime filters: X1(z), . . . , XN (z) do not share any

common zeros except at z = 0.
A4) Non-vanishing source: S(ejkω0) �= 0 for all k ∈

∪Nn=1Kn.
A5) Universal sampling: The sampling interval ω0 and in-

dex sets {Kn}Nn=1 form a universal sampling set. Such
sets are defined in Section II-B.

A few remarks on these assumptions are in order.
� (A1) and (A2) imply that each yn is supported on [M ],

where M = Mx +Ms − 1.
� (A2) is not necessary if one only concerns the identification

of the filters.
� (A3) is a necessary condition for unique identifiability

without (A1) and (A2). See Section II-C for more details.
� (A4) avoids the case where the Fourier measurements at a

sampled frequency are zero for all channels. The condition
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is also satisfied for a bandlimited source. For example,
consider a source that is bandlimited to a frequency in-
terval [−ωs, ωs]. If we choose K̄ = ∪Nn=1Kn as a set of
consecutive integers and set ω0 to min{2ωs/|K̄|, 2π/M̄}
so that kω0 ∈ [−ωs, ωs] for k ∈ K̄ then (A4) is satisfied.

� (A5) enables to solve sparse MBD from compressive
Fourier measurements.

Unique identification in compressive MBD is then defined as
follows.

Definition 1 (Identifiability of Compressive MBD): Com-
pressive MBD is uniquely identifiable if any feasible solution
(ŝ, {x̂n}Nn=1), which satisfies (A1)–(A4) and is consistent with
the measurements in (3), belongs to the fundamental ambiguity
class C(s, {xn}Nn=1) of the ground-truth signals (s, {xn}Nn=1)
defined in (2).

Our objective is to derive necessary and sufficient conditions
on the index sets {Kn}Nn=1 such that either only the filters
{xn}Nn=1 or both the source s and the filters are uniquely
identifiable according to Definition 1 under (A5).

Simultaneous identification of both the source and the filters
requires extra conditions, which go beyond universal sampling
(see Section IV-B). We first derive conditions for the unique
identification of the filters followed by those extra conditions
for the identification of the source signal. Note that recovery
of the filters is equivalent to the simultaneous recovery of both
the filters and the DTFT of the source signal at the observed
frequencies. Therefore partial identifiability is as follows.

Definition 2 (Partial Identifiability Only for Filters): Com-
pressive MBD is partially identifiable if for any feasible solution
(ŝ, {x̂n}Nn=1), there exists s̃ such that

1) S̃(ejkω0) = Ŝ(ejkω0) for k ∈ ∪Nn=1Kn.
2) (s̃, {x̂n}Nn=1) ∈ C(s, {xn}Nn=1).

B. Universal Sets

Universal sampling sets have been introduced for compressed
sensing from partial Fourier measurements (e.g., see [10, Def.
14.1]). The partial Fourier measurement matrix corresponding
to the nth channel measurements in (3) is given as a |Kn| × M̄
Vandermonde matrix Vn whose (k,m)th element is ejkmω0 .
In our settings, M̄ ≥ |Kn|, where M̄ = max{2Mx − 1,Ms}
(see Section IV-B for details). To avoid aliasing, ω0 is chosen
such that the elements of the set {ejmω0}M̄−1m=0 are distinct. For
each n ∈ {1, . . . , N}, the index set Kn is called universal if
every submatrix of Vn obtained by taking |Kn| columns has
full rank [10, Def. 14.1], that is, Vn has full spark [11]. Note
that the universal sets depend on the frequency interval ω0.

For example, if Kn is a set of consecutive integers and ω0 =
2π/M̄ then each index set Kn is universal. Various alternative
constructions of universal sets have been studied (e.g., [37]–[40],
also see [10]).

C. Coprimeness of the Filters

In an MBD framework, unless any further restrictions are
imposed on the supports of the source and the filters, the coprime
condition on the filters is necessary for unique identification of
the solution. To elaborate, let the filters {xn}Nn=1 share nontrivial

common zeros in the z-domain. Specifically, each filter can be
decomposed as

xn = h0 ∗ x̂n, (5)

where the sequence h0 contains the common zeros except at
z = 0 and x̂n is the novel factor. As a result, the outputs {yn =
s ∗ xn}Nn=1 can also be decomposed as

yn = s ∗ xn = s ∗ h0 ∗ x̂n = ŝ ∗ x̂n, (6)

where ŝ = s ∗ h0 and {x̂n}Nn=1 provide an alternative solution
that produces the same outputs. Hence, without any assumptions
on the source and the filters, coprimeness is a necessary condi-
tion. With (A1) and (A2), it is no longer a necessary condition
as the alternative solution may not satisfy these assumptions.
However, we keep the coprimeness assumption in our settings
to derive the identifiability conditions.

III. COMPRESSIVE MBD FROM TIME DOMAIN

MEASUREMENTS

In this section we propose a method that acquires the com-
pressive Fourier measurements of an FIR sequence without
explicitly observing the entire sequence. The number of time
samples can be as small as the number of Fourier measure-
ments. Our approach is inspired by the kernel-based sampling
and reconstruction approach for finite-rate-of-innovation (FRI)
signals [6], [31]. It has been shown that Fourier measurements of
FRI signals can be computed from time samples at a sub-Nyquist
rate by applying a suitable sampling kernel. Then the parameters
of FRI signals can be computed from Fourier measurements on
a grid.

Let y be an FIR signal supported on [M ] and K ⊂ Z be
a finite set. The DTFT coefficients Y (ejkω0) of y for k ∈ K
are computed from |K| consecutive time samples of y with an
appropriate sampling kernel.

Let h be an FIR filter supported on [Mh], where Mh > M ,
which satisfies

h[m] =
∑
k∈K

ejkω0m, m ∈ [Mh]. (7)

The filter h in (7) is a discrete-time analog of the sum-of-sincs
(SOS) filter proposed by Tur et al. [6]. The filtered version of y
by h, denoted ȳ, satisfies

ȳ[m] =

M−1∑
p=0

y[p]h[m− p] =
∑
k∈K

ejkω0m Y (ejkω0) (8)

for M − 1 ≤ m ≤Mh − 1. Then the vectors respectively con-
taining {Y (ejkω0)}k∈K and {ȳ[m]}Mh−1

m=M−1 are related through
a Vandermonde matrix V of size (Mh −M + 1)× |K| with its
(m, k)th element given as ejmkω0 . Therefore if ω0 andK form a
universal set then the conditionMh ≥M + |K| − 1 ensures that
{Y (ejkω0)}k∈K are computed uniquely from {ȳ[m]}Mh−1

m=M−1. In
other words, |K| observations of the ȳ are sufficient to compute
|K| Fourier measurements of y without observing the entire
sequence.

A schematic of the sampling mechanism is shown in Fig. 1.
The switch is closed for samples atm ∈ {M − 1, . . . ,Mh − 1}.
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Fig. 1. Compressive measurements of Fourier samples ofyn by using discrete-
SOS filter h: the sequence yn of dimension of M is passed through an FIR
kernel of length Mh defined as in (7). The output sequence ȳn has length
Mh +M − 1 out of which few measurements are taken by closing the switch
at sample indices m ∈ {M − 1, . . . ,Mh − 1}. From the truncated samples
Yn(e

jkω0 ) is computed by inverting a linear system of equations governed by
matrix V considered in Section II-B.

If we further assume that K is a universal set, any |K| time
samples of ȳ from [M − 1,Mh − 1] will make the resulting
matrixV full rank. This enables optimizing the sampling pattern
to improve the condition number of V.

IV. IDENTIFIABILITY OF COMPRESSIVE MBD

We consider a two-step approach to the compressive MBD
problem. The first step identifies only the filters corresponding to
the impulse responses of the channels, similarly to blind channel
estimation in communications (e.g., [9], [16]). Once the filters
are identified, the second step reconstructs the common input
source to the channels.

A. Identifying Sparse Filters

We identify the filters from the Fourier measurements in
(4) under assumptions (A1)–(A5) except (A2). The following
theorem presents the result in the two-channel case.

Theorem 1 (Partial Identifiability of Compressive MBD):
Suppose that (A1), (A3), (A4), and (A5) hold with K1 = K2 =
K and L <

√
Mx.

1) If |K| ≥ 2L2, then compressive MBD is partially identi-
fiable from the Fourier measurements according to Defi-
nition 2.

2) If |K| < 2L, then compressive MBD is not partially iden-
tifiable.

Recall that {S(ejω0k)}k∈K, x1, and x2 were arbitrary in
Definition 2. Therefore, the partial identifiability in Theorem 1
implies that for any instance within the assumed model, the
filters are uniquely identified up to the ambiguity class. When
it is not partially identifiable, there exists an instance where the
filters are not uniquely determined.

Next, by combining the Fourier domain identifiability results
of Theorem 1 with the kernel-based measurement scheme pro-
posed in Section III, we obtain the following corollary, which
provides the analogous results for compressive MBD from time-
domain measurements.

Corollary 1 (Time-Domain Compressive MBD): Suppose
that the hypotheses of Theorem 1 and (A2) hold. Let h be an
FIR filter of length M + |K| − 1 with impulse response defined
in (7). Then compressive MBD is partially identifiable from
|K| consecutive time-samples of y1 ∗ h and y2 ∗ h, where the
samples are indexed by the set {M − 1, . . . ,M + |K| − 2}, if

|K| ≥ 2L2. On the other hand, compressive MBD is not partially
identifiable if |K| < 2L.

The time-domain results are similar to the result in the context
of FRI signal sampling where the number of Fourier coefficients
needed for identification governs the desired number of time
samples and the sampling rate [6].

The proof of Theorem 1 directly follows from the results on
the following feasibility problem:

find {S̃(ejω0k)}k∈∪nKn
and (x̃1, x̃2, . . . , x̃N )

s.t. Yn(e
jω0k) = S̃(ejω0k)X̃n(e

jω0k), k ∈ Kn, ∀n,
(A1), (A3), (A4) and (A5) are satisfied,

(9)

where the tilde is used to distinguish the variables of the problem
from the corresponding ground-truth signals. If the solution
to (9) is unique up to a scaling and shift ambiguity, then
({S(ejω0k)}k∈⋃N

n=1 Kn
, {xn}Nn=1) is uniquely identifiable, up to

a shift and scaling ambiguity, from the measurements in (4).
The following lemma, whose proof is deferred to Section VII,
provides necessary and sufficient conditions for the uniqueness
of the feasibility problem in (9) when N = 2.

Lemma 1: Letω0,K1,K2, andK be as in Theorem 1. If |K| ≥
min{2L2, 2Mx − 1}, then the feasibility problem in (9) has a
unique solution. On the other hand, if |K| < min{2L,Mx}, then
the problem in (9) is not uniquely identifiable.

The ground-truth signals ({S(ejω0k)}k∈K1

⋃K2
, {x1, x2}) are

feasible to (9). Let

q = x1 ∗ x̂2 − x2 ∗ x̂1, (10)

where ({Ŝ(ejω0k)}k∈K, x̂1, x̂2) is another feasible solution to
(9). In the proof of Lemma 1, we have shown that the number of
Fourier measurements for the unique identification is determined
as the worst-case ‖q‖0 maximized over all feasible (x̂1, x̂2).
Since x1, x2, x̂1, and x̂2 are L-sparse vectors with support over
[Mx], in general, the worst case support of q ismin{2L2, 2Mx −
1}. For high sparse signals, that is, whenL�Mx orL <

√
Mx,

we have that ‖q‖0 = 2L2. Therefore by modifying constraints
on x̃1 and x̃2 in (9), we obtain similar results in a different
scenario as an immediate corollary.

Corollary 2 (Sufficient Conditions for General Sparsity Case):
Let ω0,K1,K2, andK be as in Theorem 1. Let L < Mx without
the restriction L <

√
Mx. If |K| ≥ min{2L2, 2Mx − 1}, then

the feasibility problem in (9) has a unique solution. On the other
hand, if |K| < min{2L,Mx} the problem in (9) is not uniquely
identifiable.

Without assuming that x1 and x2 are sparse, the worst-
case ‖q‖0 becomes 2Mx − 1, which results in the following
corollary.

Corollary 3 (Non-Sparse FIR Filters): Assume the hypothe-
ses of Theorem 1. Let L = Mx. Then the same identifiability
result as in Theorem 1 holds iff |K| ≥ 2Mx − 1.

Compared with the results of [9], where 3Mx time-samples
are sufficient to identify the filters, in our frequency-domain
approach 2Mx − 1 Fourier measurements are necessary and
sufficient. Further, the Fourier measurements can be computed
uniquely from 2Mx − 1 time-measurements by using a sam-
pling kernel as shown in Section III. Hence, for a large Mx, we
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gain significantly in terms of reducing the number of measure-
ments compared with the approach in [9]. A detailed comparison
of these methods is presented in Section V.

Next we show how the identifiability result in Theorem 1
for the two-channel case generalizes to the case of more than
two channels. We obtain a particular sufficient condition by
assuming that there exists a pair of coprime channels from which
at least 2L2 Fourier measurements are available.

Theorem 2: Suppose (A1), (A3), (A4), and (A5) hold for
N ≥ 2. Then compressive MBD is partially identifiable from the
Fourier measurements if the following conditions are satisfied:
i) There exist 1 ≤ n1 < n2 ≤ N such that Kn1

= Kn2
= K

for a universal set K with |K| ≥ min{2L2, 2Mx − 1}; ii) Kn

is a universal set such that Kn ⊆ K and |Kn| ≥ 2L for all
n �∈ {n1, n2}.

Proof: By Theorem 1, the triplet ({S(ejkω0)}k∈K, xn1
, xn2

)
is uniquely identified. Then for an appropriate choice of the
sets Kn, the recovery of the filters for the rest of the channels
(those indexed byn �∈ {n1, n2}) reduces to a non-blind problem.
Since Yn(e

jkω0) = S(ejkω0)Xn(e
jkω0), if the sets Kn are cho-

sen such thatKn ⊆ Kn1
, then we can compute {X(ejkω0)}k∈Kn

from{Yn(e
jkω0)}k∈Kn

as{S(ejkω0)}k∈Kn1
is already identified.

Next, from the measurements {X(ejkω0)}k∈Kn
, the filters are

identifiable uniquely if |Kn| ≥ 2L. �
Theorem 2 implies that a total 4L2 + (N − 2)2L Fourier

measurements from N channels are sufficient for unique iden-
tification of the filters. Therefore on average it suffices to
take (4L2 + (N − 2)2L)/N measurements per channel. Par-
ticularly, with sufficiently many channels (N � L), the average
number of measurements per channel is on the order of L which
is the same as required by the necessary condition. Note that
when the source is known, a minimum of 2L Fourier measure-
ments are necessary to uniquely identify the filters. Hence, for
N � L the requirement on the average number of measurements
per channel matches that of the known source case in order.

B. Recovering the Common Source Signal

As discussed in the introduction, in certain applications such
as radar, sonar, and ultrasound, it suffices to identify only the
filters, which describe the target. On the other hand, there exist
applications where the recovery of the source signal is important.
For example, in communications or imaging, the source signal
carries information and the filters describe the channel impulse
response or sensitivity functions. In this section, we present
conditions under which the source and filters are simultaneously
identified.

The results in Theorems 1 and 2 guarantee that the filters
are fully identified but the source signal is partially identified
up to its Fourier measurements at the selected frequencies. In
general, the recovery of the source s from its partial Fourier
measurements is ill-posed. However, recovery becomes feasible
by introducing further restrictions on s.

For example, suppose that s is supported within [Ms] for a
finite integerMs > 0. To uniquely determine an arbitrary source
signal s supported within [Ms], the number of measurements
needs to be at least Ms. On the other hand, since we choose ω0

and K such that the elements in {ejω0k}Ms−1
k=0 are distinct, the

linear system that generates the Fourier measurements at Kω0

corresponds to a Vandermonde matrix of full column rank and
s is uniquely determined.

Combining the above argument with Theorem 1 provides the
following result in the two-channel case: All s, x1, and x2 are
identified from the sampling pattern given by K1 = K2 = K if
and only if |K| ≥ max{Ms, 2L

2} and (A5) is satisfied.
Below we show that when there are more than two channels,

with a carefully designed sampling pattern, one can significantly
reduce the peak number of measurements per channel, where the
gain is almost proportional to the number of channels. This is
interesting, particularly when Ms dominates L, that is, Ms �
2L2.

A naïve approach is to consider Ms Fourier measurements
from any pair of channels and to apply Theorem 1 to identify
the corresponding filters and the source s. As the source is
identified, the problem is reduced to a non-blind one for the
remaining channels, and to identify the filters in those channels,
2L Fourier measurements are necessary and sufficient. How-
ever, this naive approach may not be well suited for practical
applications. For example, in radar and ultrasound applications,
the Fourier measurements are computed as follows: The analog
signal is first pre-filtered with a kernel followed by an analog-to-
digital converter (ADC). Then, as discussed in Section III, the
time-domain samples are linearly combined to give the Fourier
measurements [6], [31]. Here the sampling rate is determined
by the number of Fourier measurements. In practice, it has
been shown that the bit resolution of ADCs is limited when the
sampling rate is high [41]. Therefore, it is desirable to minimize
the maximum number of Fourier measurements per channel.

To achieve recovery we consider a pairwise strategy. For
example, assume there are four channels (N = 4). Consider
universal sets {Kn}4n=1 such that they satisfy the following
conditions: (i) K1 = K2 and K3 = K4; and (ii) |Kn| ≥ 2L2 for
n = 1, 2, 3, 4. By applying Theorem 1, independently to the
measurements from the pair of channels (1, 2) and (3, 4), we
identify the filters {xn}4n=1 as well as the Fourier measurements
{S(ejkω0)}k∈K1

and {S(ejkω0)}k∈K3
. These two sets of partial

Fourier measurements may be differently scaled due to shift
and scaling ambiguities. Let us assume that there are no such
inter-pair ambiguities. Then we have overall {S(ejkω0)}k∈K1∪K3

Fourier measurements of the source. If |K1 ∪ K3| ≥Ms, then
we can uniquely recover the source. Here, the maximum number
of Fourier measurements can be 4L2. In this particular case, if we
consider more channels, it is necessary and sufficient to consider
2L measurements from the additional channels to identify the
corresponding filters as the source is identified from the first
four channels. We generalize the example to any N channels
and show how to choose the universal sets {Kn}Nn=1 to eliminate
the inter-pair ambiguity and uniquely identify the source and the
filters.

To apply the pairwise strategy for any N ≥ 2 channels, we
consider the Fourier-domain sampling grids given by

K2r−1 = K2r, |K2r−1| = K,K2r−1is a universal set,

and |K2r−1 ∩ K2r+1| = 2, r = 1, 2, . . . , R, (11)
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where R ≤ �N/2�. The first three conditions with K ≥ 2L2 are
necessary and sufficient for the recovery of the filters and the
partial Fourier measurements of the source. The last condition
is that there should be overlap of two samples in successive
pairs of sample sets. We show that this overlap aids in removing
inter-pair ambiguity of shift and scaling.

The identifiability result for both the source and filter for
compressive MBD is stated in the following theorem.

Theorem 3: Suppose that (A1) to (A5) hold for N ≥ 2 and
L <

√
Mx. Then compressive MBD is uniquely identifiable

according to Definition 1 from the Fourier measurements if the
following conditions are satisfied: i) For at least max{Ms−K

K−2 +
1, 1} pair of channels, the corresponding sampling sets satisfy
the conditions in (11) with K ≥ 2L2; and ii) At least 2L Fourier
measurements are available from the rest of the channels.

Proof: Let us assume that we can recover Ms Fourier mea-
surements of s from the first 2R channels together with the
corresponding filters where 2R ≤ N . For these channels, the
sampling pattern is chosen such that K2r−1 = K2r for r =
1, . . . , R with |K2r| = K ≥ 2L2. For each pair of (2r − 1)th
and 2rth channels for r = 1, . . . , R, the assumptions imply via
Theorem 1 that x2r−1, x2r, and S(ejkω0) for k ∈ K2r−1 are
uniquely identified up to a scaling and shift ambiguity. In other
words, S(ejkω0) is identified up to multiplication by αre

jkω0pr

for k ∈ K2r−1 for unknown constants αr �= 0 and pr ∈ Z. Due
to the overlaps |K2r−1 ∩ K2r+1| = 2 for r = 1, . . . , R in the
design of {K2r−1}Rr=1. These inter-pair ambiguity constants can
be removed up to a global constant in a sequential manner. For
example, let us assume thatK1 ∩ K3 = {k1, k2}. In other words,
for the channel pairs (1, 2) and (3, 4), Fourier measurements are
taken at the overlapped frequencies k1ω0 and k2ω0. By applying
Theorem 1 to these pairs, we obtain the Fourier measurements of
the source at the overlapped frequencies up to inter-pair ambi-
guities, which are α1S(e

jk2ω0)ejk2ω0p1 , α1S(e
jk1ω0)ejk1ω0p1 ,

α2S(e
jk2ω0)ejk2ω0p2 , and α2S(e

jk1ω0)ejk1ω0p2 . Then α1/α2

and p1 − p2 are computed from the ratios among these mea-
surements and enable to obtain {α1S(e

jkω0)ejkp1ω0}k∈K3
from

{α2S(e
jkω0)ejkp2ω0}k∈K3

, where the former is aligned to the
first pair.

Applying this process successively, we identify the fil-
ters x1, x2, . . . , x2R, up to a global scaling factor 1/α1 and
a shift by −p1, together with the Fourier measurements
α1S(e

jkω0)ejkp1ω0 for k ∈ ⋃R
n=1Kn.

To identify s from the above Fourier measurements, it is
sufficient to satisfy

N1⋃
r=1

K2r−1 = (R− 1)(K − 2) +K ≥Ms. (12)

In other words the source can be identified from a minimum
2R ≥ 2Ms−K

K−2 + 2 channels if K ≥ 2L2. From the remaining
N − 2R channels it is sufficient to consider any 2L Fourier
measurements to identify the corresponding filters. �

The maximum number of measurements per channel in The-
orem 3 can be restricted to 2L2. The inequality in (12) implies
that when K increases beyond 2L2, the number of channels
for the identifiability can be reduced. In other words, one can

trade-off between the number of measurements per channel and
the number of channels. For K = 2L2 the source and the filters
are identifiable if N ≥ max{Ms−2L2

L2−1 + 2, 2}.
By Corollary 3, we obtain an immediate extension of Theo-

rem 3 to the non-sparse case.
Corollary 4 (Identifiability Results for Source and Non-

Sparse Filters): In Theorem 3, let supp{xn} = [Mx], where
Mx ≤M/2. Then compressive MBD is uniquely identifiable
from 2Mx − 1 Fourier measurements from each of N ≥ 2 ·
Ms−2Mx+1

2Mx−3 + 2 channels.
Even in the non-sparse case, the measurement system can be

compressive when the number of Fourier measurements 2Mx −
1 is smaller than the available time-domain measurements M =
Mx +Ms − 1, that is, Ms > Mx.

C. Extension to Sparse MBD With Circular Convolution

The MBD problem considered in the previous sections as-
sumes that the measurements consist of a linear convolution
of the source and filters, whereas, the recent results in the
literature consider the MBD problem with circular convolutions.
Here we extend our results to the case of circular convolution.
In this setup, the N -channel MBD time-domain outputs are
given as {yn = s� xn}Nn=1, where � denotes circular con-
volution, and the supports of the filters and source are within
the set [M ]. In other words, we assume that supp{s} ⊆M and
supp{xn} ⊆M . Due to circular convolution, the measurements
yn = s� xn are M -periodic. We further assume that the filters
are L-sparse and they are coprime. In this case, the goal is to
derive identifiability conditions to uniquely recover the source
s and the filters {xn}Nn=1 from the discrete Fourier transform
(DFT) measurements {Yn(e

jkω0)}k∈Kn
, where ω0 = 2π

M and
Kn ⊆ [M ]. With these settings, for N = 2, following the steps
in the proof of Lemma 1, the sequence q in (10) is given as
q = x1 � x̂2 − x2 � x̂1. To follow the remaining steps of the
proof and prove the identifiability results, we have to ensure
that q = x1 � x̂2 − x2 � x̂1 = x1 ∗ x̂2 − x2 ∗ x̂1. This is in-
deed true if we assume that the filters are supported within the
set �M/2�. With these assumptions, we state the extension of
Theorem 3 for the circular convolution case.

Theorem 4: Let N ≥ 2 and M ∈ N. Let (s, {xn}Nn=1) be ar-
bitrary while satisfying (A1) to (A5) with Mx = �M/2�, Ms =
M , and L <

√
Mx. Let yn = s� xn for n = 1, 2, . . . , N . Then

s and {xn}Nn=1 are simultaneously identified from the DFT
measurements {Yn(e

jω0k)}k∈Kn
if the following conditions are

satisfied: (i) For at leastmax{M−KK−2 + 1, 1} pair of channels, the
corresponding sampling sets Kn satisfy the conditions in (11)
where K ≥ 2L2; and (ii) a minimum of 2L DFT measurements
are available from the rest of the channels.

The following result for the non-sparse case is obtained as an
immediate corollary.

Corollary 5 (Non-Sparse FIR With Circular Convolution):
Consider the assumptions of Theorem 4. Let supp{xn} = [Mx]
where Mx ≤M/2. Suppose that N ≥ 2M−4

2Mx−3 . Then both the
source and the filters are identifiable iff the number of Fourier
measurements are greater than or equal to 2Mx − 1.
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Note that the condition supp{xn} = [Mx] implies that the
filters are in a low-dimensional subspace of dimension Mx.

D. Recovery From Samples in the z-Domain

A DTFT can be considered as a special case of the z-domain
sample evaluated at a complex number of unit modulus. In
this section we show that the results in the previous sections
generalize to the case where the measurements of the output
channels are given as samples in the z-domain

For example, as in (9), let us consider the filter identification
problem for the two-channel case from samples {Yn(zk) =
S(zk)Xn(zk)}k∈[K] where {zk}k∈[K] denotes sampling grid in
the z-domain. We assume that {S(zk)}k∈[K] is non vanishing.
To show the identifiability, we can follow the lines of the proof
of Theorem 1 by substituting ejkω0 by zk. With the z-domain
measurements, all the steps of the proof of Theorem 1 remain
valid except the spark properties of the resulting A matrix (see
(31)).

With z-domain sampling, the matrix A is given by

A =

⎛⎜⎜⎜⎜⎝
1 z1 z21 . . . z2Mx−1

1

1 z2 z22 . . . z2Mx−1
2

...
...

...
. . .

...

1 zK z2K . . . z2Mx−1
K

⎞⎟⎟⎟⎟⎠ ∈ C
K×2Mx . (13)

The matrix A in (13) need not have full spark for any arbitrary
choice of zk. Here we show a particular choice of zks such that
the matrix has full spark.

Let us assume that z0 ∈ C such that z0 �= 1. Let K ∈ [2Mx]
be a distinct set of integers such that |K| = K. Let zk = zpk

0

for pk ∈ K. Then the matrix A in (13) has full spark if K is a
universal set. To show the full spark property, let us consider a
submatrix of A which consists of K distinct columns indexed
by m1,m2, . . . ,mK . With zk = zpk

0 , the submatrix is given by⎛⎜⎜⎜⎜⎝
zp1m1

0 zp1m2

0 . . . zp1mK

0

zp2m1

0 zp1m2

0 . . . zp1mK

0
...

...
. . .

...

zpKm1

0 zpKm2

0 . . . zpKmK

0

⎞⎟⎟⎟⎟⎠ ∈ C
K×K . (14)

Since the choice of the columns is arbitrary, the matrix A will
have full spark if the submatrix is invertible. Since z0 �= 1, the
submatrix is similar to matrix V in Section II-B with seeds
{zmk

0 }Kk=1. SinceK is a universal set and pk ∈ K, the submatrix
has full spark and is invertible. Hence, the matrix A with the
particular choice of sampling grid in the z-domain has full spark
which implies that the filters can be uniquely identifiable in the
two-channel case if K ≥ 2L2. The problem is not identifiable
if K < 2L. Similarly, we can extend the results of Theorem 2
and Theorem 3 to the case where the samples are measured in
the z-domain.

A major difference between the identifiability results from the
Fourier measurements and from measurements in the z-domain
is that the sampling grid in the former case depends on the
support of the source and the filters. For example, the results
in Theorem 3 assumes that the sampling interval ω0 is selected

such that the set {ejω0k}max{2Mx−2,Ms−1}
k=0 has distinct elements.

However, with z-domain sampling, the sampling grid can be
designed independent of the support of the source or the filters.

E. Relaxation of Coprime Condition

Under the assumptions (A1) and (A2), the condition (A3)
is only a sufficient condition for the identifiability. Indeed, the
assumption (A3) can be either dropped or relaxed into less
stringent conditions as shown in the following examples.

Example 1: Let (A2′) be defined by
� (A2′) The support of s is included in [Ms], s[0] �= 0, and
s[Ms − 1] �= 0.

Then (A1), (A2′), (A4), and (A5) provide another sufficient
condition on the identifiability in Corollary 1. (The original
Corollary 1 assumed that (A1)–(A5) hold.) the assumption in
(A2′) can be justified in the context of certain applications. For
example, there are radar systems where the transmit pulse is
exactly supported on a known finite interval. Therefore (A2′)
holds there.

Proof: Suppose that (ŝ, x̂1, x̂2) is feasible, that is, it satisfies
(A1), (A2′), (A4), and (A5), and is consistent with the measure-
ments. In Lemma 1, the proof of the sufficiency part up to (28)
do not depend on support of the source. Hence, the sufficiency
part of Lemma 1 also follows from these modified assumptions,
and provides that if |K| ≥ 2L2 then

X1(z)/X2(z) = X̂1(z)/X̂2(z). (15)

Hence, there exists a function G(z) such that Xn(z) =
G(z)X̂n(z) for n = 1, 2. Alternatively, in the time-domain, we
have xn = g ∗ x̂n, which leads to

yn = s ∗ xn = s ∗ g ∗ x̂n = ŝ ∗ x̂n,

where ŝ = s ∗ g. If the length of g is strictly greater than one,
then ŝ does not satisfy (A2′), which contradicts our assumption.
Hence, the length of g should be one. This implies that (ŝ, x̂1, x̂2)
is equivalent to (s, x1, x2) up to the fundamental ambiguities.

�
Example 2: Let (A3′) be defined by
� (A3′) Sparse-coprime filters: If xn = h0 ∗ x̄n for all n

and |supp{h0}| > 1, then ‖x̄n‖0 > L for all n.
In words, the assumption in (A3′) ensures that when the filters

x1, . . . , xN share common zeros, the novel factors x̄1, . . . , x̄N

are not L-sparse. Then substituting (A3) by (A3′) in Corollary 1
provides the same identifiability result while making it applies
to a broader set of signals.

Proof: Consider measurements y1 = s ∗ x1 and y2 = s ∗ x2,
where (s, x1, x2) satisfy assumptions (A1), (A3′), (A4), and
(A5). Suppose that (ŝ, x̂1, x̂2) is also feasible. In Lemma 1, the
proof of the sufficiency part up to (28) does not depend on (A3).
Hence, it also follows from these modified assumptions, and
provides that if |K| ≥ 2L2 then

X1(z)/X2(z) = X̂1(z)/X̂2(z). (16)

Hence, there exists a sequence g such that xn = g ∗ x̂n for n =
1, 2. However, since x1 and x2 are sparse coprime, it implies that
either supp{g} = 1 or ‖x̂n‖0 > L forn = 1, 2. Since the former
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is not true, we have that supp{g} = 1 and hence, (s, x̂1, x̂2)
belongs to fundamental ambiguity class of the ground-truth. �

Next we present an example of filters that are sparse-coprime
but not coprime. Suppose that s satisfies (A2) and (A4). Let
N = 2 and L = 4. We construct x1 and x2 as follows: Let

x̄n[m] =

{
amn , 0 ≤ m ≤Mx − 3,

0, else
(17)

for n = 1, 2, where a1 �= a2 ∈ C. Then the z-transform of
x̄1 (resp. x̄2) has zeros at {ej2πm/(Mx−2)a1}Mx−2

m=0 (resp.
{ej2πm/(Mx−2)a2}Mx−2

m=0 ). Therefore, x̄1 and x̄2 are coprime.
Furthermore, h1, defined by h1[m] = δ[m]− a1δ[m− 1], spar-
sifies x1 by

(x̄1 ∗ h1)[m] = δ[m]− aMx−2
1 δ[m−Mx + 2], (18)

where δ denotes the Kronecker’s delta. Similarly,

(x̄2 ∗ h2)[m] = δ[m]− aMx−2
2 δ[m−Mx + 2], (19)

where h2[m] = δ[m]− a2δ[m− 1]. Let x1 and x2 be given by

xn = x̄n ∗ h0, n = 1, 2, (20)

where h0 = h1 ∗ h2. By plugging (18) and (19) into (20), we
obtain ‖x1‖0 = ‖x2‖0 = L. Note thatx1 andx2 are not coprime
as they share non-trivial zeros arising from the common factor
h0 = h1 ∗ h2. Furthermore, the coprimness of x̄1 and x̄2 implies
that there is no other nontrivial common factor than h0. Since
‖x̄1‖0 > L and ‖x̄2‖0 > L, x1 and x2 are sparse-coprime.

V. COMPARISON WITH PRIOR ART

We first compare our results for non-sparse cases and then
provide a comparison for sparse MBD.

A. Comparison of Non-Sparse Case

Xu et al. [9], considered the problem of estimating filters
only without sparsity assumption with linear-convolution. They
made the assumptions that the filters are coprime and the source
has a linear complexity1 greater than or equal to 2Mx, which
implies that Ms ≥ 4Mx. With these assumptions, the authors
show that the filters are identifiable from N = 2 channels if
3Mx consecutive measurements of yn are available. Note that
with Ms ≥ 4Mx, the length of yn is given by M ≥ 5Mx − 1
out of which 3Mx are sufficient to identify the filters.

In comparison, our results in Corollary 3, together with the
time-domain results in Corollary 1, state that we can identify
the filters with 2Mx − 1 time samples. As in [9], we too impose
the coprimeness condition on the filters. However, we do not
restrict the source to have a longer support compared with that
of the filters. In our approach, the support of the source could be
either larger or smaller compared with the support of the filters.
Furthermore, our results are valid for any source signal whose
DTFT samples do not vanish at a given frequency location. The
source need not satisfy a linear complexity constraint.

1Mathematically, the linear complexity of a sequence s is defined as the
smallest integer Lc such that there exists a set of complex-valued amplitudes

{c�}Lc
�=1

and complex-valued roots {r�}Lc
�=1

such that s[m] =
∑L

�=1
c�r

m
� .

For example, let us assume that the source s has linear-
complexity of one, that is, the samples of the source sequence are
given as s[m] = c1r

m
1 for m ∈ [Ms]. In addition, let us assume

that r1 = ejω1 . In this case, the DTFT of the source sequence
is given as S(ejω) = c1

1−ej(ω−ω1)Ms

1−ej(ω−ω1) . The DTFT vanishes at

ω = p 2π
Ms + ω1 wherep ∈ Z \ {0}. If we chose our sampling set

K andω0 such that the setKω0 does not have zeros ofS(ejω) then
our method identifies the filters. In particular, let the cardinality
of the setK be given, that is, the number of Fourier measurements
to be taken is known. For a given ω1 and Ms, if ω0 and K are

chosen as min{ 4π
Ms|K| ,

2π
2Mx−1} and

⌈
ω1−2π/Ms

ω0

⌉
+ [|K|], then

{S(ejkω0)}k∈K does not vanish. Hence, our approach identifies
the filters forLc = 1, whereas, the method by Xu et al. [9] cannot
identify the filters uniquely.

Recently, Xia and Li [19] considered MBD with circular
convolution in a deterministic setup where the source and filters
are real and deterministic, but not sparse. Similar to our assump-
tion in the case of non-sparse circular MBD, they assumed that
supp{xn} = [Mx] with Mx < M . They showed that by using
all M time samples from each channel almost all the sources
and the filters are uniquely identifiable if N ≥ M−1

M−Mx
. The

authors used the conjugate symmetry property of the Fourier
transform of real signals to restrict the feasible solution sets.
Their results provided “generic” identifiability, that might exist
a null set including instances for which unique identification
fails. The major weakness is that this null set is not clearly
identified and it may include signals of interest in applications.
In contrast, our “deterministic” identifiability results hold for
any source filter pairs when they satisfy the conditions (A1)–
(A5) (cf. Corollary 5). We show that N ≥ 2M−4

2Mx−3 channels are
sufficient for unique identification of the source and filters iff
2Mx − 1 Fourier measurements per channel are available. For
Mx = M/2, both results work for N = 2 channels and require
all the measurements. On the other hand, when Mx �M ,
our result requires more number of channels but with fewer
measurements per channel than that by Xia and Li [19] with
two channels.

B. Comparison With Recent Results on Sparse MBD

All the results discussed in this section consider the MBD
setup with circular convolution. Hence, we compare them with
our results in Theorem 4. The results in [20]–[23] consider iden-
tifiability of MBD problems with the assumption that the filters
are random and sparse. Balzano and Nowak [20] considered
a BGPC problem with oversampled DFT matrix and showed
that when L-sparse signals xns are generic and have common
known support, it is necessary to have measurements from
N ≥ �(M − 1)/(M − L)� channels for perfect recovery of
unknown gains. Li et al. [23] studied the identifiability con-
ditions for a general BGPC problem with subspace and spar-
sity constraints. The authors showed that under generic spar-
sity constraints on the filters, the problem is identifiable with
high-probability up to acceptable ambiguities as long as N =
O(M logM). In [21], [22], the authors considered a sparse
MBD problem with circular convolution by assuming that the
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source is invertible and the filters are sparse with randomly
chosen support and amplitudes. Specifically, Wang and Chi [22]
assumed that the sparsity of the filters follows a Bernoulli-
subgaussian model. With the assumption that the source s is ap-
proximately flat in the Fourier domain, the authors show that the
problem could be efficiently solved through an �1-minimization
approach, as long as N = O(M log4 M). Cosse [21] assumed
that the source is invertible and the location of the non-zero
values of the sparse filters are chosen uniformly at random over
[M ]. The recovery is guaranteed with high-probability as soon
as the number of channels N and the dimension of the filters M ,
satisfy N � M and N � L2 where the filters are assumed to be
L-sparse.2

Our results differ from previous results as follows:
1) The aforementioned recent results considered random

sparsity or subspace models on the filters, whereas, we
consider a deterministic sparsity model for the filters.

2) In [20]–[23], sparsity is introduced to derive the identi-
fiability results but not with the goal of compressing the
measurements. The results are derived by assuming that
all M time samples yn are available in all the channels.
We show that sparsity also helps in identifiability by us-
ing compressive measurements in the frequency domain.
Instead of using M time samples, we show identifiability
using 2L2 Fourier samples of yn.

3) In [23] and [22], the number of channels required does
not depend on the sparsity level of the filters. We show
that the source and filters are identifiable from N ≥
max{M−2L2

L2−1 + 2, 2} channels.
4) In [23] and [22], the total number of measurements is

on the order of O(M logM) and O(M log4 M), respec-
tively, whereas, in our setup, we need 2L2 measurements
from at least max{M−2L2

L2−1 + 2, 2} channels. This results

overall in (M−2)2L2

L2−1 measurements which is on the order
of M .

5) Comparing the results in the case of known support,
in [20], all M samples are considered per channel and
overall O(M) measurements are required. In our case,
we need only L2 measurements per channel with overall
measurements on the order M . We gain in terms of the
number of measurements per channel but we require more
channels compared with [20].

C. Relation to Blind CS

The proposed compressive MBD problem can be viewed as a
special case of blind compressive sensing (BCS) [42]. In BCS,
a set of signals that are sparse in an unknown bases are uniquely
identified from their compressed measurements. Similarly, in
compressive MBD, the output sequences {yn = s ∗ xn}Nn=1 are
sparse in the unknown dictionary that is given by the convolu-
tion matrix corresponding to the sequence s, the filters denote
the sparse vectors, and the objective is to identify them from
compressive measurements in the Fourier domain. However, the

2M � N ⇔ ∃c ∈ R s.t. M ≥ cN .

existing dictionary models in [42] do not include convolutional
dictionaries.

VI. NUMERICAL RESULTS

The main goal of this section is to compare the identifia-
bility results of Theorem 1 to empirical observations. While
Theorem 1 provides a set of necessary and sufficient conditions
for the identifiability in the worst case, in practice, it is not
feasible to test in the worst case scenario. Therefore, instead,
we run a set of Monte Carlo simulations and observe conditions
under which most cases are successful (we count the frequency
of empirical successes). On the other hand, the identifiability
result of Theorem 1 implies the existence of a method that
uniquely determines the solution of compressive MBD, which
means one has to consider the optimal algorithm regardless of
its computational cost. This is also infeasible in practice. For
a set of small sized problems, we performed enumeration over
all possible supports, which provides an optimal reconstruction
algorithm. For larger scaled problems, we consider a few se-
lected heuristics described below. In the non-sparse case with
noisefree measurements, an optimal algorithm can be obtained
by a standard eigenvalue decomposition. Thus, we use it for the
study of the identifiability.

A. Practical Algorithms for Compressive MBD

To describe the algorithms used in the experiments, we rewrite
the measurements succinctly in a compact matrix form. Let
yn ∈ C

|K| denote the compressible measurements from the nth
channel. Let s ∈ C

|K| denote the column vector whose entries are
{S(ejkω0)}k∈K. The measurements in (4) can then be compactly
written as

Y = [y1 y2] = diag(s)ĀX, (21)

where X = [x1 x2]. Estimating s and X from Y is a BGPC or
BDC problem with partial Fourier matrix. Practical algorithms
to solve the sparse MBD or BGPC/BDC problem were proposed
in [22], [26], [30]. The algorithm proposed in [22] is based on
�1-norm minimization and requires the matrix Ā to be a full DFT
matrix. Hence, the algorithm is not applicable to compressive
MBD. In [30] and [26], the authors proposed algorithms based
on BDC and truncated-power iteration (TPI), respectively. We
will use modifications of these two approaches in the simulation.

The BDC problem is similar to a sparse dictionary learning
(DL) problem [43]; however, there is a major difference. In
the DL problem, the composite matrix diag(s)Ā is unknown
and needs to be estimated along with the sparse vectors X. In
contrast, BDC requires to estimate only swith known Ā. In [30],
the authors proposed a convex optimization based solution to
the BDC problem. However, we experimentally observed that
for N = 2 solving the BDC problem in (21) by using an al-
ternate minimization approach provides desirable identifiability
results. Hence, we consider the alternate minimization-based
BDC approach as one of the practical algorithms for assessing
the results. In alternating minimization, first, we estimate the
sparse vectors by assuming that s is known and then, in the
dictionary update step, we estimate s by using the estimated X.
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Algorithm 1: BDC for Solving (21).
Output: s and X
Input: Y, Ā, L, and the initial estimate s(0)

1: Let i← 1
2: repeat
3: Estimate columnwise L-sparse matrix X(i) by OMP to

minimize ‖diag(s(i−1))−1 Y − ĀX(i−1)‖22.
4: s(i) ← argmins ‖Y − diag(s)ĀX(i)‖22
5: i← i+ 1
6: until convergence criterion is reached

We apply orthogonal matching pursuit (OMP) [44] to estimate
the sparse vectors. Then s is estimated as a minimizer of the
error ‖Y − diag(s)ĀX‖22. We present the proposed approach in
Algorithm 1. The solution of the optimization problem in Step
4 is given as s(i) = D{ĀX(i)YH}./D{(ĀX(i))(ĀX(i))H}.
Here the operator D acts on a square matrix to output a vec-
tor consisting of the diagonal elements of the matrix, and the
symbol ./ denotes element-wise division. In our simulations, the
algorithm stops at the ith iteration if ‖X(i) −X(i−1)‖2 ≤ 10−3.

Next, we discuss an alternative method to identify the filters
from the measurements Y. By applying cross-correlation, as
in the proof of our main results (cf. Section VII), (21) can be
rewritten as[

diag(y2)Ā −diag(y1)Ā
]

︸ ︷︷ ︸
B

[
x1

x2

]
︸ ︷︷ ︸

γ

= 0. (22)

In the sparse MBD framework, identifying the filters from the
matrix B is equivalent to identifying a 2L-sparse null vector of
B. The solution to the problem in (22) can be computed as the
solution to the following non-convex optimization problem:

minimize
γ1,γ2∈CMx

[
γH
1 γH

2

]
BHB

[
γ1

γ2

]

subject to ‖γ1‖0 ≤ L, ‖γ2‖0 ≤ L,

∥∥∥∥∥
[
γ1

γ2

]∥∥∥∥∥
2

= 1. (23)

Problem (23) can be solved by adapting the truncated power
iteration (TPI) algorithm proposed in [45]. In its original version,
TPI is developed to compute the largest sparse eigenvector of a
positive semidefinite matrix. In [26], Li et al. adopt the TPI
algorithm in [45] to solve the BGPC problem by assuming
that measurement matrix is random Gaussian and the filters are
jointly sparse. We present TPI to solve the optimization problem
in (23).

The TPI algorithm in [45] is developed for a single sparse
vector. In (23) the vector to be estimated is a concatenation
of two sparse vectors. By adopting the original TPI algorithm,
the sparsity constraints on γ in (23) are imposed by the com-
posite sparse projector P̃L : C2Mx → C

2Mx . For any vector
γ ∈ C

2Mx , the output of the sparse projector, P̃L{γ}, is an 2L
sparse vector computed by independently retaining theL largest
entries over the sets [Mx] and Mx + [Mx] from the support of

Algorithm 2: Truncated Power Iteration to Solve (23).
Output: γ; Parameter: β
Input: B,Mx, L, and the initial estimate γ(0)

1: Set G← βI2Mx
−BHB

2: Let i← 1
3: repeat
4: γ(i) ← Gγ(i−1)/‖Gγ(i−1)‖2
5: γ(i) ← P̃L{γ(i)}/‖P̃L{γ(i)}‖2
6: i← i+ 1
7: until convergence criterion is reached

γ and setting the rest of the entries to zero. The truncated power
iteration method is presented in Algorithm 2.

In Step 2, we denote by I2Mx
the identity matrix of size

2Mx × 2Mx. As was suggested in [26], a safe choice of the
parameter β is ‖B‖. We initialize γ as the concatenation of
the outputs of the OMP algorithm to the inputs y1 and y2.
The algorithm stops when the update in γ is not significant in
successive iterations. Specifically, we stop at the ith iteration if
‖γ(i) − γ(i−1)‖2 ≤ 10−3.

B. Comparison of Sparse MBD

1) Exhaustive Search for Compressive MBD: The exhaustive
search can be applied to either the measurement Y in (21) or
to B in (22) to identify the unknowns. In the former case, one
needs to search over three unknowns, s, x1, and x2, whereas,
the search reduces to two unknowns x1 and x2 in the latter case.
Hence, we apply the exhaustive search to identify the sparse
filters from B and compare the results with Theorem 1.

In this experiment, the measurements are directly generated
by using (21) upon setting Mx = 2L2, L = 4, and M = 2Mx.
We choose K as {1, 2, . . . ,K}. We assume that the full Fourier
measurements of the source consist of a sum of two Gaussian
pulses with their amplitudes, means, and variances given by the
triplets: (4,M/2, 0.001) and (1, 2M/3, 0.01). We choose the
sum of Gaussian pulses to make sure that the source spectrum
is not flat and non-vanishing. The experiment can also be per-
formed for any other choices of the source. The support and the
coefficients of the filters are generated randomly. Specifically,
for each filterL non-zero values are chosen uniformly at random
over the set [Mx] and their amplitudes are chosen uniformly
at random between 1 and 2. Out of the available M Fourier
measurements, we useK ≤M to identify the filters. If the filters
are uniquely identifiable up to scaling and shift of the original
filters, we consider the experiment to be successful or else we
assume that the experiment has failed for that particular K.

Fig. 2 shows the success rate averaged over 200 independent
experiments. Interestingly, we observe that 2L Fourier samples
are necessary and sufficient to identify the filters.

2) TPI and BDC to Solve Compressive MBD: In this section,
we compare the performance of the TPI and BDC approaches to
solve compressive MBD. We compare the performance of these
two algorithms to that by OMP in the non-blind case where
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Fig. 2. Phase transition for the identification of L-sparse filters by exhaustive
search (L = 4): K ≥ 2L is necessary and sufficient.

Fig. 3. Phase transition for the identification of L-sparse filters by NB-OMP,
BDC, and TPI with known source (L = 4, Mx = 2L2); K ≥ 2L is necessary
and K > 2L2 is sufficient.

the source s is known. We call this method non-blind OMP
(NB-OMP).

We use the same simulation settings as in the exhaustive
search experiment. Let X̃ is an estimate of X, then the filters
are assumed to be identified if the normalized mean-squared
error (MSE) is less than −50 dB, that is, if 20 log(‖X−
X̃‖2/‖X‖2) ≤ −50. Fig. 3 shows the average success rate
computed over 200 independent realizations of the sparse filters
for L = 4. Performances of both TPI and BDC methods follow
closely that of NB-OMP. We observe that the success rate grad-
ually increases for K ≥ 2L up to K = 2L2. For K > 2L2, both
BDC and TPI algorithms always identify the filters uniquely. The
curve shows that 2L measurements are necessary and 2L2 com-
pressive MBD measurements are sufficient to uniquely identify
the sparse filters.

Fig. 4 shows the success rate for different values of sparsity
levels. We note that forL = 2, for some realizations of the filters,
the algorithms are able to identify the filters forK = 2L. Except
for the BDC method in the case of L > 8, we observe that K >
2L2 measurements are sufficient. The results also show that 2L
measurements are necessary.

3) Experiments With Other Source Models: The first two
experiments are performed by assuming the source spectrum
consists of a sum of two Gaussian pulses. In this experiment,
we conducted another set of Monte Carlo simulations for other
source and filter models. Specifically, we generated s so that its
elements are i.i.d. following uniform distributions with mean
fixed to 100. We observed how the performance varies as a
function of the source variance. Indeed, a smaller variance re-
sults in a flatter source spectrum and the resulting reconstruction

Fig. 4. Phase transition for the identification of L sparse filters in the two-
channel case: K > 2L is necessary and K > 2L2 is sufficient.

problem gets closer to the non-blind case. The filters are assumed
to be identified if the normalized MSE is less than −20 dB.
The success rates (averaged over 500 realizations) are shown in
Fig. 6. We observe that the performance of the methods do not
alter much with a random selection of the source. Moreover, the
performance of the algorithms does not depend critically on the
source variance.

4) Comparison of Algorithms for Varying Compression Ra-
tios: Corollary 3 states that the filters are identifiable if ‖K‖ ≥
min{2L2, 2Mx − 1}. In particular, when L ≥ √Mx, it is suf-
ficient to have 2Mx − 1 measurements. Since the bounds are
based on the worst-case supports of the sequence q (cf. (10)),
practical algorithms are able to identify the filters uniquely
from fewer than 2Mx − 1 measurements for L >

√
Mx. To

validate, we consider identifying the filters when the condition
L ≤ √Mx does not hold. In this simulation, we set Mx = 32
and M = 2Mx. We generated the filters and source signal as in
the first experiment. In this experiment, the filters are assumed
to identified if the normalized MSE is less than −20 dB. The
success rates that are averaged over 500 independent realizations
of filters are shown in Fig. 7. We observe that for a sufficient
number of Fourier measurements, the algorithms are able to
identify the filters even for L ≥ √Mx = 5.657.

5) Comparison of TPI and BDC in the Presence of Measure-
ment Noise: In this experiment we compared the performance
of the TPI and BDC methods together with NB-OMP in the
presence of additive white Gaussian noise. We apply the set-
tings of the first experiment (cf. Section VI-B1). The filters are
assumed to identified if the normalized MSE is less than−10 dB.
The success rates averaged over 500 independent realizations of
filters are shown in Fig. 8. We observe that the algorithms are
able to uniquely identify the filters for SNR > 5 dB provided
that K ≥ 2L2.
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Fig. 5. Phase transition in the non-sparse FIR case: The success rate is plotted
as a function of the linear complexity Lc of the source and the number of
measurements Ms −Mx. Compressive MBD identifies the filter from at least
2Mx − 1measurements and is independent ofLc. The approach by Xu et al. [9]
requires at least 3Mx measurements and Lc ≥ 2Mx − 1.

C. Comparison of Non-Sparse FIR MBD

Next, we show simulation results for the non-sparse case. As
the present frequency-domain approach to derive the identifia-
bility results and the time-domain approach taken by Xu et al. [9]
are based on cross-correlation we compare these two tech-
niques. In both approaches, the solution is computed by solving
a homogeneous equation. In our frequency-domain settings,
the solution is obtained by solving the homogeneous equation
(22) via the optimization problem (23) without imposing the
sparsity assumption. The solution is given as the eigenvector
corresponding to the minimum eigenvalue of the matrix BHB.
A similar technique is applied in Xu et al. by replacing the matrix
B by a data matrix that consists of time-domain samples (cf.
equations (7) and (20) in [9]). The identifiability results in the
time-domain approach strongly depend on the linear complexity
Lc of the source and on the length Mx of the source compared
with the length of the filters Mx. We claim that our results
do not depend on these parameters, but depend only on the
number of frequency-measurements and non-vanishing property
of the source at those frequencies. To justify our claim, we
compare the MSE in estimating the filters by both approaches
as a function of Lc and the number of measurements. To have a
fair comparison, we use the same number of measurements for
each experiment in both the methods. In [9], the number of mea-
surements is given by Ms −Mx by assuming that Ms > Mx.
In the proposed frequency-domain approach, we choose K as
set of K = Ms −Mx consecutive integers. In the simulations,
the source sequence s of length Ms with a linear complexity Lc

is generated using the following model:

s[m] =

Lc∑
�=1

c�r
m
� for m = 0, 1, . . . ,Ms − 1. (24)

In the simulations, both c� and r� as well as the filters are
generated randomly.

In both approaches, we assume that the filters are uniquely
identifiable if the normalized MSE is less than −50 dB. Fig. 5
shows the success rate over 200 independent realizations of the
source and filers for Xu’s [9] and the proposed methods. We
observe that Xu’s method is successful if Lc ≥ 2Mx − 1 and
Ms ≥ 4Mx, whereas our approach identifies the filters as long

Fig. 6. Phase transition for the identification of L sparse filters in the two-
channel case with varying source variance: The partial spectrum of the source is
generated uniformly at random with mean value 100 and different variances. The
SNR is 30 dB. The performance of all methods does not change considerably
as variance of the source changes.

Fig. 7. Phase transition diagrams for success rate of different algorithms for a
fixed Mx = 32 and M = 2Mx. We observe that the algorithms identifies the
filters even for L >

√
Mx = 5.657 as opposed to the assumption in Theorem

1. In this case Corollary 3 for general sparsity case holds.

as K = Ms −Mx > 2Mx − 1 and the results are independent
of the linear complexity of the source.

VII. PROOF OF LEMMA 1

Theorem 1 states that ({S(ejω0k)}k∈K, x1, x2) is the unique
solution to (9) up to the fundamental ambiguity in (2). Let
({Ŝ(ejω0k)}k∈K, x̂1, x̂2) be another solution to (9). Then there
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Fig. 8. Phase transition diagrams for success rate of different algorithms in the
presence of noise. For SNR > 5 dB, the algorithms are able to uniquely identify
the filters for K ≥ 2L2.

exist α �= 0 and m0 ∈ Z such that

S(ejω0k) = αejω0km0 Ŝ(ejω0k), ∀k ∈ K, (25)

and

Xn(z) = α−1z−m0X̂n(z), n = 1, 2, (26)

if |K| ≥ 2L2.
Sufficiency part: Since both ({S(ejω0k)}k∈K, x1, x2) and

({Ŝ(ejω0k)}k∈K, x̂1, x̂2) are solutions to (9), we have

Yn(e
jω0k) = S(ejω0k)Xn(e

jω0k) = Ŝ(ejω0k)X̂n(e
jω0k), (27)

for n = 1, 2, andk ∈ K. We have assumed that {S(ejω0k)}k∈K
and {Ŝ(ejω0k)}k∈K are nonzero. Therefore it follows from (27)
that

X1(e
jω0k)X̂2(e

jω0k) = X̂1(e
jω0k)X2(e

jω0k), k ∈ K. (28)

Let Q(ejω0k) denote the sample of DTFT of

q = x1 ∗ x̂2 − x2 ∗ x̂1 (29)

at frequency kω0. Then by the convolution theorem and the
linearity of DTFT, the identity in (28) is equivalently rewritten
as

Q(ejω0k) = 0, k ∈ K. (30)

Let A ∈ C
|K|×2Mx−1 denote a Vandermonde matrix with its

(k,m)th entry given as ej(k−1)(m−1)ω0 . Then we can rewrite (30)
as

Aq = 0, (31)

whereq = [q[0], q[1], . . . , q[2Mx − 2]]T ∈ C
2Mx−1. SinceA is

a Vandermonde matrix constructed by 2Mx − 1 distinct gen-
erators {ejmω0}m∈[2Mx] and K is a universal set, A has full

spark. Therefore, if |K| ≥ |supp{q}|, then (31) implies q = 0.
Furthermore, since supp{q} ⊂ [2Mx], it follows that q = 0, that
is,

x1 ∗ x̂2 = x2 ∗ x̂1, (32)

which implies via the z-transform that

X1(z)/X2(z) = X̂1(z)/X̂2(z). (33)

For brevity, we introduce the following notation. For an FIR
sequence x, let Zx denote the set of the zeros of its z-transform
X(z).

Since X1(z) and X2(z) do not share any common zeros, we
obtain

Zx1
⊆ Zx̂1

. (34)

Hence, there is a polynomial H(z) that satisfies

X̂1(z) = X1(z)H(z).

Then it follows from (33) that

X̂2(z) = X2(z)H(z).

Since X̂1(z) and X̂2(z) do not share any common zeros except
at z = 0, we conclude thatH(z) = αzm0 for somem0 ∈ N and
α ∈ C \ {0}. It remains to show that ‖q‖0 = |supp{q}| ≤ 2L2.
Without any assumption on the support structure of the filters
the support of sequence q depends only on L. Since L <

√
Mx,

we have ‖x1 ∗ x̂2‖0 = ‖x2 ∗ x̂1‖0 ≤ L2. Hence

‖q‖0 = ‖x1 ∗ x̂2 − x2 ∗ x̂1‖0 ≤ 2L2. (35)

Necessity part: We show that if |K| < 2L, then there
exist distinct solutions ({S(ejω0k)}k∈K, x1, x2) and
({Ŝ(ejω0k)}k∈K, x̂1, x̂2) to (9) such that (25) and (26) are
not satisfied for any α and n0. It suffices to show that

q = x1 ∗ x̂2 − x2 ∗ x̂1 �= 0, but Q(ejω0k) = 0, ∀k ∈ K.
Before proceeding further, we define the following notations

to prove the necessary part. Let Ā denotes the |K| ×Mx matrix
that consists of first Mx columns of matrix A. Next, let x1, x2,
x̂1, and x̂2 denote L-sparse vectors in C

Mx that are constructed
by considering the first Mx values of the sequences x1, x2, x̂1,
x̂2, respectively.

Since the matrix Ā has full spark, there exist distinct pairs of
L-sparse vectors (x1, x̂1) and (x2, x̂2) such that Āx1 = Āx̂1

and Āx2 = Āx̂2 as long as |K| < 2L. Hence, we have

Āx1 � Āx̂2 = Āx̂1 � Āx̂2, (36)

which is equivalent to (28) or Q(ejω0k) = 0 for all k ∈ K.
Since x1 �= x̂1 and x2 �= x̂2, we also have that corresponding
sequence q �= 0. Hence, for |K| < 2L the problem in (9) does
not have unique solution for all the filter pairs (x1, x2).

VIII. CONCLUSION

In this paper, we derived identifiability conditions for mul-
tichannel blind deconvolution when the filters follow a fully
deterministic sparsity model and the source has finite support.
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We showed that when there exist at least a pair of two mutually
coprime filters, it is sufficient to take 2L2 Fourier measurements
from those channels for the unique identification of the filters.
To identify the source uniquely, we derive conditions on the
number of measurements and number of channels in terms of
the support of the source and sparsity of the filters. The results
improve upon existing MBD results both in terms of the number
of measurements and the number of channels required for unique
identifiability and also apply to the non-sparse settings.
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