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Phase retrieval refers to recovering a signal from its Fourier magnitude. This
problem arises naturally in many scientific applications, such as ultra-short laser
pulse characterization and diffraction imaging. Unfortunately, phase retrieval is ill-
posed for almost all one-dimensional signals. In order to characterize a laser pulse
and overcome the ill-posedness, it is common to use a technique called Frequency-
Resolved Optical Gating (FROG). In FROG, the measured data, referred to as
FROG trace, is the Fourier magnitude of the product of the underlying signal with
several translated versions of itself. The FROG trace results in a system of phaseless
quartic Fourier measurements. In this paper, we prove that it suffices to consider
only three translations of the signal to determine almost all bandlimited signals, up
to trivial ambiguities. In practice, one usually also has access to the signal’s Fourier
magnitude. We show that in this case only two translations suffice. Our results
significantly improve upon earlier work.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Phase retrieval is the problem of estimating a signal from its Fourier magnitude. This problem plays a key

role in many scientific and engineering applications, among them X-ray crystallography, speech recognition,

blind channel estimation, alignment tasks and astronomy [1-6]. Optical applications are of particular interest

since optical devices, such as a charge-coupled device (CCD) and the human eye, cannot detect phase

information of the light wave [7].
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Fig. 1.1. Ilustration of the SHG FROG technique (courtesy of [25]).

Almost all one-dimensional signals cannot be determined uniquely from their Fourier magnitude. This
immanent ill-posedness makes this problem substantially more challenging than its multi-dimensional coun-
terpart, which is well-posed for almost all signals [8]. Two exceptions for one-dimensional signals that are
determined uniquely from their Fourier magnitude are minimum phase signals and sparse signals with non-
periodic support [9,10]; see also [11,12]. One popular way to overcome the non-uniqueness is by collecting
additional information on the sought signal beyond its Fourier magnitude. For instance, this can be done
by taking multiple measurements, each one with a different known mask [13-15]. An important special case
employs shifted versions of a single mask. The acquired data is simply the short-time Fourier transform
(STFT) magnitude of the underlying signal. It has been shown that in many setups, this information is suf-
ficient for efficient and stable recovery [16-21]. For a recent survey of phase retrieval from a signal processing
point-of-view, see [8].

In this work, we consider an ultra-short laser pulse characterization method, called Frequency-Resolved
Optical Gating (FROG). FROG is a simple, commonly-used technique for full characterization of ultra-short
laser pulses which enjoys good experimental performance [22,23]. In order to characterize the signal, the
FROG method measures the Fourier magnitude of the product of the signal with a translated version of
itself, for several different translations. The product of the signal with itself is usually performed using a
second harmonic generation (SHG) crystal [24]. The acquired data, referred to as FROG trace, is a quartic
function of the underlying signal and can be thought of as phaseless quartic Fourier measurements. We refer
to the problem of recovering a signal from its FROG trace as the quartic phase retrieval problem. Illustration
of the FROG setup is given in Fig. 1.1.

In this paper we provide sufficient conditions on the number of samples required to determine a ban-
dlimited signal uniquely, up to trivial ambiguities, from its FROG trace. Particularly, we show that it is
sufficient to consider only three translations of the signal to determine almost all bandlimited signals. If one
also measures the power spectrum of the signal, then two translations suffice.

The outline of this paper is as follows. In Section 2 we formulate the FROG problem, discuss its
ambiguities and present our main result. Proof of the main result is given in Section 3 and Section 4
provides additional proofs for intermediate results. Section 5 concludes the paper and presents open ques-
tions.

Throughout the paper we use the following notation. We denote the Fourier transform of a signal z € C
by 2, = 271;/:—01 Zpe 2Tk /N Cwhere 1 := \/—1. We further use Z, R {z} and S {z} for its conjugate, real
part and imaginary part, respectively. We reserve x € CV to be the underlying signal. In the sequel, all
signals are assumed to be periodic with period N and all indices should be considered as modulo N, i.e.,
Zn = Zn4+nNe for any integer ¢ € Z.
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2. Mathematical formulation and main result

The goal of this paper is to derive the minimal number of measurements required to determine a signal
from its FROG trace. To this end, we first formulate the FROG problem and identify its symmetries, usually
called trivial ambiguities in the phase retrieval literature. Then, we introduce and discuss the main results
of the paper.

2.1. The FROG trace
Let us define the signal

Yn,m = TnTn4+mL, (21)

where L is a fixed positive integer. The FROG trace is equal to the one-dimensional Fourier magnitude of
Yn,m for each fixed m, i.e.,

N-1 2
~ 2 E —2munk/N
‘yk,m| = TnTn4+mLE / 3

n=0

k=0,...,N—1, m=0,...,[N/L] - 1.

(2.2)

To ease notation, we assume hereafter that L divides N.
Our analysis of the FROG trace holds for bandlimited signals. Formally, we define a bandlimited signal
as follows:

Definition 2.1. We say that = € C¥ is a B-bandlimited signal if its Fourier transform Z € CV contains N — B

consecutive zeros. That is, there exits ¢ such that Z; = ... = Z;uny_p_1 = 0, where all indices are taken
modulo N.

The FROG trace is an intensity map CV s RV T that has three kinds of symmetries. These symmetries
form the group of operations acting on the signal for which the intensity map is invariant. The FROG trace
is invariant to global rotation, global translation and reflection [25]. The first symmetry is continuous, while
the latter two generally are discrete. These symmetries are similar to equivalent results in phase retrieval,
see for instance [11,8]. For bandlimited signals, the global translation symmetry is also continuous:

Proposition 2.2. Let x € CV be the underlying signal and let T € CN be its Fourier transform. Let \gjkm\g be
the FROG trace of x as defined in (2.2) for some fized L. Then, the following signals have the same FROG
trace as x:

1. the rotated signal ze*¥ for some 1) € R;

2. the translated signal z* obeying vt = ,,_¢ for some £ € Z (equivalently, a signal with Fourier transform
2’ obeying 7Y, = Tpe 2™*/N for some ( € )

3. the reflected signal T obeying T, = T_,.

For B-bandlimited signals as in Definition 2.1 with B < N/2, the translation ambiguity is continuous.
Namely, any signal with a Fourier transform such that E}f = 72eY* for some ¢ € R has the same FROG
trace as x.

Proof. The result for general signals was derived in [25]. The result on the continuity of the translation
symmetry for bandlimited signals is a direct corollary of Proposition 4.1, given in Section 4.1. O
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Fig. 2.1. This figure presents three bandlimited signals in R'!. Two of the them are shifted versions of each other. The third one is
“shifted” by 1.5 entries, namely, the kth entry of its Fourier transform was modulated by e~ 2m(LB)R/N A signals have the same
FROG trace.

Fig. 2.1 shows the 5-bandlimited signal x € R with Fourier transform given by z = (1,, —¢,0,0, 0,0, 0,
0,¢,—t)T. The second signal is z shifted by three entries. A third signal is a “translated” version of the
underlying signal by 1.5 entries. Namely, the kth entry of its Fourier transform is Zpe 27(1-9)k/N Clearly,
the third signal is not a translated version of z. Nonetheless, since x is bandlimited, all three signals have
the same FROG trace. If x was not a bandlimited signal then the FROG trace of the latter signal would
not in general be equal to those of the first two.

The symmetries of the FROG trace form a group. Namely, the FROG intensity map CN — RVN*N/L jg
invariant under the action of the group G' = S' x uy X po, where x denotes a semi-direct product. The
o corresponds to reflection symmetry and pupy corresponds to translation ambiguity, which rotates 2y by
e~ 2mtk/N for some integer £ € Z. Observe that we use a semi-direct product for the last symmetry since

o and g do not commute; if one reflects the signal and then multiplies it by a power of e27/N

2mL/N

, it is not
the same as multiplying by a power of e and then reflecting. In fact, the semi-direct product of
and uso is the dihedral group Doy of symmetries of the regular N-gon. If we consider bandlimited signals,
then the FROG trace is invariant under the action of the group G = S' x S' x 9. That is, the translation

ambiguity is continuous.
2.2. FROG recovery

We are now ready to present the main result of this paper. We assume throughout that the signal is
bandlimited, which is typically the case in standard ultra-short pulse characterization experiments [26]. We
prove that almost any B-bandlimited signal is determined by its FROG trace, up to trivial ambiguities,
as long as L < N/4. Particularly, we show that we need to consider only three translations and hence 3B
measurements are enough to determine the underlying signal. For instance, if L = N/4 then the measure-
ments corresponding to m = 0, 1,2 determine the signal. If in addition we have access to the signal’s power
spectrum, then it suffices to choose L < N/3. In this case, one may consider only two translations. As an ex-
ample, if L = N/3, then one can choose m = 0,1 (see Remark 3.1). The power spectrum of the sought pulse
is often available, or can be measured by a spectrometer, which is integrated into a typical FROG device.

Theorem 2.3. Let x be a B-bandlimited signal as defined in Definition 2.1 for some B < N/2. If N/L > 4,
then generic signals are determined uniquely from their FROG trace as in (2.2), modulo the trivial ambigu-
ities (symmetries) of Proposition 2.2, from 3B measurements. If in addition we have access to the signal’s
power spectrum and N/L > 3, then 2B measurements are sufficient.
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Fig. 2.2. The empirical success recovery of a trust-region algorithm to minimize (2.3) as a function of L and o (100 experiments for
6

each pair of values). A success was declared for recovery error less than 107 °.

By the notion generic, we mean that the set of signals which cannot be uniquely determined, up to
trivial ambiguities, is contained in the vanishing locus of a nonzero polynomial. This implies that we can
reconstruct almost all signals.

This result significantly improves upon earlier work on the uniqueness of the FROG method. In [27] it
was shown that a continuous signal is determined by its continuous FROG trace and its power spectrum.
The uniqueness of the discrete case, as the problem appears in practice, was first considered in [25]. It was
proven that a discrete bandlimited signal is determined by all N2> FROG measurements (i.e., L = 1) and the
signal’s power spectrum. Our result requires only 2B FROG measurements if the signal’s power spectrum
is available, where B is the bandlimit. Furthermore, this is the first result showing that the FROG trace is
sufficient to determine the signal even without the power spectrum information.

It is interesting to view our results in the broader perspective of nonlinear phaseless systems of equations.
In [28], it was shown that 4N —4 quadratic equations arising from random frame measurements are sufficient
to uniquely determine all signals. Another related setup is the phaseless STFT measurements. This case
resembles the FROG setup, where a known reference window replaces the unknown shifted signal. Several
works derived uniqueness results for this case under different conditions [16,18-20]. In [17] it was shown
that, roughly speaking, it is sufficient to set L =~ N/2 (namely, 2N measurements) to determine almost all
non-vanishing signals. Comparing to Theorem 2.3, we conclude that, maybe surprisingly, the FROG case is
not significantly harder than the phaseless STFT setup.

Before moving forward to the proof of the main result, we mention that several algorithms exist to es-
timate a signal from its FROG trace [29,30]. One popular iterative algorithm is the principal components
generalized projections (PCGP) method [31]. In each iteration, PCGP performs principal components anal-
ysis (PCA) on a data matrix constructed by the previous estimation. Another approach may be to minimize
the least-squares loss function:

2
| No1N/L- N-1 2
. L2 —2mink/N
min — |9%.m|” — g ZnZntmLe€ mnk/ . (2.3)
2€CN 2
k=0 m=0 n=0

The loss function (2.3) is a smooth function — a polynomial of degree eight in z — and therefore can be
minimized by standard gradient techniques. However, as the function is nonconvex, it is likely that the
algorithm will converge to a local minimum rather than to the global minimum.

Fig. 2.2 examines the numerical properties of minimizing the loss function (2.3) by a trust-region al-
gorithm using the optimization toolbox Manopt [32]. The underlying signal € R?* was drawn from a
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normal i.i.d. distribution with mean zero and variance one. The algorithm was initialized from the point
xo = x + o(, where o is a fixed constant and ¢ takes the values {—1,1} with equal probability. Clearly,
for 0 = 0, 9 = x and therefore any method will succeed. We examined the empirical success for varying
values of 0 and L. As can be seen, even with L = 1, the iterations do not always converge from an arbitrary
initialization. This experiment underscores the challenge in recovering the signal, even in situations where
uniqueness is guaranteed. That being said, the results also suggest that for low values of L, namely, large
redundancy in the measurements, the algorithm often converges to the global minimum even when it is ini-
tialized fairly far away. In other words, the basin of attraction of (2.3) is not too small. Theoretical analysis
of the basin of attraction in the related problem of random systems of quadratic equations was performed
n [33-36]. Recently, nonconvex methods for Fourier phase retrieval, accompanied with theoretical analysis,
were proposed in [16,15,21]. However, in the FROG setup the problem is quartic rather than quadratic.

3. Proof of main result
3.1. Preliminaries

We begin the proof by reformulating the measurement model to a more convenient structure. Applying

. . . N=1 ~ .
the inverse Fourier transform we write z,, = % 50 Ze?™*n/N Then, according to (2.1), we have
N-1
N E —2mikn /N
Ye,m = TnTn4+mLE€ /
n=0

1 N-1 /N-1 N-1
_ RE E § ZU\Zl e?Tthn/N § @2 627TL€2n/N627rL€2mL/N e—27TLkn/N

n=0 \{1=0 lo=0
1 iy ~ =~ 2mulomL/N = —2mu(k—01—L2)n/N
= - Z Ty, Ty, € Z € .
£1,02=0 n=0

Since the later sum is equal to N if k = ¢; + £5 and zero otherwise, we get

N—-1 N-1

A~ 1 Lol TLeEm. 1
Yk,m = N TyTf— e2mimL/N — Z TeTy— Zw (3'1)
=0 £=0

where
w:=e*™/"  y.=N/L, (3.2)

and we assume that N/L is an integer. Equation (3.1) implies that, for each fixed k, § »,, provides r = N/L
samples from the (inverse) Fourier transform of ZyTy_;.

Remark 3.1. Note that §k7_m Zz 0 ' Z0Zp_ew"™. Because of the reflection ambiguity in Proposition 2.2,
it implies that the FROG trace is invariant to sign flip of m. For instance, for r = 3, the equations for m = 1
and m = 2 will be the same since m = 2 is equivalent to m = —1.

The proof is based on recursion. We begin by showing explicitly how the first entries of Z are determined
from the FROG trace. Then, we will show that the knowledge of the first k entries of Z and the FROG trace
is enough to determine the (k4 1)th entry uniquely. Each recursion step is based on the results summarized
in the following lemma. The lemma identifies the number of solutions of a system with three phaseless
equations.
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Lemma 3.2. Consider the system of equations
|z +vi|=n1, [z24va| =n2, |24 vs|=ns, (3.3)

for nonnegative ni, ng,ng € R.

1. Let v1,v9,v3 € C be distinct and suppose that & {ﬁ} # 0. If the system (3.3) has a solution, then
it is unique. Moreover, if ni,ns,n3 are fived for generic vi,ve,vs € C then the system will have no
solution.

2. Let v1,v9,v3 € R. If z = a + b is a solution, then Z = a — b is a solution as well. Hence, if the system
has a solution, then it has two solutions. Moreover, if ni,ne,n3 are fixed for generic vi,vs,v3 € R then

the system will have no solution.

Proof. See Section 4.2. O

The notion of generic signals refers here to a set of signals that are not contained in the zero set of some
nonzero polynomial in the real and complex parts of each component. Consequently, since the zero set of a
polynomial has strictly smaller dimension than the polynomial, this means that the set of signals failing to
satisfy the conclusion of the theorem will necessarily have measure zero.

Note that Lemma 3.2 can be extended to systems of s > 3 equations, i.e.,

|z +vi| =mn1,..., |2+ vs| = ns.

V1 —1

If one of the ratios -

17;” for p,q = 2,...,8, p # ¢, is not real then there is at most one solution to the
q

system.
8.2. Proof of Theorem 2.3

Equipped with Lemma 3.2, we move forward to the proof of Theorem 2.3. To ease notation, we assume
B = N/2, N is even, that T # 0 for k =0,...,N/2 — 1, and that T = 0 for Kk = N/2,..., N — 1. If the
signal’s nonzero Fourier coefficients are not in the interval 0..., N/2 — 1, then we can cyclically reindex the
signal without affecting the proof. If N is odd, then one should replace N/2 by |N/2| everywhere in the
sequel. Clearly, the proof carries through for any B < N/2.

Considering (3.1), our bandlimit assumption on the signal forms a “pyramid” structure. Here, each row
represents fixed k and varying ¢ of Z,Zy_y for k,£=10,...N/2 — 1:

2
z5,0,...,0
ToT1,T1X0, 0, . ,O
A~ A~ /\2 A~ A~
ZToT2,T1,Z2%0,...,0...
_ JU _ L (3.4)
IN/2-120,TN/2—2L15- -, TN/2-1L0, 0,...,0
valxN/Q—lv‘erN/Q—Zu <oy TNJ2-11, 0,...,0
O,O,...I‘N/g_lIN/g_l,...,0,...,0.

Then, Yk, as in (3.1) is a subsample of the Fourier transform of each one of the pyramid’s rows.
From the first row of (3.4), we see that

- 1 .
90,0 = N|m3 :
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Because of the continuous rotation ambiguity, we set Tg to be real and, without loss of generality, normalize
it so that N|7o,0| = Zo = 1. From the second row of (3.4), we conclude that

R T ~
G101 = 7 [F0T1 + F180| = L [F1].

Therefore, we can determine |Z;|. Because of the continuous translation ambiguity for bandlimited signals
(see Proposition 2.2), we can set arbitrarily Z; = |Z1|. Note that this is not true for general signals, where
the translation ambiguity is discrete.

Our next step is to determine Zo by solving the system for k = 2. We denote the unknown variable by z.

In this case, we obtain the system of equations for m =0,...,r — 1:
~ 1 2m ma2
|yg7m\:ﬁ|(1+w )z + W™z, (3.5)

where w is given in (3.2). Note that for m = (2¢ + 1)r/4 for some integer ¢ € Z, we get w?>™ = —1 so that
the system degenerates. If r = N/L > 3 then we can eliminate these equations and the system

|?//\2,m‘ 1 wm
|1+ w2m| N Z+ 1+w2mx1

Y

still has at least two distinct equations. It is easy to see that since |w| = 1, 1f:;m =73 fa;';m so that this

term is self-conjugate and hence real. Since z = Z5 is a solution, by the second part of Lemma 3.2, we

conclude that the system has two conjugate solutions z and Z, corresponding to the reflection symmetry of
Proposition 2.2. Hence, we fix Ts to be one of these two conjugate solutions.

Fixing Zo, Z1,Z2 up to symmetries, we move forward to determine z3. For k = 3, we get the system of
equations for m =0,...,r — 1,

N 1 o .
|Y3,m| = N |2 + W™ T Ty + W BT + WPz

As in the previous case, for m = (2¢ + 1)r/6 for some integer ¢ € Z we have w3™ = —1. In the rest of the
cases, we reformulate the equations as

|93,m| 1 (W™ +w?™)
Trwim] ~ N |7t Tgemm 0% (3.6)
Again, since |w| =1, % is self conjugate and hence real. Let us denote Ty = |Z2|e? and divide by e*?
to obtain
|U3,m| Lo e, (@™ +w?™)
‘1_’_0:’;7”‘ = |7 Wy T oo Z1|@2|| . (3.7)

Since we set Z; to be real, this is a system of the form of the second part of Lemma 3.2, having two

conjugate solutions. Denote these solutions by z1, 22 and recall that the candidate solutions for (3.6) are

z1e% and zye'?. Since T3 is a solution to (3.6), z; = Zze ¢

0

is one solution. The second solution is given by

29 = 71 = 23e?. Therefore, we conclude that Zse?? is a second potential solution to (3.6). So, currently we

29 is inconsistent with

have two candidates for . Next, we will determine Z, uniquely and show that Zse
the data. This will determine Z3 uniquely.
For 7, and by eliminating the case of m = r(2¢ + 1)/8 for an integer £ € Z (namely, w*™ = —1), we get

the system for m =0,...,r — 1,
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I:T/\4,m| _ i . (wm —|—w3m)§;\1£3 i mei.\% . (38)
14wt N 1+ w*m 1+ w*m

To invoke Lemma 3.2, we need three equations. In general, it is most convenient to choose m = 0,1, 2. If
one of these values satisfy w*™ = —1, then we may always choose another value. Note that for r = 3,4,
which are of particular interest, w™ # —1. The following lemma paves the way to determining Z4 uniquely:

m_ . 3mya A 2m 42 _ .
Lemma 3.3. Let v, = & T:w,?flz?’ + ﬁ_wfj. Ifr = N/L > 4, then for generic T1,%2, T3 the ratio H is

not real for some distinct p,q € {1,...,r — 1} withp+q # r.
Proof. See Section 4.3. O

Thus, by Lemma 3.2 we conclude that if a solution for (3.8) exists, then it is unique. When r = 3, the
system above provides only two distinct equations since the FROG trace of m =1 and m = 2 is the same;
see Remark 3.1. However, if |Z4] is known, then we get a third equation |z| = |Z4| and a similar application
of Lemma 3.2 shows that Z4 is uniquely determined.

Recall that currently we have two potential candidates for Z3. However, we show in Section 4.4 that if

2.0

we replace Tz by T3e?? where § = arg (Z,) then for generic signals the system of equations (3.8) has no

solution. Therefore, we conclude that we can fix Zg, 71, T2, T3, T4 up to trivial ambiguities.
The final step of the proof is to show that given Zg, Z1, . . ., Tx for some k > 4, we can determine Ty 1 up
to symmetries. For an even k = 2s we get the system of equations for m =0,...,7 — 1,

m ms

gk+1,m 1 ~ ~ o~
’71 T o | N zZ+ 71 n wm(k+1)x1xk 4+t 71 o) TsTst1|,

where again we omit the case w™* 1) = —1. To invoke Lemma 3.2, we need three equations. In most cases,
one can simply choose m = 0, 1, 2. If one of these values violate the condition w™**1 £ —1, then we replace
it with larger values of m. For k = 2s + 1 odd, we obtain the system

W™ wm(erl)

§k+1,m o 1 ~ o~ PR
‘ N ‘Z+ i T RS

1+ wm(k+1)

Let us assume that k = 2s is even and denote vy, = T —SaFy T1Tk+- -+ mfﬁsfﬁl. Ifr=N/L >4,

1+
then the same argument used in the proof of Lemma 3.3 shows that for generic values of Zg, 71, ..., Zx, the

. Vo—v
ratio —2
Vo —Vq

will not be real for some distinct values of p,q with p + g # r. Therefore, the system has a
unique solution by Lemma 3.2. A similar statement holds for &k = 2s + 1 odd.
When r = 3, the system provides only two distinct equations; see Remark 3.1. If in addition we assume

that knowledge of |Z|, then we have an additional equation |z| = |Zxt1|, ensuring a unique solution.
8.3. Example: determining T4 given Tg, 21, T2, 23

To illustrate the method, we describe in more detail the terms used to determine Z, = a4 + tby from
Zo = 1,21, %2, 23. We are given the following information in a “pyramid form” from which we must determine

the unknowns ay, by4:

|(as + bat) + (a1 + bie)(ag + bst) + (az + bat)? + (a3 + bst) (a1 + bie) + (as + bat)|
|(ag + bat) +w(ag +b1e)(ag + bst) + w?(az + bat)? + w3(az + bse)(ay + bye) + w*(ay + bat)|

|(aq + bat) +w" " (ag + bie)(az + bat) + WY (ag 4 bat)? + w1V (az + bze)(ay + bie) + w4 (ay + bat)|.
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As we have done throughout the proof, we rearrange the terms as

|(a4 + b4L) + (a1 + blL)(ag + bgL) + %(ag + bQL)2|

3
(s + bae) + S22 (a1 + o) (as + bse) + 151 (az + bae)?|

(W 1By

2r—2
[(as + bat) + “Fim—— (a1 + bit)(as + bat) + Fom— (a2 + bat)?|,

for any m satisfying w*™ # —1. Suppose that r = N/L > 4 and w*, w® # —1 so we can choose the terms
associated with m = 0,1, 2. If the ratio

1y, (wHW) w? 1, (Wrtwh) wh
($1$3 + §x2 — W.’Ell'g — me / r1x3 + §$2 - 1+ wg_xll'?) - 1+ w8 To

is not real, then ¥4 = a4 + tby is uniquely determined by the 3 real numbers

[(aq4 + byt) + (a1 + bie)(as + bse) + %(az + bzb)2|
[(aq + byt) + (‘fj:;) (a1 + bit)(az + b3t) + lj‘r’%(az + bat)?|

2 6 4
|(ag + bae) + 529 (ag + bre)(as + bae) + 1955 (az + bat)?.

If w* = —1 then w = €2™/% and one can determine a4, by from the terms corresponding to m = 0,2, 3:

|(0,4 + b4l,) + (Cll + blb)(ag + bgL) + %(ag + bQL)2|

2 6
(s + bae) + D (ay + bue)(as + bst) + 195 (az + bae)?|

(w4+w12)

(s +bae) + EEE D (ay 4 b1u)(as + bat) + o (az + bat)?].

By directly substituting w, these terms reduce to:

[(as + bae) + (a1 + bre)(as + bse) + 2 (az + bat)?|
(as + bat) — 4 (az + bat)?|
|(as + bat) — (a1 + b1e)(as + bst) + 5 (az + bar)?|.

27L/16

Likewise if w® = —1 then w = ¢ and we determine a4 + b4t from the three real numbers corresponding

tom=0,1,4:

|(aq + bat) + (a1 + bie)(as + bze) + %(GQ + bat)?|

3
(g + bae) + S5 (ay + byo)(ag + bt) + 12z (az + bat)?]

w4+w12)

|(ag + bae) + 25 (ar + bie)(as + bse) + 15 (az + bat)?|.

When 7 = 3, w3 = 1 and we only obtain two distinct numbers for m = 0, 1:

[(ag + byat) + (a1 + b1t)(ag + bst) + %(ag + bat)?|
|(aq + bae) + (ay + bre)(as + bse) + 12 (az + bar)?|.

In this case, there are two possible solutions. However, if we also assume that we know |Z| then we have a
third piece of information to uniquely determine Zy.
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4. Proofs of supporting results
4.1. On the translation symmetry for bandlimited signals

The following proposition shows that if the signal is bandlimited, then the translation symmetry is

continuous.

Proposition 4.1. Suppose that x is a B-bandlimited signal with B < N/2. Assume without loss of generality
that Tp = ... =Ty_1 = 0. Then, for any u = ¥ for some 1 € [0,27), any signal with Fourier transform

~ ~ 2 A B-1=x
[x07/j/x1a,ux27"'7/j/ mB—laOa"wO]a

has the same FROG trace (2.2) as x.

Proof. Under the bandlimit assumption, we can substitute p = £ and ¢ = k — £ and write (3.1) as

1
" _ ~ o 2mupmL/N
Yk,m = N Z TpXg€ / .

p+g=k
0<p,q<N/2-1

Now, if &, is replaced by p?z, and &, is replaced by p?%, then g, is replaced by ukgjk,m. Hence, the

absolute value of i, remains unchanged. Without the bandlimit assumption, ¢ = (k — ¢) mod N and
thus |gk,m| is changed unless p is the Nth root of unity. O

4.2. Proof of Lemma 3.2
The system of equations (3.3) can be written explicitly as

2% + |o1|* + 2R {201} = ni,
2% + [v2]? + 2R {202} = n3, (4.1)
2% + |vs|* + 2R {273} = n3.

Subtracting the second and the third equations from the first, we get

R{z (01 —2)} =

(n? —n3 + [v2]* = [01]?)

R{z (W1 —v3)} =

(n? —n3 + [vs]* = [01]?) .

N = N =

Let z =a+ b, U1 — U3 = ¢+ dit and 7 — U3 = e + fi. Then, we obtain a system of two linear equations for

two variables:

ac —bd = (n% —ng + |Uz\2 - |U1|2) )

N = N =

ae —bf = = (n3 = 3 + s — ui ). (4.2)

This system has a unique solution provided that the vectors (¢, —d) and (e, —f) are not proportional. This

is equivalent to the assumption <& {u} #0.

V1—v3
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We now show that for generic vy, va,v3 the system (4.1) has no solutions, so the unique solution to the
linear system (4.2) will not be a solution to (4.1). If we express vy = ay + tbg, we consider the variety
T C (R?)? of tuples

((a,b), (a1,b1), (az,b2), (as, bs)), (4.3)

such that z = a + b is a solution to (4.1). Each of the equations in (4.1) involves a different set of variables,
so it imposes an independent condition on the tuples (4.3). It follows that dimZ < 8 — 3 = 5. In particular,
7T has strictly smaller dimension than the RS parametrizing all triples ((ay, b1), (a2, b2), (a3, b3)). Therefore,
the system (4.1) has no solution for generic vy. Intuitively, this can be seen by noting that the set of z
satisfying the equation |z 4 vi| = ny is a circle of radius nj, centered at —ay, — tby, in the complex plane. For
generic choices of centers, three circles of fixed radii n1,ns,ng will have no intersection.

For the second part of the lemma, suppose that vy, v, v3 € R. In this case, (3.3) is simplified to

(a+v1)* + 02 =n2,
(a+v2)® +b* = n2,
(a+4v3)? +b* =nl.

These equations are invariant under the transformation (a,b) — (a, —b) so if z = a + bt is a solution then
Z = a — be is a solution as well. Subtracting any pair of equations gives a linear equation in a, so there is
at most one value of a solving the system. Hence, if the system has a solution, then it has two conjugate
solutions.

4.8. Proof of Lemma 3.3

Let o q = % and a2 = ﬁ’% As noted above, ay,,1 and o, 2 are real if they are well defined.
Additionally, note that oy, ; = p_m; for i =1,2. If r = N/L > 4 then we can find p,q with p+ ¢ # r so
that a1, ap2, ag 1, g0 are well defined. For instance, if w? # —1,w® # —1 we take p = 1,¢ = 2. Then we
can write

(a2 — p2)T5

vo—vp (o1 — 0y 1)T173 +
3+ (0,2 — aq,2)73

_ 1 fl
vo—vg (o1 — ag1)T1

z
z

(4.4)

Moreover, the o, ; are fixed, so this ratio is well defined as long as the ¥, T2, 3 are not solutions to the
nonzero quadratic polynomial (a1 — @4,1)Z175 + (0,2 — q,2)@3. Now we can multiply the numerator and
denominator of (4.4) by (vg — vg) to obtain

1

~ ~ 12 ~ 12 ~ A =5 = =<"~2
[oo — vg? (5p,15q,1|$19€3| + Bp2By2l@2l” + Bp1Be,2281 7373 + 5p,25q,1$1$3$2) )

where B, ; = ag; — o, for s = p, g are fixed nonzero real numbers. This expression is real only if

) ((040,1 — 1) (0,2 — 0g,2) 17373 + (00,2 — p2) (00,1 — aq&)ff»fﬁ%) = 0.

This condition is a quartic polynomial in the real and complex components of Z1, T2, Z3. Hence for generic
signals the left hand side will not be equal to zero.
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4.4. Determining T3 uniquely

The following lemma shows that given T1,Zs and Z4, T3 is determined uniquely from the FROG trace
up to symmetries.

Lemma 4.2. For a generic signal, let 1 € R, Z3,%3,74 € C with r > 4. Consider the following system of

equations m =0,...,r —1:
(wm _,’_w?)m) e w2m /\2 N (wm + w3m)/\ N w2m A2
Z+ - 1 +w4m 143 1+ w4mx2 = |T4 lex?, + Wl‘Q . (45)

If 7 = 2" Z3 and O = arg (Z), then the system has no solutions. Moreover, if 7 = 3, then the system of
equations:

2] = [Z4]
|2+ BT + T2/2| = B4 + 173 + 73/2|

AerJrlAAJr w2,
X 1T X
IR e A T

w‘l'lAA/ UJ2 ~2
2

z+ 1+wx1z3+ 1+wx

has no solutions.

Proof. The proof is similar to the proof of the first part of Lemma 3.2. Since T; is generic, we can assume
it is nonzero. Let us denote Ty = ax + tby for k = 2,3,4. If the system of equations has a solution, then
as, ba, az, bz, ag, by satisfy a non-trivial polynomial equation. To see this, we argue the following:

By assuming Z; # 0, we can divide the equations by Z; and then reduce to the case ; = 1. The proof
of Lemma 3.2 shows that if a solution z = a + tb exists, then by considering the differences of equations
for three distinct values of m, a and b can be expressed as rational functions in the real and complex parts

of T, T3, 2%. Since T5 = (é—z“)zﬁc\_g, R (z%) and S (Z%) are also rational functions of as, ba, as, bs. Hence, if
z = a + b is a solution to the system (4.2), then a = f(aq, ba,as, b3, as,bs) and b = g(ag, ba, as, bs, aq,bs),
where f and g are rational functions.

In order for z = a + ¢b to be a feasible solution, it must also satisfy the quadratic equation for m = 0

|2+ @1+ 23/2)° = |34 + T2 +23/2]7

Expanding both sides in terms of (as, ba, a3, bs, aq,bs), we see that the real numbers (as, bo, as, bs, aq, by)
must satisfy an explicit polynomial equation F(asg,be,as,bs, aq,bs) = 0. As long as F # 0, the generic real
numbers will not satisfy it.

We are left with showing that indeed F' # 0. For example if w*, w® # —1 then we can use the equations
associated with m = 0,1, 2:

|z + 7174 + 73 /2)? = T4 + Z173 + 73 /2
3 2 3 2
wtw” w® =212 _ |5 wtw” & o~ w? =22
|£C + T+t L123 + 14+w? x2| - |£B4 + 14+w? 13 + 14+w? $2|
2,6 4 2, 6 2
wtw” o o w =212 _ | witw” & o w =212
|z + S 12y + 15257 = T4+ SLE T T + 15T

to show that asg,bs,as,bs,aq,bs satisfy a nonzero polynomial F'(ag,be,as,bs,as,bs). This is true since
F(0,1,1,1,a4,bs) (corresponding to T; = 1,79 = 1,73 = 1 +¢) has coefficient of a? given by

4096 csc(8t)? sin(t/2)® sin(t)? sin(2t)? (sin(t) + sin(2t))?,



T. Bendory et al. / Appl. Comput. Harmon. Anal. 48 (2020) 1030-1044 1043

where w = cost+¢sint and csc is the inverse of the sine function. This coefficient is nonzero unless t = 0 or
t = 27/3. A similar analysis can be performed in the other cases. For instance, instead of picking m = 0,1, 2,
if w* = —1 one may take m = 0,2,4 and if w® = —1 then we choose m = 0,1, 3. Hence, we conclude that
indeed F' # 0.

If r = 3, then (4.5) provides only two distinct equations (see Remark 3.1). We then use the third constraint
|z| = |Z4| to derive the same result. O

5. Conclusion and perspective

FROG is an important tool for ultra-short laser pulse characterization. The problem involves a system of
phaseless quartic equations that differs significantly from quadratic systems, appearing in standard phase
retrieval problems. In this work, we analyzed the uniqueness of the FROG method. We have shown that
it is sufficient to take only 3B FROG measurements in order to determine a generic B-bandlimited signal
uniquely, up to unavoidable symmetries. If the power spectrum of the sought signal is also available, then
2B FROG measurements are enough. Necessary conditions for recovery is an open problem. In addition, this
paper did not study computational aspects. An important step in this direction is to analyze the properties
of current algorithms used by practitioners, like the PCGP.

A natural extension of the FROG model is called blind FROG or blind phaseless STFT. In this problem,
the acquired data is the Fourier magnitude of y,, ., = m;x%+mL for two signals x!, 22 € CV [22,37]. The
goal is then to estimate both signals simultaneously from their phaseless measurements. Initial results on
this model were derived in [25], yet we conjecture that they can be further improved by tighter analysis.
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