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Phase retrieval refers to recovering a signal from its Fourier magnitude. This 
problem arises naturally in many scientific applications, such as ultra-short laser 
pulse characterization and diffraction imaging. Unfortunately, phase retrieval is ill-
posed for almost all one-dimensional signals. In order to characterize a laser pulse 
and overcome the ill-posedness, it is common to use a technique called Frequency-
Resolved Optical Gating (FROG). In FROG, the measured data, referred to as 
FROG trace, is the Fourier magnitude of the product of the underlying signal with 
several translated versions of itself. The FROG trace results in a system of phaseless 
quartic Fourier measurements. In this paper, we prove that it suffices to consider 
only three translations of the signal to determine almost all bandlimited signals, up 
to trivial ambiguities. In practice, one usually also has access to the signal’s Fourier 
magnitude. We show that in this case only two translations suffice. Our results 
significantly improve upon earlier work.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Phase retrieval is the problem of estimating a signal from its Fourier magnitude. This problem plays a key 
role in many scientific and engineering applications, among them X-ray crystallography, speech recognition, 
blind channel estimation, alignment tasks and astronomy [1–6]. Optical applications are of particular interest 
since optical devices, such as a charge-coupled device (CCD) and the human eye, cannot detect phase 
information of the light wave [7].
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Fig. 1.1. Illustration of the SHG FROG technique (courtesy of [25]).

Almost all one-dimensional signals cannot be determined uniquely from their Fourier magnitude. This 
immanent ill-posedness makes this problem substantially more challenging than its multi-dimensional coun-
terpart, which is well-posed for almost all signals [8]. Two exceptions for one-dimensional signals that are 
determined uniquely from their Fourier magnitude are minimum phase signals and sparse signals with non-
periodic support [9,10]; see also [11,12]. One popular way to overcome the non-uniqueness is by collecting 
additional information on the sought signal beyond its Fourier magnitude. For instance, this can be done 
by taking multiple measurements, each one with a different known mask [13–15]. An important special case 
employs shifted versions of a single mask. The acquired data is simply the short-time Fourier transform 
(STFT) magnitude of the underlying signal. It has been shown that in many setups, this information is suf-
ficient for efficient and stable recovery [16–21]. For a recent survey of phase retrieval from a signal processing 
point-of-view, see [8].

In this work, we consider an ultra-short laser pulse characterization method, called Frequency-Resolved 
Optical Gating (FROG). FROG is a simple, commonly-used technique for full characterization of ultra-short 
laser pulses which enjoys good experimental performance [22,23]. In order to characterize the signal, the 
FROG method measures the Fourier magnitude of the product of the signal with a translated version of 
itself, for several different translations. The product of the signal with itself is usually performed using a 
second harmonic generation (SHG) crystal [24]. The acquired data, referred to as FROG trace, is a quartic 
function of the underlying signal and can be thought of as phaseless quartic Fourier measurements. We refer 
to the problem of recovering a signal from its FROG trace as the quartic phase retrieval problem. Illustration 
of the FROG setup is given in Fig. 1.1.

In this paper we provide sufficient conditions on the number of samples required to determine a ban-
dlimited signal uniquely, up to trivial ambiguities, from its FROG trace. Particularly, we show that it is 
sufficient to consider only three translations of the signal to determine almost all bandlimited signals. If one 
also measures the power spectrum of the signal, then two translations suffice.

The outline of this paper is as follows. In Section 2 we formulate the FROG problem, discuss its 
ambiguities and present our main result. Proof of the main result is given in Section 3 and Section 4
provides additional proofs for intermediate results. Section 5 concludes the paper and presents open ques-
tions.

Throughout the paper we use the following notation. We denote the Fourier transform of a signal z ∈ C
N

by ẑk =
∑N−1

n=0 zne
−2πιkn/N , where ι :=

√
−1. We further use z, � {z} and � {z} for its conjugate, real 

part and imaginary part, respectively. We reserve x ∈ C
N to be the underlying signal. In the sequel, all 

signals are assumed to be periodic with period N and all indices should be considered as modulo N , i.e., 
zn = zn+N� for any integer � ∈ Z.
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2. Mathematical formulation and main result

The goal of this paper is to derive the minimal number of measurements required to determine a signal 
from its FROG trace. To this end, we first formulate the FROG problem and identify its symmetries, usually 
called trivial ambiguities in the phase retrieval literature. Then, we introduce and discuss the main results 
of the paper.

2.1. The FROG trace

Let us define the signal

yn,m = xnxn+mL, (2.1)

where L is a fixed positive integer. The FROG trace is equal to the one-dimensional Fourier magnitude of 
yn,m for each fixed m, i.e.,

|ŷk,m|2 =

∣∣∣∣∣
N−1∑
n=0

xnxn+mLe
−2πιnk/N

∣∣∣∣∣
2

,

k = 0, . . . , N − 1, m = 0, . . . , �N/L� − 1.

(2.2)

To ease notation, we assume hereafter that L divides N .
Our analysis of the FROG trace holds for bandlimited signals. Formally, we define a bandlimited signal 

as follows:

Definition 2.1. We say that x ∈ C
N is a B-bandlimited signal if its Fourier transform x̂ ∈ C

N contains N−B

consecutive zeros. That is, there exits i such that x̂i = . . . = x̂i+N−B−1 = 0, where all indices are taken 
modulo N .

The FROG trace is an intensity map CN �→ R
N×N

L that has three kinds of symmetries. These symmetries 
form the group of operations acting on the signal for which the intensity map is invariant. The FROG trace 
is invariant to global rotation, global translation and reflection [25]. The first symmetry is continuous, while 
the latter two generally are discrete. These symmetries are similar to equivalent results in phase retrieval, 
see for instance [11,8]. For bandlimited signals, the global translation symmetry is also continuous:

Proposition 2.2. Let x ∈ C
N be the underlying signal and let x̂ ∈ C

N be its Fourier transform. Let |ŷk,m|2 be 
the FROG trace of x as defined in (2.2) for some fixed L. Then, the following signals have the same FROG 
trace as x:

1. the rotated signal xeιψ for some ψ ∈ R;
2. the translated signal x� obeying x�

n = xn−� for some � ∈ Z (equivalently, a signal with Fourier transform 
x̂� obeying x̂�

k = x̂ke
−2πι�k/N for some � ∈ Z);

3. the reflected signal x̃ obeying x̃n = x−n.

For B-bandlimited signals as in Definition 2.1 with B ≤ N/2, the translation ambiguity is continuous. 
Namely, any signal with a Fourier transform such that x̂ψ

k = x̂ke
ιψk for some ψ ∈ R has the same FROG 

trace as x.

Proof. The result for general signals was derived in [25]. The result on the continuity of the translation 
symmetry for bandlimited signals is a direct corollary of Proposition 4.1, given in Section 4.1. �
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Fig. 2.1. This figure presents three bandlimited signals in R11. Two of the them are shifted versions of each other. The third one is 
“shifted” by 1.5 entries, namely, the kth entry of its Fourier transform was modulated by e−2πι(1.5)k/N . All signals have the same 
FROG trace.

Fig. 2.1 shows the 5-bandlimited signal x ∈ R
11 with Fourier transform given by x̂ = (1, ι, −ι, 0, 0, 0, 0, 0,

0, ι, −ι)T . The second signal is x shifted by three entries. A third signal is a “translated” version of the 
underlying signal by 1.5 entries. Namely, the kth entry of its Fourier transform is x̂ke

−2πι(1.5)k/N . Clearly, 
the third signal is not a translated version of x. Nonetheless, since x is bandlimited, all three signals have 
the same FROG trace. If x was not a bandlimited signal then the FROG trace of the latter signal would 
not in general be equal to those of the first two.

The symmetries of the FROG trace form a group. Namely, the FROG intensity map CN → R
N×N/L is 

invariant under the action of the group G = S1 × μN � μ2, where � denotes a semi-direct product. The 
μ2 corresponds to reflection symmetry and μN corresponds to translation ambiguity, which rotates x̂k by 
e−2πι�k/N for some integer � ∈ Z. Observe that we use a semi-direct product for the last symmetry since 
μ2 and μN do not commute; if one reflects the signal and then multiplies it by a power of e2πι/N , it is not 
the same as multiplying by a power of e2πι/N and then reflecting. In fact, the semi-direct product of μN

and μ2 is the dihedral group D2N of symmetries of the regular N-gon. If we consider bandlimited signals, 
then the FROG trace is invariant under the action of the group G = S1 × S1

� μ2. That is, the translation 
ambiguity is continuous.

2.2. FROG recovery

We are now ready to present the main result of this paper. We assume throughout that the signal is 
bandlimited, which is typically the case in standard ultra-short pulse characterization experiments [26]. We 
prove that almost any B-bandlimited signal is determined by its FROG trace, up to trivial ambiguities, 
as long as L ≤ N/4. Particularly, we show that we need to consider only three translations and hence 3B
measurements are enough to determine the underlying signal. For instance, if L = N/4 then the measure-
ments corresponding to m = 0, 1, 2 determine the signal. If in addition we have access to the signal’s power 
spectrum, then it suffices to choose L ≤ N/3. In this case, one may consider only two translations. As an ex-
ample, if L = N/3, then one can choose m = 0, 1 (see Remark 3.1). The power spectrum of the sought pulse 
is often available, or can be measured by a spectrometer, which is integrated into a typical FROG device.

Theorem 2.3. Let x be a B-bandlimited signal as defined in Definition 2.1 for some B ≤ N/2. If N/L ≥ 4, 
then generic signals are determined uniquely from their FROG trace as in (2.2), modulo the trivial ambigu-
ities (symmetries) of Proposition 2.2, from 3B measurements. If in addition we have access to the signal’s 
power spectrum and N/L ≥ 3, then 2B measurements are sufficient.
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Fig. 2.2. The empirical success recovery of a trust-region algorithm to minimize (2.3) as a function of L and σ (100 experiments for 
each pair of values). A success was declared for recovery error less than 10−6.

By the notion generic, we mean that the set of signals which cannot be uniquely determined, up to 
trivial ambiguities, is contained in the vanishing locus of a nonzero polynomial. This implies that we can 
reconstruct almost all signals.

This result significantly improves upon earlier work on the uniqueness of the FROG method. In [27] it 
was shown that a continuous signal is determined by its continuous FROG trace and its power spectrum. 
The uniqueness of the discrete case, as the problem appears in practice, was first considered in [25]. It was 
proven that a discrete bandlimited signal is determined by all N2 FROG measurements (i.e., L = 1) and the 
signal’s power spectrum. Our result requires only 2B FROG measurements if the signal’s power spectrum 
is available, where B is the bandlimit. Furthermore, this is the first result showing that the FROG trace is 
sufficient to determine the signal even without the power spectrum information.

It is interesting to view our results in the broader perspective of nonlinear phaseless systems of equations. 
In [28], it was shown that 4N−4 quadratic equations arising from random frame measurements are sufficient 
to uniquely determine all signals. Another related setup is the phaseless STFT measurements. This case 
resembles the FROG setup, where a known reference window replaces the unknown shifted signal. Several 
works derived uniqueness results for this case under different conditions [16,18–20]. In [17] it was shown 
that, roughly speaking, it is sufficient to set L ≈ N/2 (namely, 2N measurements) to determine almost all 
non-vanishing signals. Comparing to Theorem 2.3, we conclude that, maybe surprisingly, the FROG case is 
not significantly harder than the phaseless STFT setup.

Before moving forward to the proof of the main result, we mention that several algorithms exist to es-
timate a signal from its FROG trace [29,30]. One popular iterative algorithm is the principal components 
generalized projections (PCGP) method [31]. In each iteration, PCGP performs principal components anal-
ysis (PCA) on a data matrix constructed by the previous estimation. Another approach may be to minimize 
the least-squares loss function:

min
z∈CN

1
2

N−1∑
k=0

N/L−1∑
m=0

⎛⎝|ŷk,m|2 −
∣∣∣∣∣
N−1∑
n=0

znzn+mLe
−2πιnk/N

∣∣∣∣∣
2⎞⎠2

. (2.3)

The loss function (2.3) is a smooth function – a polynomial of degree eight in z – and therefore can be 
minimized by standard gradient techniques. However, as the function is nonconvex, it is likely that the 
algorithm will converge to a local minimum rather than to the global minimum.

Fig. 2.2 examines the numerical properties of minimizing the loss function (2.3) by a trust-region al-
gorithm using the optimization toolbox Manopt [32]. The underlying signal x ∈ R

24 was drawn from a 
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normal i.i.d. distribution with mean zero and variance one. The algorithm was initialized from the point 
x0 = x + σζ, where σ is a fixed constant and ζ takes the values {−1, 1} with equal probability. Clearly, 
for σ = 0, x0 = x and therefore any method will succeed. We examined the empirical success for varying 
values of σ and L. As can be seen, even with L = 1, the iterations do not always converge from an arbitrary 
initialization. This experiment underscores the challenge in recovering the signal, even in situations where 
uniqueness is guaranteed. That being said, the results also suggest that for low values of L, namely, large 
redundancy in the measurements, the algorithm often converges to the global minimum even when it is ini-
tialized fairly far away. In other words, the basin of attraction of (2.3) is not too small. Theoretical analysis 
of the basin of attraction in the related problem of random systems of quadratic equations was performed 
in [33–36]. Recently, nonconvex methods for Fourier phase retrieval, accompanied with theoretical analysis, 
were proposed in [16,15,21]. However, in the FROG setup the problem is quartic rather than quadratic.

3. Proof of main result

3.1. Preliminaries

We begin the proof by reformulating the measurement model to a more convenient structure. Applying 
the inverse Fourier transform we write xn = 1

N

∑N=1
k=0 x̂ke

2πιkn/N . Then, according to (2.1), we have

ŷk,m =
N−1∑
n=0

xnxn+mLe
−2πιkn/N

= 1
N2

N−1∑
n=0

(
N−1∑
�1=0

x̂�1e
2πι�1n/N

)(
N−1∑
�2=0

x̂�2e
2πι�2n/Ne2πι�2mL/N

)
e−2πιkn/N

= 1
N2

N−1∑
�1,�2=0

x̂�1 x̂�2e
2πι�2mL/N

N−1∑
n=0

e−2πι(k−�1−�2)n/N .

Since the later sum is equal to N if k = �1 + �2 and zero otherwise, we get

ŷk,m = 1
N

N−1∑
�=0

x̂�x̂k−�e
2πι�mL/N = 1

N

N−1∑
�=0

x̂�x̂k−�ω
�m, (3.1)

where

ω := e2πι/r, r := N/L, (3.2)

and we assume that N/L is an integer. Equation (3.1) implies that, for each fixed k, ŷk,m provides r = N/L

samples from the (inverse) Fourier transform of x̂�x̂k−�.

Remark 3.1. Note that ŷk,−m =
∑N−1

�=0 x̂�x̂k−�ω
�m. Because of the reflection ambiguity in Proposition 2.2, 

it implies that the FROG trace is invariant to sign flip of m. For instance, for r = 3, the equations for m = 1
and m = 2 will be the same since m = 2 is equivalent to m = −1.

The proof is based on recursion. We begin by showing explicitly how the first entries of x̂ are determined 
from the FROG trace. Then, we will show that the knowledge of the first k entries of x̂ and the FROG trace 
is enough to determine the (k+1)th entry uniquely. Each recursion step is based on the results summarized 
in the following lemma. The lemma identifies the number of solutions of a system with three phaseless 
equations.
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Lemma 3.2. Consider the system of equations

|z + v1| = n1, |z + v2| = n2, |z + v3| = n3, (3.3)

for nonnegative n1, n2, n3 ∈ R.

1. Let v1, v2, v3 ∈ C be distinct and suppose that � 
{

v1−v2
v1−v3

}

= 0. If the system (3.3) has a solution, then 

it is unique. Moreover, if n1, n2, n3 are fixed for generic v1, v2, v3 ∈ C then the system will have no 
solution.

2. Let v1, v2, v3 ∈ R. If z = a + ιb is a solution, then z = a − ιb is a solution as well. Hence, if the system 
has a solution, then it has two solutions. Moreover, if n1, n2, n3 are fixed for generic v1, v2, v3 ∈ R then 
the system will have no solution.

Proof. See Section 4.2. �
The notion of generic signals refers here to a set of signals that are not contained in the zero set of some 

nonzero polynomial in the real and complex parts of each component. Consequently, since the zero set of a 
polynomial has strictly smaller dimension than the polynomial, this means that the set of signals failing to 
satisfy the conclusion of the theorem will necessarily have measure zero.

Note that Lemma 3.2 can be extended to systems of s ≥ 3 equations, i.e.,

|z + v1| = n1, . . . , |z + vs| = ns.

If one of the ratios v1−vp
v1−vq

for p, q = 2, . . . , s, p 
= q, is not real then there is at most one solution to the 
system.

3.2. Proof of Theorem 2.3

Equipped with Lemma 3.2, we move forward to the proof of Theorem 2.3. To ease notation, we assume 
B = N/2, N is even, that x̂k 
= 0 for k = 0, . . . , N/2 − 1, and that x̂k = 0 for k = N/2, . . . , N − 1. If the 
signal’s nonzero Fourier coefficients are not in the interval 0 . . . , N/2 − 1, then we can cyclically reindex the 
signal without affecting the proof. If N is odd, then one should replace N/2 by �N/2� everywhere in the 
sequel. Clearly, the proof carries through for any B ≤ N/2.

Considering (3.1), our bandlimit assumption on the signal forms a “pyramid” structure. Here, each row 
represents fixed k and varying � of x̂�x̂k−� for k, � = 0, . . . N/2 − 1:

x̂2
0, 0, . . . , 0

x̂0x̂1, x̂1x̂0, 0, . . . , 0
x̂0x̂2, x̂

2
1, x̂2x̂0, . . . , 0 . . .

...
x̂N/2−1x̂0, x̂N/2−2x̂1, . . . , x̂N/2−1x̂0, 0, . . . , 0

0, x̂1x̂N/2−1, x̂2x̂N/2−2, . . . , x̂N/2−1x̂1, 0, . . . , 0
...

0, 0, . . . x̂N/2−1x̂N/2−1, . . . , 0, . . . , 0.

(3.4)

Then, ŷk,m as in (3.1) is a subsample of the Fourier transform of each one of the pyramid’s rows.
From the first row of (3.4), we see that

|ŷ0,0| = 1 |x̂2
0|.
N
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Because of the continuous rotation ambiguity, we set x̂0 to be real and, without loss of generality, normalize 
it so that N |ŷ0,0| = x̂0 = 1. From the second row of (3.4), we conclude that

|ŷ1,0| = 1
N

|x̂0x̂1 + x̂1x̂0| = 2
N

|x̂1|.

Therefore, we can determine |x̂1|. Because of the continuous translation ambiguity for bandlimited signals 
(see Proposition 2.2), we can set arbitrarily x̂1 = |x̂1|. Note that this is not true for general signals, where 
the translation ambiguity is discrete.

Our next step is to determine x̂2 by solving the system for k = 2. We denote the unknown variable by z. 
In this case, we obtain the system of equations for m = 0, . . . , r − 1:

|ŷ2,m| = 1
N

∣∣(1 + ω2m)
z + ωmx̂2

1
∣∣ , (3.5)

where ω is given in (3.2). Note that for m = (2� + 1)r/4 for some integer � ∈ Z, we get ω2m = −1 so that 
the system degenerates. If r = N/L ≥ 3 then we can eliminate these equations and the system

|ŷ2,m|
|1 + ω2m| = 1

N

∣∣∣∣z + ωm

1 + ω2m x̂2
1

∣∣∣∣ ,
still has at least two distinct equations. It is easy to see that since |ω| = 1, ωm

1+ω2m = ω−m

1+ω−2m so that this 
term is self-conjugate and hence real. Since z = x̂2 is a solution, by the second part of Lemma 3.2, we 
conclude that the system has two conjugate solutions z and z, corresponding to the reflection symmetry of 
Proposition 2.2. Hence, we fix x̂2 to be one of these two conjugate solutions.

Fixing x̂0, ̂x1, ̂x2 up to symmetries, we move forward to determine x̂3. For k = 3, we get the system of 
equations for m = 0, . . . , r − 1,

|ŷ3,m| = 1
N

∣∣z + ωmx̂1x̂2 + ω2mx̂2x̂1 + ω3mz
∣∣ .

As in the previous case, for m = (2� + 1)r/6 for some integer � ∈ Z we have ω3m = −1. In the rest of the 
cases, we reformulate the equations as

|ŷ3,m|
|1 + ω3m| = 1

N

∣∣∣∣z + (ωm + ω2m)
1 + ω3m x̂1x̂2

∣∣∣∣ . (3.6)

Again, since |ω| = 1, ω
m+ω2m

1+ω3m is self conjugate and hence real. Let us denote x̂2 = |x̂2|eιθ and divide by eιθ

to obtain

|ŷ3,m|
|1 + ω3m| = 1

N

∣∣∣∣ze−ιθ + (ωm + ω2m)
1 + ω3m x̂1|x̂2|

∣∣∣∣ . (3.7)

Since we set x̂1 to be real, this is a system of the form of the second part of Lemma 3.2, having two 
conjugate solutions. Denote these solutions by z1, z2 and recall that the candidate solutions for (3.6) are 
z1e

ιθ and z2e
ιθ. Since x̂3 is a solution to (3.6), z1 = x̂3e

−ιθ is one solution. The second solution is given by 
z2 = z1 = x̂3e

ιθ. Therefore, we conclude that x̂3e
2ιθ is a second potential solution to (3.6). So, currently we 

have two candidates for x̂3. Next, we will determine x̂4 uniquely and show that x̂3e
2ιθ is inconsistent with 

the data. This will determine x̂3 uniquely.
For x̂4 and by eliminating the case of m = r(2� + 1)/8 for an integer � ∈ Z (namely, ω4m = −1), we get 

the system for m = 0, . . . , r − 1,
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|ŷ4,m|
|1 + ω4m| = 1

N

∣∣∣∣z + (ωm + ω3m)x̂1x̂3

1 + ω4m + ω2mx̂2
2

1 + ω4m

∣∣∣∣ . (3.8)

To invoke Lemma 3.2, we need three equations. In general, it is most convenient to choose m = 0, 1, 2. If 
one of these values satisfy ω4m = −1, then we may always choose another value. Note that for r = 3, 4, 
which are of particular interest, ω4m 
= −1. The following lemma paves the way to determining x̂4 uniquely:

Lemma 3.3. Let vm = (ωm+ω3m)x̂1x̂3
1+ω4m + ω2mx̂2

2
1+ω4m . If r = N/L ≥ 4, then for generic x̂1, ̂x2, ̂x3 the ratio v0−vq

v0−vp
is 

not real for some distinct p, q ∈ {1, . . . , r − 1} with p + q 
= r.

Proof. See Section 4.3. �
Thus, by Lemma 3.2 we conclude that if a solution for (3.8) exists, then it is unique. When r = 3, the 

system above provides only two distinct equations since the FROG trace of m = 1 and m = 2 is the same; 
see Remark 3.1. However, if |x̂4| is known, then we get a third equation |z| = |x̂4| and a similar application 
of Lemma 3.2 shows that x̂4 is uniquely determined.

Recall that currently we have two potential candidates for x̂3. However, we show in Section 4.4 that if 
we replace x̂3 by x̂3e

2ιθ where θ = arg (x̂2) then for generic signals the system of equations (3.8) has no 
solution. Therefore, we conclude that we can fix x̂0, ̂x1, ̂x2, ̂x3, ̂x4 up to trivial ambiguities.

The final step of the proof is to show that given x̂0, ̂x1, . . . , ̂xk for some k ≥ 4, we can determine x̂k+1 up 
to symmetries. For an even k = 2s we get the system of equations for m = 0, . . . , r − 1,∣∣∣∣ ŷk+1,m

1 + ωm(k+1)

∣∣∣∣ = 1
N

∣∣∣∣z + ωm

1 + ωm(k+1) x̂1x̂k + · · · + ωms

1 + ωm(k+1) x̂sx̂s+1

∣∣∣∣ ,
where again we omit the case ωm(k+1) = −1. To invoke Lemma 3.2, we need three equations. In most cases, 
one can simply choose m = 0, 1, 2. If one of these values violate the condition ωm(k+1) 
= −1, then we replace 
it with larger values of m. For k = 2s + 1 odd, we obtain the system∣∣∣∣ ŷk+1,m

1 + ωm(k+1)

∣∣∣∣ = 1
N

∣∣∣∣z + ωm

1 + ωm(k+1) x̂1x̂k + · · · + ωm(s+1)

1 + ωm(k+1) x̂
2
s+1

∣∣∣∣ .
Let us assume that k = 2s is even and denote vm = ωm

1+ωm(k+1) x̂1x̂k + · · ·+ ωms

1+ωm(k+1) x̂sx̂s+1. If r = N/L ≥ 4, 
then the same argument used in the proof of Lemma 3.3 shows that for generic values of x̂0, ̂x1, . . . , ̂xk, the 
ratio v0−vp

v0−vq
will not be real for some distinct values of p, q with p + q 
= r. Therefore, the system has a 

unique solution by Lemma 3.2. A similar statement holds for k = 2s + 1 odd.
When r = 3, the system provides only two distinct equations; see Remark 3.1. If in addition we assume 

that knowledge of |x̂|, then we have an additional equation |z| = |x̂k+1|, ensuring a unique solution.

3.3. Example: determining x̂4 given x̂0, ̂x1, ̂x2, ̂x3

To illustrate the method, we describe in more detail the terms used to determine x̂4 = a4 + ιb4 from 
x̂0 = 1, ̂x1, ̂x2, ̂x3. We are given the following information in a “pyramid form” from which we must determine 
the unknowns a4, b4:

|(a4 + b4ι) + (a1 + b1ι)(a3 + b3ι) + (a2 + b2ι)2 + (a3 + b3ι)(a1 + b1ι) + (a4 + b4ι)|
|(a4 + b4ι) + ω(a1 + b1ι)(a3 + b3ι) + ω2(a2 + b2ι)2 + ω3(a3 + b3ι)(a1 + b1ι) + ω4(a4 + b4ι)|

. . .

|(a4 + b4ι) + ωr−1(a1 + b1ι)(a3 + b3ι) + ω2(r−1)(a2 + b2ι)2 + ω3(r−1)(a3 + b3ι)(a1 + b1ι) + ω4r−4(a4 + b4ι)|.
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As we have done throughout the proof, we rearrange the terms as

|(a4 + b4ι) + (a1 + b1ι)(a3 + b3ι) + 1
2 (a2 + b2ι)2|

|(a4 + b4ι) + (ω+ω3)
1+ω4 (a1 + b1ι)(a3 + b3ι) + ω2

1+ω4 (a2 + b2ι)2|
. . .

|(a4 + b4ι) + (ωr−1+ω3r−3))
1+ω4r−4 (a1 + b1ι)(a3 + b3ι) + ω2r−2

1+ω4r−4 (a2 + b2ι)2|,

for any m satisfying ω4m 
= −1. Suppose that r = N/L ≥ 4 and ω4, ω8 
= −1 so we can choose the terms 
associated with m = 0, 1, 2. If the ratio

(
x̂1x̂3 + 1

2 x̂
2
2 −

(ω + ω3)
1 + ω4 x̂1x̂3 −

ω2

1 + ω4 x̂
2
2

)
/

(
x̂1x̂3 + 1

2 x̂
2
2 −

(ω2 + ω6)
1 + ω8 x̂1x̂3 −

ω4

1 + ω8 x̂
2
2

)
is not real, then x̂4 = a4 + ιb4 is uniquely determined by the 3 real numbers

|(a4 + b4ι) + (a1 + b1ι)(a3 + b3ι) + 1
2 (a2 + b2ι)2|

|(a4 + b4ι) + (ω+ω3)
1+ω4 (a1 + b1ι)(a3 + b3ι) + ω2

1+ω4 (a2 + b2ι)2|
|(a4 + b4ι) + (ω2+ω6)

1+ω8 (a1 + b1ι)(a3 + b3ι) + ω4

1+ω8 (a2 + b2ι)2|.

If ω4 = −1 then ω = e2πι/8 and one can determine a4, b4 from the terms corresponding to m = 0, 2, 3:

|(a4 + b4ι) + (a1 + b1ι)(a3 + b3ι) + 1
2 (a2 + b2ι)2|

|(a4 + b4ι) + (ω2+ω6)
1+ω8 (a1 + b1ι)(a3 + b3ι) + ω4

1+ω8 (a2 + b2ι)2|
|(a4 + b4ι) + (ω4+ω12)

1+ω16 (a1 + b1ι)(a3 + b3ι) + ω8

1+ω16 (a2 + b2ι)2|.

By directly substituting ω, these terms reduce to:

|(a4 + b4ι) + (a1 + b1ι)(a3 + b3ι) + 1
2 (a2 + b2ι)2|

|(a4 + b4ι) − 1
2 (a2 + b2ι)2|

|(a4 + b4ι) − (a1 + b1ι)(a3 + b3ι) + 1
2 (a2 + b2ι)2|.

Likewise if ω8 = −1 then ω = e2πι/16 and we determine a4 + b4ι from the three real numbers corresponding 
to m = 0, 1, 4:

|(a4 + b4ι) + (a1 + b1ι)(a3 + b3ι) + 1
2 (a2 + b2ι)2|

|(a4 + b4ι) + (ω+ω3)
1+ω4 (a1 + b1ι)(a3 + b3ι) + ω2

1+ω4 (a2 + b2ι)2|
|(a4 + b4ι) + (ω4+ω12)

1+ω16 (a1 + b1ι)(a3 + b3ι) + ω8

1+ω16 (a2 + b2ι)2|.

When r = 3, ω3 = 1 and we only obtain two distinct numbers for m = 0, 1:

|(a4 + b4ι) + (a1 + b1ι)(a3 + b3ι) + 1
2 (a2 + b2ι)2|

|(a4 + b4ι) + (a1 + b1ι)(a3 + b3ι) + ω2

1+ω (a2 + b2ι)2|.

In this case, there are two possible solutions. However, if we also assume that we know |x̂| then we have a 
third piece of information to uniquely determine x̂4.
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4. Proofs of supporting results

4.1. On the translation symmetry for bandlimited signals

The following proposition shows that if the signal is bandlimited, then the translation symmetry is 
continuous.

Proposition 4.1. Suppose that x is a B-bandlimited signal with B ≤ N/2. Assume without loss of generality 
that x̂B = . . . = x̂N−1 = 0. Then, for any μ = eιψ for some ψ ∈ [0, 2π), any signal with Fourier transform

[x̂0, μx̂1, μ
2x̂2, . . . , μ

B−1x̂B−1, 0, . . . , 0],

has the same FROG trace (2.2) as x.

Proof. Under the bandlimit assumption, we can substitute p = � and q = k − � and write (3.1) as

ŷk,m = 1
N

∑
p+q=k

0≤p,q≤N/2−1

x̂px̂qe
2πιpmL/N .

Now, if x̂p is replaced by μpx̂p and x̂q is replaced by μqx̂q then ŷk,m is replaced by μkŷk,m. Hence, the 
absolute value of ŷk,m remains unchanged. Without the bandlimit assumption, q = (k − �) mod N and 
thus |ŷk,m| is changed unless μ is the Nth root of unity. �
4.2. Proof of Lemma 3.2

The system of equations (3.3) can be written explicitly as

|z|2 + |v1|2 + 2�{zv1} = n2
1,

|z|2 + |v2|2 + 2�{zv2} = n2
2, (4.1)

|z|2 + |v3|2 + 2�{zv3} = n2
3.

Subtracting the second and the third equations from the first, we get

�{z (v1 − v2)} = 1
2
(
n2

1 − n2
2 + |v2|2 − |v1|2

)
,

�{z (v1 − v3)} = 1
2
(
n2

1 − n2
3 + |v3|2 − |v1|2

)
.

Let z = a + ιb, v1 − v2 = c + dι and v1 − v3 = e + fι. Then, we obtain a system of two linear equations for 
two variables:

ac− bd = 1
2
(
n2

1 − n2
2 + |v2|2 − |v1|2

)
,

ae− bf = 1
2
(
n2

1 − n2
3 + |v3|2 − |v1|2

)
. (4.2)

This system has a unique solution provided that the vectors (c, −d) and (e, −f) are not proportional. This 
is equivalent to the assumption � 

{
v1−v2

}

= 0.
v1−v3
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We now show that for generic v1, v2, v3 the system (4.1) has no solutions, so the unique solution to the 
linear system (4.2) will not be a solution to (4.1). If we express vk = ak + ιbk, we consider the variety 
I ⊂ (R2)4 of tuples

((a, b), (a1, b1), (a2, b2), (a3, b3)), (4.3)

such that z = a + ιb is a solution to (4.1). Each of the equations in (4.1) involves a different set of variables, 
so it imposes an independent condition on the tuples (4.3). It follows that dimI ≤ 8 − 3 = 5. In particular, 
I has strictly smaller dimension than the R6 parametrizing all triples ((a1, b1), (a2, b2), (a3, b3)). Therefore, 
the system (4.1) has no solution for generic vk. Intuitively, this can be seen by noting that the set of z
satisfying the equation |z+ vk| = nk is a circle of radius nk centered at −ak − ιbk in the complex plane. For 
generic choices of centers, three circles of fixed radii n1, n2, n3 will have no intersection.

For the second part of the lemma, suppose that v1, v2, v3 ∈ R. In this case, (3.3) is simplified to

(a + v1)2 + b2 = n2
1,

(a + v2)2 + b2 = n2
2,

(a + v3)2 + b2 = n2
3.

These equations are invariant under the transformation (a, b) �→ (a, −b) so if z = a + bι is a solution then 
z = a − bι is a solution as well. Subtracting any pair of equations gives a linear equation in a, so there is 
at most one value of a solving the system. Hence, if the system has a solution, then it has two conjugate 
solutions.

4.3. Proof of Lemma 3.3

Let αm,1 = ω3m+ωm

1+ω4m and αm,2 = ω2m

1+ω4m . As noted above, αm,1 and αm,2 are real if they are well defined. 
Additionally, note that αm,i = αr−m,i for i = 1, 2. If r = N/L ≥ 4 then we can find p, q with p + q 
= r so 
that αp,1, αp,2, αq,1, αq,2 are well defined. For instance, if ω4 
= −1, ω8 
= −1 we take p = 1, q = 2. Then we 
can write

v0 − vp
v0 − vq

= (α0,1 − αp,1)x̂1x̂3 + (α0,2 − αp,2)x̂2
2

(α0,1 − αq,1)x̂1x̂3 + (α0,2 − αq,2)x̂2
2
. (4.4)

Moreover, the αm,i are fixed, so this ratio is well defined as long as the x̂1, ̂x2, ̂x3 are not solutions to the 
nonzero quadratic polynomial (α0,1 − αq,1)x̂1x̂3 + (α0,2 − αq,2)x̂2

2. Now we can multiply the numerator and 
denominator of (4.4) by (v0 − vq) to obtain

1
|v0 − vq|2

(
βp,1βq,1|x̂1x̂3|2 + βp,2βq,2|x̂2|2 + βp,1βq,2x̂1x̂3x̂2

2 + βp,2βq,1x̂1x̂3x̂
2
2

)
,

where βs,i = α0,i − αs,i for s = p, q are fixed nonzero real numbers. This expression is real only if

�
(
(α0,1 − αp,1)(α0,2 − αq,2)x̂1x̂3x̂2

2 + (α0,2 − αp,2)(α0,1 − αq,1)x̂1x̂3x̂
2
2

)
= 0.

This condition is a quartic polynomial in the real and complex components of x̂1, ̂x2, ̂x3. Hence for generic 
signals the left hand side will not be equal to zero.
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4.4. Determining x̂3 uniquely

The following lemma shows that given x̂1, ̂x2 and x̂4, x̂3 is determined uniquely from the FROG trace 
up to symmetries.

Lemma 4.2. For a generic signal, let x̂1 ∈ R, x̂2, ̂x3, ̂x4 ∈ C with r ≥ 4. Consider the following system of 
equations m = 0, . . . , r − 1:∣∣∣∣∣z +

(
ωm + ω3m)
1 + ω4m x̂1x̂

′
3 + ω2m

1 + ω4m x̂2
2

∣∣∣∣∣ =

∣∣∣∣∣x̂4 +
(
ωm + ω3m)
1 + ω4m x̂1x̂3 + ω2m

1 + ω4m x̂2
2

∣∣∣∣∣ . (4.5)

If x̂′
3 = e2θιx̂3 and θ = arg (x̂2), then the system has no solutions. Moreover, if r = 3, then the system of 

equations:

|z| = |x̂4|
|z + x̂1x̂

′
3 + x̂2

2/2| = |x̂4 + x̂1x̂3 + x̂2
2/2|∣∣∣∣z + ω + 1

1 + ω
x̂1x̂

′
3 + ω2

1 + ω
x̂2

2

∣∣∣∣ =
∣∣∣∣x̂4 + ω + 1

1 + ω
x̂1x̂3 + ω2

1 + ω
x̂2

2

∣∣∣∣
has no solutions.

Proof. The proof is similar to the proof of the first part of Lemma 3.2. Since x̂1 is generic, we can assume 
it is nonzero. Let us denote x̂k = ak + ιbk for k = 2, 3, 4. If the system of equations has a solution, then 
a2, b2, a3, b3, a4, b4 satisfy a non-trivial polynomial equation. To see this, we argue the following:

By assuming x̂1 
= 0, we can divide the equations by x̂1 and then reduce to the case x̂1 = 1. The proof 
of Lemma 3.2 shows that if a solution z = a + ιb exists, then by considering the differences of equations 
for three distinct values of m, a and b can be expressed as rational functions in the real and complex parts 
of x̂2, ̂x3, ̂x′

3. Since x̂′
3 =

(
x̂2
2

|x̂2|

)2
x̂3, � (x̂′

3) and � (x̂′
3) are also rational functions of a2, b2, a3, b3. Hence, if 

z = a + ιb is a solution to the system (4.2), then a = f(a2, b2, a3, b3, a4, b4) and b = g(a2, b2, a3, b3, a4, b4), 
where f and g are rational functions.

In order for z = a + ιb to be a feasible solution, it must also satisfy the quadratic equation for m = 0∣∣z + x̂′
3x̂1 + x̂2

2/2
∣∣2 =

∣∣x̂4 + x̂3x̂1 + x̂2
2/2

∣∣2 .
Expanding both sides in terms of (a2, b2, a3, b3, a4, b4), we see that the real numbers (a2, b2, a3, b3, a4, b4)
must satisfy an explicit polynomial equation F (a2, b2, a3, b3, a4, b4) = 0. As long as F 
= 0, the generic real 
numbers will not satisfy it.

We are left with showing that indeed F 
= 0. For example if ω4, ω8 
= −1 then we can use the equations 
associated with m = 0, 1, 2:

|x + x̂1x̂
′
3 + x̂2

2/2|2 = |x̂4 + x̂1x̂3 + x̂2
2/2|2

|x + ω+ω3

1+ω4 x̂1x̂
′
3 + ω2

1+ω4 x̂
2
2|2 = |x̂4 + ω+ω3

1+ω4 x̂1x̂3 + ω2

1+ω4 x̂
2
2|2

|x + ω2+ω6

1+ω8 x̂1x̂
′
3 + ω4

1+ω8 x̂
2
2|2 = |x̂4 + ω2+ω6

1+ω8 x̂1x̂3 + ω2

1+ω4 x̂
2
2|2,

to show that a2, b2, a3, b3, a4, b4 satisfy a nonzero polynomial F (a2, b2, a3, b3, a4, b4). This is true since 
F (0, 1, 1, 1, a4, b4) (corresponding to x̂1 = 1, ̂x2 = ι, ̂x3 = 1 + ι) has coefficient of a2

4 given by

4096 csc(8t)2 sin(t/2)8 sin(t)2 sin(2t)2(sin(t) + sin(2t))2,
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where ω = cos t + ι sin t and csc is the inverse of the sine function. This coefficient is nonzero unless t = 0 or 
t = 2π/3. A similar analysis can be performed in the other cases. For instance, instead of picking m = 0, 1, 2, 
if ω4 = −1 one may take m = 0, 2, 4 and if ω8 = −1 then we choose m = 0, 1, 3. Hence, we conclude that 
indeed F 
= 0.

If r = 3, then (4.5) provides only two distinct equations (see Remark 3.1). We then use the third constraint 
|z| = |x̂4| to derive the same result. �
5. Conclusion and perspective

FROG is an important tool for ultra-short laser pulse characterization. The problem involves a system of 
phaseless quartic equations that differs significantly from quadratic systems, appearing in standard phase 
retrieval problems. In this work, we analyzed the uniqueness of the FROG method. We have shown that 
it is sufficient to take only 3B FROG measurements in order to determine a generic B-bandlimited signal 
uniquely, up to unavoidable symmetries. If the power spectrum of the sought signal is also available, then 
2B FROG measurements are enough. Necessary conditions for recovery is an open problem. In addition, this 
paper did not study computational aspects. An important step in this direction is to analyze the properties 
of current algorithms used by practitioners, like the PCGP.

A natural extension of the FROG model is called blind FROG or blind phaseless STFT . In this problem, 
the acquired data is the Fourier magnitude of yn,m = x1

nx
2
n+mL for two signals x1, x2 ∈ C

N [22,37]. The 
goal is then to estimate both signals simultaneously from their phaseless measurements. Initial results on 
this model were derived in [25], yet we conjecture that they can be further improved by tighter analysis.
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