
In this article we present a signal processing frame-
work that we refer to as quantum signal processing
(QSP) [1] that is aimed at developing new or mod-
ifying existing signal processing algorithms by bor-

rowing from the principles of
quantum mechanics and some of its
interesting axioms and constraints.
However, in contrast to such fields as
quantum computing and quantum
information theory, it does not inherently depend on the
physics associated with quantum mechanics. Conse-
quently, in developing the QSP framework we are free to

impose quantum mechanical constraints that we find
useful and to avoid those that are not. This framework
provides a unifying conceptual structure for a variety of
traditional processing techniques and a precise mathe-

matical setting for developing gener-
al izat ions and extensions of
algorithms, leading to a potentially
useful paradigm for signal processing
with applications in areas including

frame theory, quantization and sampling methods, detec-
tion, parameter estimation, covariance shaping, and
multiuser wireless communication systems.
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Fig. 1 presents a general overview of the key elements
in quantum physics that provide the basis for the QSP
framework and an indication of the key results that have
so far been developed within this framework. In the re-
mainder of this article, we elaborate on the various ele-
ments in this figure.

Overview
Many new classes of signal processing algorithms have
been developed by emulating the behavior of physical
systems. There are also many examples in the signal pro-
cessing literature in which new classes of algorithms have
been developed by artificially imposing physical con-
straints on implementations that are not inherently sub-
ject to these constraints. In this article, we survey a new
class of algorithms of this type that we refer to as QSP. A
fully detailed treatment is contained in [1] as well as in the
various journal and conference papers referred to
throughout this article. Among the many well-known ex-
amples of digital signal processing algorithms that are de-
rived by using physical phenomena and constraints as
metaphors are wave digital filters [2]. This class of filters
relies on emulating the physical constraints of passivity
and energy conservation associated with analog filters to
achieve low sensitivity in coefficient variations in digital
filters. As another class of ex-
amples, the fractal-like as-
pects of nature [3] and
related modeling have in-
spired interesting signal pro-
cessing paradigms that are
not constrained by the asso-
ciated physics. These include
fractal modulation [4],
which emulates the fractal
characteristic of nature for
communicating over a par-
ticular class of unreliable
channels, and the various ap-
proaches to image compres-
sion based on synthetic
generation of fractals [5].
Likewise, the chaotic behav-
ior of certain features of na-
ture have inspired new
classes of signals for secure
communications, remote
sensing, and a variety of
other signal processing ap-
plications [6]-[9]. Other ex-
amples of algorithms using
physical systems as a simile
include solitons [10], ge-
netic algorithms [11], simu-
lated annealing [12], and
neural networks [13].

These examples are just several of many that under-
score the fact that even in signal processing contexts that
are not constrained by the physics, exploiting laws of na-
ture can inspire new methods for algorithm design and
may lead to interesting, efficient, and effective process-
ing techniques.

Three fundamental inter-related underlying principles
of quantum mechanics that play a major role in QSP as
presented here are the concept of a measurement, the
principle of measurement consistency, and the principle
of quantization of the measurement output. In addition,
when using quantum systems in a communication con-
text, other principles arise such as inner product con-
straints. QSP is based on exploiting these various
principles and constraints in the context of signal process-
ing algorithms.

In a broad sense, the terms measurement, measure-
ment consistency, and output quantization are well
known in signal processing, although not with the same
meaning or precise mathematical interpretation and con-
straints as in quantum mechanics.

In signal processing, the term measurement can be
given a variety of precise or imprecise interpretations.
However, as discussed further in this article, in quantum
mechanics measurement has a very specific definition and
meaning, much of which we carry over to the QSP frame-
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work. Similarly, in signal processing, quantization is tra-
ditionally thought of in fairly specific terms. In quantum
mechanics, quantization of the measurement output is a
fundamental underlying principle, and applying this
principle, along with the quantum mechanical notions of
measurement and consistency, leads to some potentially
intriguing generalizations of quantization as it is typically
viewed in signal processing.

Measurement consistency also has a precise meaning
in quantum mechanics, specifically that repeated applica-
tions of a measurement must yield the same outcome. In
signal processing, a similar consistency concept is the ba-
sis for a variety of classes of algorithms including signal
estimation, interpolation, and quantization methods.
Some early examples of consistency as it typically arises in
signal processing are the interpolation condition in filter
design [14] and the condition for avoiding intersymbol
interference in waveforms for pulse amplitude modula-
tion [15]. More recent examples include perfect recon-
struction filter banks [16], [17], multiresolution and
wavelet approximations [18], [19], and sampling meth-
ods in which the perfect reconstruction requirement is re-
placed by the less stringent consistency requirement
[20]-[24]. Here again, viewing measurement consis-
tency in a broader framework motivated by quantum me-
chanics can lead to some new and interesting signal
processing algorithms.

In the next section, we summarize the basic principles
of measurement, consistency, and quantization as they re-
late to quantum mechanics. We also outline the key ele-
ments and constraints that are associated with the use of
quantum states for communication in the context of what
is commonly referred to as the quantum detection prob-
lem [25]. We then indicate how these principles and con-
straints imposed by the physics are emulated and applied
in the framework of QSP.

Quantum Systems
In developing the QSP framework, it is convenient to dis-
cuss both signal processing and quantum mechanics in a
vector space setting. Specifically we consider an arbitrary
Hilbert (inner product) space� with inner product 〈 〉x y,
for any vectors x y, in �. Typically we will refer to ele-
ments of � as vectors or signals interchangeably. In this
section we summarize the key elements of physical quan-
tum systems that are emulated in QSP, including those as-
sociated with quantum detection.

Measurement
A quantum system in a pure state is characterized by a
normalized vector in �. Information about a quantum
system is extracted by subjecting the system to a quantum
measurement.

A quantum measurement is a nonlinear (probabilistic)
mapping that in the simplest case can be described in

terms of a set of measurement vectors µ i that span mea-
surement subspaces � i in �. The laws of quantum me-
chanics impose the constraint that the vectors µ i must be
orthonormal and therefore also linearly independent. A
measurement of this form is referred to as a rank-one
quantum measurement. In the more general case, the
quantum measurement is described in terms of a set of
projection operators Pi onto subspaces � i of �, where
from the laws of quantum mechanics these projections
must form a complete set of orthogonal projections. Such
a measurement is referred to as a subspace quantum mea-
surement. In quantum mechanics, the outcome of a mea-
surement is inherently probabilistic, with the
probabilities of the outcomes of any measurement deter-
mined by the vector representing the underlying state of
the system at the time of the measurement. The measure-
ment collapses (projects) the state of the quantum system
onto a state that is compatible with the measurement out-
come. In general the final state of the system is different
than the state of the system prior to the measurement.

Measurement consistency is a fundamental postulate of
quantum mechanics, i.e., repeated measurements on a
system must yield the same outcomes; otherwise we
would not be able to confirm the output of a measure-
ment. Therefore the state of the system after a measure-
ment must be such that if we instantaneously remeasure
the system in this state, then the final state after this sec-
ond measurement will be identical to the state after the
first measurement.

Quantization of the measurement outcome is a direct
consequence of the consistency requirement. Specifically,
the consistency requirement leads to a class of states re-
ferred to as determinate states of the measurement [26].
These are states of the quantum system for which the
measurement yields a known outcome with probability
one and are the states that lie completely in one of the
measurement subspaces � i . Furthermore, even when the
state of the system is not one of the determinate states, af-
ter performing the measurement the system is quantized
to one of these states, i.e., is certain to be in one of these
states, where the probability of being in a particular deter-
minate state is a function of the inner products between
the state of the system and the determinate states. See
“Quantum Measurement” for more details.

As an example of a rank-one quantum measurement,
suppose that the measurement is defined by two
orthonormal measurement vectors µ1 and µ 2 and the
state of the system is given by x = +( / ) ( / )1 2 3 21 2µ µ .
As outlined further in “Quantum Measurement,” the
measurement will project the state x onto one of the mea-
surement vectors µ1 or µ 2 , where the probability of pro-
ject ing onto µ1 is p x( ) | , | /1 1 41

2= 〈 〉 =µ and the
probabi l i ty of project ing onto µ 2 is
p x( ) | , | /2 3 42

2= 〈 〉 =µ . The measurement process is illus-
trated in Fig. 2.
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Quantum Measurement

A standard (von Neumann) measurement in quan-
tum mechanics is defined by a collection of pro-

ject ion operators { , }P ii ∈� onto subspaces
{ , }� � �i i⊆ ∈ , where � denotes an index set and the
index i ∈� corresponds to a possible measurement
outcome. The laws of quantum mechanics impose the
constraint that the operators { , }P ii ∈� form a com-
plete set of orthogonal projections so that with( ) *⋅ de-
noting the adjoint of the corresponding
transformation, for any i k, ∈� ,

P Pi i= * ;
(1)

P Pi i
2 = ;

(2)

P P i ki k = ≠0, if ;
(3)

P Iii∈∑ =
� �

.
(4)

Conditions (3) and (4) imply that the measure-
ment subspaces �i are orthogonal and that their direct
sum is equal to �.

If the state vector is φ, then from the rules of quan-
tum mechanics, the probability of observing the ith
outcome is

p i Pi( ) ,= 〈 φ φ〉 .
(5)

Since the state is normalized,

p i P
i ii

( ) , ,∑ ∑= 〈 〉 = 〈φ φ〉 =φ φ 1.

In the simplest case, the projection operators are
rank-one operators Pi i i= µ µ * for some nonzero vectors
{ , }µ i i∈ ∈� � . We refer to such measurements as
rank-one quantum measurements. Then (3) and (4)
imply that the measurement vectors{ , }µ i i ∈� form an
orthonormal basis for �. If the state vector is φ, then
the probability of observing the ith outcome is

p i i( ) ,= 〈 φ〉µ 2.
(6)

For a rank-one quantum measurement defined by
orthonormal measurement vectors µ i , it follows from
(1) that if φ = µ i for some i, then p i( ) =1 and output i is
obtained with probability one (w.p. 1). The states
{ }φ = µ i are therefore called the determinate states of
the measurement. More generally, the determinate
states are the states that lie completely in one of the

measurement spaces �i . Indeed, if φ ∈�i , then Pi φ = φ
and from (5), p i( ) =1.

The quantum measurement can be formulated in
terms of a probabilistic mapping between � and the
determinate states. Given a space of states � and an
observation space � , a probabilistic mapping from �

to � is a function f : � � �× → , where � is the sam-
ple space of an auxi l iary chance variable
W x p w xW X( ) { , ( | )}|= � with a probability distribution
p w xW X| ( | ) on � that in general depends on x ∈� .
Note that a deterministic mapping f : � �→ is a spe-
cial case of a probabilistic mapping in which the auxil-
iary chance variable is deterministic; i.e., it has one
outcome w w.p. 1. In this case the function f is inde-
pendent of W.

A rank-one quantum measurement corresponding
to orthonormal measurement vectors { , }µ i i∈ ∈� �

that span subspaces{ , }� � �i i⊆ ∈ can be viewed as a
probabilistic mapping between � and the determi-
nate states that is
� 1) a deterministic identity mapping for φ ∈�i ;
� 2) a probabilistic mapping for nondeterminate states
that maps φ to a normalized vector in the direction of
the orthogonal projection Pi φ for some value i ∈� ,
where i f k wk i= 〈 φ〉 ∈({ , , }, )µ � .

Here f : � � �× → is a probabilistic mapping be-
tween elements φ of � and indices i ∈� , which de-
pends on a chance variableW with a discrete alphabet
� �= such that the probability of outcome wi ∈�

depends on the input φ only through the inner prod-
ucts { , , }µ k kφ ∈� . Specifically, the probability of out-
come wi is | , |µ i φ 2. I f wi is observed, then
f x k w ik i({ , , }, )〈 〉 ∈ =µ � .

A subspace quantum measurement corresponding
to a complete set of orthogonal projection operators
{ , }P ii ∈� onto subspaces { , }� � �i i⊆ ∈ can be
viewed as a probabilistic mapping between � and the
determinate states that is
� 1) a deterministic identity mapping for φ ∈�i ;
� 2) a probabilistic mapping for nondeterminate
states that maps φ to a normalized vector in the direc-
tion of the orthogonal projection Pi φ for some value
i ∈� , where i f P P k wk k i= 〈 φ φ〉 ∈({ , , }, )� .

Here f : � � �× → is a probabilistic mapping be-
tween elements φ of � and indices i ∈� that depends
on a chance variableW with a discrete alphabet � �=
such that the probability of outcome wi ∈� depends
on the input φ only through the inner products
{ , , }〈 φ φ〉 ∈P P kk k � . Specifically, the probability of out-
come wi is 〈 φ φ〉P Pi i, . I f wi is observed, then
f P P k w ik k i({ , , }, )φ φ ∈ =� .



Quantum Detection
The constraints imposed by the physics on a quantum
measurement lead to some interesting problems within
the framework of quantum mechanics. In particular, an
interesting problem that arises when using quantum
states for communication is a quantum detection problem
[25], which we outline here. As we discuss later in a sig-
nal processing context, this problem suggests a variety of
new or generalized algorithms within the QSP frame-
work based on specific ways of imposing inner product
constraints.

In a quantum detection problem a sender conveys clas-
sical information to a receiver using a quantum-mechani-
cal channel. The sender represents messages by preparing
the quantum channel in a pure quantum state drawn from
a collection of known states φ i . The receiver detects the
information by subjecting the channel to a quantum mea-
surement with measurement vectors µ i that are con-
strained by the physics to be orthogonal. If the states are
not orthogonal, then no measurement can distinguish
perfectly between them. In the general context of quan-
tum mechanics, a fundamental problem is to construct
measurements optimized to distinguish between a set of
nonorthogonal pure quantum states. In the context of a
communications system, we would like to choose the
measurement vectors to minimize the probability of de-
tection error. In this context this problem is commonly
referred to as the quantum detection problem.

Necessary and sufficient conditions for an optimum
measurement minimizing the probability of detection er-
ror are known [25], [27]-[29]. However, except in some
particular cases [25], [30]-[33], obtaining a closed-form
analytical expression for the optimal measurement di-
rectly from these conditions is a difficult and unsolved
problem.

In [32], an alternative approach is taken based on
choosing a squared-error criterion and determining a
measurement that minimizes this criterion. Specifically,
the measurement vectors µ i are chosen to be orthogonal
and closest in a least-squares (LS) sense to the given set of
state vectors φ i so that the vectors µ i are chosen to mini-
mize the sum of the squared norms of the error vectors
ei i i= − φµ , as illustrated in Fig. 3. The optimal measure-
ment is referred to as the LS measurement.

The LS measurement problem has a simple closed-
form solution with many desirable properties. Its con-
struction is relatively simple; it can be determined directly
from the given collection of states; it minimizes the prob-
ability of detection error when the states exhibit certain
symmetries [32]; it is “pretty good” when the states to be
distinguished are equally likely and almost orthogonal
[34]; it achieves a probability of error within a factor of
two of the optimal probability of error [35]; and it is as-
ymptotically optimal [36].

Thus, in the context of quantum detection the con-
straints of the physics lead to the interesting problem of
choosing an optimal set of orthogonal vectors. Bor-
rowing from quantum detection, a central idea in QSP
applications is to impose orthogonality or more general
inner product constraints on algorithms and then use the
LS measurement and the results derived in the context of
quantum detection to design optimal algorithms subject
to these constraints.

Quantum Signal Processing
As mentioned previously, the QSP framework draws
heavily on the notions of measurement, consistency, and
quantization as they relate to quantum systems. Further-
more it borrows from and generalizes the inner product
constraint, specifically orthogonality, that quantum phys-
ics imposes on measurement vectors. However, the QSP
framework is broader and less restrictive than the quan-
tum measurement framework since in designing algo-
rithms we are not constrained by the physical limitations
of quantum mechanics.

In quantum mechanics, systems are “processed” by
performing measurements on them. In signal processing,
signals are processed by applying an algorithm to them.
Therefore, to exploit the formalism and rich mathemati-
cal structure of quantum physics in the design of algo-
rithms we first draw a parallel between a quantum
mechanical measurement and a signal processing algo-
rithm by associating a signal processing measurement
with a signal processing algorithm. We then apply the for-
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malism and fundamental principles of quantum measure-
ment to the definition of the QSP measurement. An
algorithm is then described by a QSP measurement, with
additional input and output mappings if appropriate.
This conceptual framework is illustrated schematically in
Fig. 4.

The QSP framework is primarily concerned with the
design of the QSP measurement, borrowing from the
principles, axioms, and constraints of quantum physics
and a quantum measurement. As we will show, the QSP
measurement depends on a specific set of measurement
parameters, so that this framework provides a convenient
and useful setting for deriving new algorithms by choos-
ing different measurement parameters, borrowing from
the ideas of quantum mechanics. Furthermore, since the
QSP measurement is defined to have a mathematical
structure similar to a quantum measurement, the mathe-
matical constraints imposed by the physics on the quan-
tum measurement can also be imposed on the QSP
measurement leading to some intriguing new signal pro-
cessing algorithms.

QSP Measurement
The quantum-mechanical principles of measurement,
consistency, and quantization lead to the definition of the
QSP measurement.

Measurement of a signal in the QSP framework corre-
sponds to applying an algorithm to a signal. As indicated
in the previous section and in Fig. 4, one class of algo-
rithms in the QSP frame-
work consists of a QSP
measurement (i.e., an algo-
rithm) applied in a signal
space that may perhaps be a
remapping of the overall in-
put and output signal
spaces. For example, if the
signal we wish to process is a
sequence of scalars, then we
may first map the scalar val-
ues into vectors in a higher
dimensional space, which
corresponds to the input
mapping in Fig. 4. We then
measure the vector represen-
tation. The measurement
outcome is a signal in the
same signal space as the
measured signal, which is
then mapped to the algo-
rithm output using an out-
put mapping as illustrated in
Fig. 4, so that the measure-
ment output represents the
output of the algorithm,
which in turn may be a sig-
nal or any other element. As

in quantum mechanics, we require that if we remeasure
the outcome signal, then the new outcome will be equal
to the original outcome.

In analogy with the measurement in quantum me-
chanics, a rank-one QSP measurement (ROM) M on� is
defined by a set of measurement vectors qi that span
one-dimensional subspaces � i in�. Since we are not con-
strained by the physics of quantum mechanics, these vec-
tors are not constrained to be orthonormal nor are they
constrained to be linearly independent. Nonetheless, in
some applications we will find it useful to impose an
orthogonality constraint. A subspace QSP measurement
on � is defined by a set of projection operators Ei onto
subspaces � i in �. Here again, since we are not con-
strained by the physics, the projection operators and the
subspaces � i are not constrained to be orthogonal. The
measurement of a signal x is denoted by M x( ).

Measurement consistency in our framework is formu-
lated mathematically as

M M x M x( ( )) ( )= . (7)

Note that by our definition of measurement, if x is a
signal in a signal space � then M x( ) is also a signal in �

and can therefore be remeasured.
Quantization of the measurement outcome is imposed

by requiring that the outcome signal M x( ) is one of a set
of signals determined by the measurement M. Spe-
cifically, in analogy with the quantum mechanical deter-
minate states we define the set of determinate signals,
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which are the signals that lie completely in one of the
measurement subspaces � i .

The measurement M is then defined to preserve the
two fundamental properties of a quantum measurement.
� The measurement outcome is always equal to one of
the determinate signals.
� For every input signal x to a QSP measurement, (7) is
satisfied.

Rank-One QSP Measurements
A ROM M defined by a set of measurement vectors qi
that span one-dimensional measurement subspaces � i in
� is in general a nonlinear mapping between� and the set
of determinate signals of M. The measurement subspace
� i is the one-dimensional subspace that contains all vec-
tors that are multiples of qi . Therefore, the determinate
signals in this case are all signals of the form aqi for
some index iand scalar a. With Ei denoting a projection
onto � i , the measurement is defined such that if x is a
determinate signal then M x E x xi( )= = , and otherwise
M x E xi( )= where

{ }( )i f x qM k= 〈 〉, . (8)

Here f M is a mapping between the input signal x
and the set of indices that may be probabilistic (see
“Quantum Measurement”) and that depends on the
input x only through the inner products between x
and the measurement vectors qi , which are a subset
of the determinate signals. For example, we may
choose f x x qM k k( ) max ,= 〈 〉arg . As another example,
we may choose f x q x q qM k k k k( ) max ( , , )= 〈 〉 − 〈 〉arg . This
mapping f M chooses the vector qk that minimizes the
distance x qk− between x and each of the measurement

vectors, so that it maps x to the closest vector qk .
Note that since E xi is in � i for any x, the outcome

M x( ) is always a determinate signal of M, and since for
any determinate signal x, M x x( )= , this definition of a
measurement satisfies the required properties.

As an example of a ROM, suppose that the measure-
ment input is x q q= +( / ) ( / )1 2 1 21 2 where q T

1 1 0= [ ]
and q T

2 5 5= [. . ] with[]⋅ T denoting the conjugate trans-
pose, are two measurement vectors. Then the measure-
ment output will be either a vector in the direction of q1
or a vector in the direction of q2 . The particular output

chosen is determined by the mapping f M that depends on
the input x only through the inner products 〈 〉 =x q, /1 3 4
and 〈 〉 =x q, /2 1 2. The measurement process is illus-
trated in Fig. 5.

Our definition of a ROM is very similar to the defini-
tion of a rank-one quantum measurement, with two main
differences. First, we allow for an arbitrary mapping f M
in (8); as described in “Quantum Measurement,” in
quantum mechanics f M is unique and is the probabilistic
mapping in which qi is chosen with probability| , |〈 〉x qi

2 .
Second, the measurement vectors are not constrained to
be orthonormal nor are they constrained to be linearly in-
dependent, as in quantum mechanics. The properties of a
rank-one quantum measurement and a ROM are summa-
rized in Table 1.

Subspace Measurements
The definition of a subspace QSP measurement parallels
that of a ROM and borrows from the definition of a
subspace quantum measurement.

A subspace QSP measurement M defined by a set of
measurement projections Ei that span measurement
subspaces � i in � is a nonlinear mapping between � and
the set of determinate signals of M where if x is a determi-
nate signal then M x E x xi( )= = , and otherwise
M x E xi( )= where

{ }( )i f E x E xM k k= 〈 〉, . (9)

Here f M is a (possibly probabilistic) mapping between
the input signal x and the set of indices that depends on
the input x only through the inner products{ , }〈 〉E x E xk k .

A special case of a subspace QSP measurement is the
case in which the measurement is defined by a single
projection. Then M x Ex( )= for all x and the subspace
QSP measurement reduces to a linear projection opera-
tor. We refer to such a measurement as a simple
subspace measurement.
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The subspace QSP measurement is very similar to a
subspace quantum measurement, with three main differ-
ences: we allow for an arbitrary mapping f M , the mea-
surement projections are not constrained to be
orthogonal, and the measurement subspaces are not con-
strained to be orthogonal.

The properties of a subspace quantum measurement and
a subspace QSP measurement are summarized in Table 2.

Algorithm Design in the QSP Framework
Within the QSP framework, the QSP measurement plays
a central role in the design of signal processing algo-
rithms. In this framework, signals are processed by either
subjecting them to a QSP measurement or by using some
of the QSP measurement parameters f qM i, , and Ei but
not directly applying the measurement, as described in
the following sections.

Designing Algorithms
Based on QSP Measurements
Algorithm Design
To design an algorithm using a QSP measurement we
first identify the measurement vectors qi in a ROM, or
the measurement projection operators Ei in a subspace
QSP measurement, that specify the possible measure-
ment outcomes. For example, in a detection scenario the
measurement vectors may be equal to the transmitted sig-
nals or may represent these signals in a possibly different
space. As another example, in a scalar quantizer the mea-
surement vectors may be chosen as a set of vectors that
represent the scalar quantization levels. In a subspace
QSP measurement, the measurement projection opera-
tors may be projections onto a set of subspaces used for
signaling. We then embed the measurement vectors (pro-

jections) in a Hilbert space �. This basic strategy is illus-
trated in Fig. 6. If the signal~x to be processed does not lie
in�, then we first map it into a signal x in� using a map-
ping T

�
. To obtain the algorithm output we measure the

representation x of the signal to be processed. If x is a de-
terminate signal of M, then the measurement outcome is
y M x x= =( ) . Otherwise we approximate x by a determi-
nate signal y using a mapping f M . If appropriate, the
measurement outcome y may be mapped to the algo-
rithm output ~y using a mapping T

�
.

By choosing different input and output mappings T
�

and T
�

and different measurement parameters f qM i, ,
and Ei , and using the QSP measurement framework of
Fig. 6, we can arrive at a variety of new and interesting
processing techniques.

Modifying Known Algorithms
As demonstrated in [1], many traditional detection and
processing techniques fit naturally into the framework of
Fig. 6. Examples include traditional and dithered
quantization, sampling methods, matched-filter detec-
tion, and multiuser detection. Once an algorithm is de-
scribed in the form of a QSP measurement, modifications
and extensions of the algorithm can be derived by chang-
ing the measurement parameters f M , qi , and Ei . Thus,
the QSP framework provides a unified conceptual struc-
ture for a variety of traditional processing techniques and
a precise mathematical setting for generating new, poten-
tially effective, and efficient processing methods by modi-
fying the measurement parameters.

To modify an existing algorithm represented by a map-
ping T using the QSP framework, we first cast the algo-
rithm as a QSP measurement M, i.e., we choose an input
mapping T

�
and an output mapping T

�
if appropriate,

and the measurement parameters f qM i, , and Ei . We
then systematically change some of these parameters, re-
sulting in a modified measurement M′, which can then be
translated into a new signal processing algorithm repre-
sented by a mapping T ′. The modifications we consider
result from either imposing some of the additional con-
straints of quantum mechanics on the measurement pa-
rameters of M or from relaxing some of these constraints
which we do not have to impose in signal processing.
These basic steps are summarized in Fig. 7.

Typical modifications of the parameters that we con-
sider include
� using a probabilistic mapping f M
� imposing inner product constraints on the measure-
ment vectors qi
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� 6. Designing algorithms using a QSP measurement.

Table 2. Comparison Between
Subspace Measurements.

Quantum
Measurement

QSP
Measurement

Input x Vector in � Vector in �

Measurement
projections Ek

Orthogonal Can be
nonorthogonal

Measurement
subspaces �k

Orthogonal Can be
nonorthogonal

Selection rule

Function of
< >E x E xk k,

Function of
< >E x E xk k,

Probabilistic Deterministic or
probabilistic

Output Multiple of E xk
for one value k

Multiple of E xk
for one value k



� using nonorthogonal (oblique) projections Ei in place
of orthogonal projections.

Designing Algorithms
Using the Measurement Parameters
Another class of algorithms we develop results from pro-
cessing a signal with some of the measurement parame-
ters and then imposing quantum mechanical constraints
directly on these parameters. For example, we may view
any linear processing of a signal as processing with a set of
measurement vectors and then imposing inner product
constraints on these vectors. Using the ideas of quantum
detection we may then design linear algorithms that are
optimal subject to these inner product constraints.

To generate new algorithms or modify existing ones,
we describe the algorithm as processing by one of the
measurement parameters and then modifying these pa-
rameters using one of the three modifications outlined at
the end of the previous section.

In the remainder of this section we discuss each of
these modifications and indicate how they will be applied
to the development of new processing methods.

Probabilistic Mappings
The QSP framework naturally gives rise to probabilistic
and randomized algorithms by letting f M be a probabilis-
tic mapping, emulating the quantum measurement. We
expand on this idea below in the context of quantization.
Further examples are developed in [1]. However, the full
potential benefits of probabilistic algorithms in general
resulting from the QSP framework remain an interesting
area of future study.

Imposing Inner Product Constraints
One of the important elements of quantum mechanics is
that the measurement vectors are constrained to be
orthonormal. This constraint leads to some interesting
problems such as the quantum detection problem de-
scribed previously. A fundamental problem in quantum
mechanics is to construct optimal measurements subject
to this constraint that best represent a given set of state
vectors. In analogy to quantum mechanics, an important
feature of QSP is that of imposing particular types of con-
straints on algorithms. The QSP framework provides a
systematic method for imposing such constraints: the

measurement vectors are restricted to have a certain inner
product structure, as in quantum mechanics. However,
since we are not limited by physical laws, we are not con-
fined to an orthogonality constraint. As part of the QSP
framework, we develop methods for choosing a set of
measurement vectors that “best” represent the signals of
interest and have a specified inner product structure [37],
[1]; these methods rely on ideas and results we obtained
in the context of quantum detection [32], which unlike
QSP are subject to the constraints of quantum physics.
Specifically, we construct measurement vectors qi with a
given inner product structure that are closest in an LS
sense to a given set of vectors s i , so that the vectors qi are
chosen to minimize the sum of the squared norms of the
error vectors e q si i i= − . These techniques are referred to as
LS inner product shaping. Further details on LS inner prod-
uct shaping are summarized in “Least Squares Inner Prod-
uct Shaping.”

As we show, the concept of LS inner product shaping
can be used to develop effective solutions to a variety of
problems that result from imposing a deterministic or
stochastic inner product constraint on the algorithm and
then designing optimal algorithms subject to this con-
straint. In each of these problems we either describe the
algorithm as a QSP measurement and impose an inner
product constraint on the corresponding measurement
vectors or we consider linear algorithms on which the in-
ner product constraints can be imposed directly. We dem-
onstrate that, even for problems without inherent inner
product constraints, imposing such constraints in combi-
nation with LS inner product shaping leads to new pro-
cessing techniques in diverse areas including frame
theory, detection, covariance shaping, linear estimation,
and multiuser wireless communication, which often ex-
hibit improved performance over traditional methods.

Oblique Projections
In a quantum measurement defined by a set of projection
operators, the rules of quantum mechanics impose the
constraint that the projections must be orthogonal. In
QSP we may explore more general types of measure-
ments defined by projection operators that are not re-
stricted to be orthogonal, i.e., oblique projections
[38]-[40].

An oblique projection is a projection operator E satis-
fying E E2 = that is not necessarily Hermitian, i.e., the
range space and null space of E are not necessarily or-
thogonal spaces. The notation E

��
denotes an oblique

projection with range space � and null space �. If � �= ⊥ ,
then E

��
is an orthogonal projection onto �. An oblique

projection E
��

can be used to decompose x into its com-
ponents in two disjoint vector spaces � and � that are not
constrained to be orthogonal, as illustrated in Fig. 8.
(Two subspaces are said to be disjoint if the only vector
they have in common is the zero vector.)

Oblique projections are used within the QSP frame-
work to develop new classes of frames, effective subspace
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detectors, and a general sampling framework for sam-
pling and reconstruction in arbitrary spaces.

Applications of Rank-One Measurements
QSP Quantization
By emulating the quantum measurement, in [1] we de-
velop a probabilistic quantizer and show that it can be
used to efficiently implement a dithered quantizer.

In dithered quantization a random signal called a
dither signal is added to the input signal prior to
quantization [41]-[44]. Dithering techniques have be-
come commonplace in applications in which data is
quantized prior to storage or transmission. However, the

utility of dithering techniques is limited by the computa-
tional complexity associated with generating a random
process with an arbitrary joint probability distribution.

A probabilistic quantizer can be used to effectively
realize a dither signal with an arbitrary joint probability
distribution, while requiring only the generation of
one uniform random variable per input. By introduc-
ing memory into the probabilistic selection rule we
derive a probabilistic quantizer that shapes the
quantization noise.

Covariance Shaping Matched Filter Detection
As an example of the type of procedure we may follow in
using the concept of LS inner product shaping and opti-
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Least-Squares Inner Product Shaping

Suppose we are given a set of m vectors { , }s i mi 1≤ ≤
in a Hilbert space �, with inner product 〈 〉x y, for

any x y, ∈�. The vectors si span an n-dimensional
subspace. If the vectors are linearly independent, then
n m= ; otherwise n m< . Our objective is to construct a
set of optimal vectors { , }h i mi 1≤ ≤ with a specified in-
ner product structure, from the given vectors
{ , }s i mi 1≤ ≤ . Specifically, we seek the vectors hi that
are “closest” to the vectors si in the LS sense. Thus, the
vectors are chosen to minimize

εLS = 〈 − − 〉,
=

∑
i

m

i i i is h s h
1

,
(10)

subject to the constraint

〈 〉 =h h c ri k ik, 2 ,
(11)

for some c > 0 and constants rik .
We may wish to constrain the constant c in (11) or

may choose c such that the LS error εLS is minimized.
Similarly, withR denoting the matrix with ikth element
rik , we may wish to constrain the elements rik of R, or
we may choose R to have a specified structure so that
the eigenvectors of R are fixed, but choose the
eigenvalues to minimize the LS error.

For example, we may wish to construct a set of or-
thogonal vectors, so that R is a diagonal matrix with
eigenvector matrix equal to I, but choose the norms of
the vectors, i.e., the eigenvalues of R, to minimize the
LS error. As another example, we may wish to con-
struct a cyclic set hi so that 〈 〉h hi k, depends only on
k i m− mod . In this case { , , }〈 〉 ≤ ≤h h i mi k 1 is a cyclic
permutation of { , , }〈 〉 ≤ ≤h h k mk1 1 for all k, and the
Gram matrix H H* is a circulant matrix diagonalized
by a DFT matrix, so that the eigenvectors ofR are fixed.
(In [37] we show that a vector set has a circulant Gram

matrix if and only if the set is cyclic.) We may then wish
to specify the values { , , }〈 〉 ≤ ≤h h k mk1 1 (possibly up to
a scale factor), which corresponds to specifying the
eigenvalues of R, or we may choose these values,
equivalently the eigenvalues ofR, so that the LS error is
minimized.

In [1] we consider both the case in which R is fixed
and the case in which the eigenvalues ofR are chosen
to minimize the LS error εLS . As we show, for fixedR the
LS inner product shaping problem has a simple closed
form solution; by contrast, if the eigenvalues of R are
not specified, then there is no known analytical solu-
tion to the LS inner product shaping problem for arbi-
trary vectors si . An iterative algorithm is developed in
[1]. In the simplest case where R is a specified rank-r
matrix, with r n m= = , the LS vectors are the “col-
umns” of the (possibly infinite) matrix

H S S S S S S= =− −~ ( ) ~ ( )* / * /α αR R R R1 2 1 2,

(12)

where S is the matrix of columns si . If c in (11) is speci-
fied then ~α = c, and if c is chosen to minimize the LS er-
ror then

( )~ ( )

( )

* /

α =
Tr

Tr

S SR

R

1 2

,

(13)

where Tr( )⋅ denotes the trace of the corresponding ma-
trix.

If r n= and � �( ) ( )S = R where � ( )⋅ denotes the
null space of the corresponding transformation, then

( ) ( )H S S S S S S= =~ ( ) ~ ( ) ,* /
†

* /
†

α αR R R R1 2 1 2

(14)

where( )†⋅ denotes the Moore-Penrose pseudoinverse.



mal QSP measurements to derive new processing meth-
ods, in [45] and [46] we consider a generic detection
problem where one of a set of signals is transmitted over
a noisy channel. When the additive noise is white and
Gaussian, it is well known (see, e.g., [15] and [47]) that
the receiver that maximizes the probability of correct de-
tection is the matched filter (MF) receiver. If the noise is
not Gaussian, then the MF receiver does not necessarily
maximize the probability of correct detection. However,
it is still used as the receiver of choice in many applica-
tions since the optimal detector for non-Gaussian noise
is typically nonlinear (see, e.g., [48] and references
therein) and depends on the noise distribution, which
may not be known.

By describing the MF detector as a QSP measurement
and imposing an inner product constraint on the mea-
surement vectors, we derive a new class of receivers con-
sisting of a bank of correlators with correlating signals
that are matched to a set of signals with a specified inner
product structure R and are closest in an LS sense to the
transmitted signals. These receivers depend only on the
transmitted signals, so that they do not require knowl-
edge of the noise distribution or the channel sig-
nal-to-noise ratio (SNR). We refer to these receivers as
covariance shaping MF receivers [1]. In the special case in
which R I= , the receiver consists of a bank of correlators
with orthogonal correlating signals that are closest in an
LS sense to the transmitted signals and is referred to as the
orthogonal matched filter (OMF) receiver [45], [46].

Alternatively, we show that the modified receivers can
be implemented as an MF demodulator followed by an
optimal covariance shaping transformation that opti-
mally shapes the correlation of the outputs of the MF
prior to detection. This equivalent representation leads to
the concept of minimum mean-squared error (MMSE)
covariance shaping, which we consider in its most general
form in [1] and [49]. Simulations presented in [45] and
[46] show that when the noise is non-Gaussian this ap-
proach can lead to improved performance over conven-
tional MF detection in many cases, with only a minor

impact in performance when the noise is Gaussian. These
results are encouraging since they suggest that if the re-
ceiver is designed to operate in different noise environ-
ments or in an unknown noise environment, then we may
prefer using the modified detectors since for certain
non-Gaussian noise distributions these detectors may re-
sult in an improvement in performance over an MF detec-
tor, without significantly degrading the performance if
the noise is Gaussian.

In Fig. 9 we illustrate the performance advantage with
one simulation from [45]. In this figure we plot the mean
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and standard deviation of the probability of correct detec-
t ion Pd for the OMF detector with R I= in
Beta-distributed noise, as a function of the number of sig-
nals in the transmitted constellation. The dimension m of
the signals in the constellation is equal to the number of
signals and the samples of the signals are mutually inde-
pendent zero-mean Gaussian random variables with vari-
ance 1 / m, scaled to have norm one. The vertical bars
indicate the standard deviation of Pd . The results in the
figure were obtained by generating 500 realizations of
signals. For each particular signal realization, we deter-
mined the probability of correct detection for the detec-
tors in both types of noise by recording the number of
successful detections over 500 noise realizations. From
the figure it is evident that the OMF detector outper-
forms the MF detector, particularly when the probability
of correct detection with the MF is marginal. The relative
improvement in performance of the OMF detector over
the MF detector increases for increasing constellation
size. In Fig. 10 we plot the mean of Pd for the OMF detec-
tor and the MF detector in Gaussian noise, for transmit-
ted constellations of seven signals in Gaussian noise, as a
function of SNR. Again, the vertical bars indicate the
standard deviation of Pd .

Optimal Covariance Shaping
Drawing from the quantum detection problem, we can
develop new classes of linear algorithms that result from
imposing a deterministic or stochastic inner product con-
straint on the algorithm, i.e., a covariance constraint, and
then using the results we obtained in the context of quan-
tum detection to derive optimal algorithms subject to this
constraint. In particular, we may extend the concept of LS
inner product shaping suggested by the quantum detec-
tion framework to develop optimal algorithms that mini-
mize a stochastic mean-squared error (MSE) criterion
subject to a covariance constraint.

As an example of this approach, in [1] we exploit the
concept of LS inner product shaping to develop a new
viewpoint towards whitening and other covariance shap-
ing problems.

Suppose we have a random vector a that lies in the
m-dimensional space �

m with covariance C a , and we
want to shape the covariance of the vector a using a shap-
ing transformation T to obtain the random vector b Ta= ,
where the covariance matrix of b is given by C Rb c= 2

for some c >0 and some covariance matrix R. Thus we
seek a transformation T such that

C TC T Rb a c= =* 2 , (15)

for some c >0.
Data shaping arises in a variety of contexts in which it

is useful to shape the covariance of a data vector either
prior to subsequent processing or to control the spectral
shape after processing [50], [51]. As is well known, given
a covariance matrix C a , there are many ways to choose a

shaping transformation T satisfying (15). While in some
applications certain conditions might be imposed on the
transformation such as causality or symmetry, with the
exception of the work in [46], [45], [52], [53], [49], and
[54], which explicitly relies on the optimality properties
developed in [1], there have been no general assertions of
optimality for various choices of a linear shaping transfor-
mation. In particular, the shaped vector may not be
“close” to the original data vector. If this vector under-
goes some noninvertible processing or is used as an esti-
mator of some unknown parameters represented by the
data, then we may wish to choose the covariance shaping
transformation so that the shaped output is close to the
original data in some sense.

Building upon the concept of LS inner product shap-
ing, we propose choosing an optimal shaping transfor-
mation that results in a shaped vector b that is as close as
possible to the original vector a in an MSE sense, which
we refer to as MMSE covariance shaping. Specifically,
among all possible transformations we seek the one that
minimizes the total MSE given by

( ) ( )ε MSE = − = − −
=
∑ E a b E
i

m

i i
1

2( ) ( ) ( )*a b a b ,
(16)

subject to (15), where a i and bi are the ith components of
a and b, respectively.

The solution to the MMSE covariance shaping prob-
lem is developed in [1]; further details are summarized in
“MMSE Covariance Shaping.” This new concept of
MMSE shaping can be useful in a variety of signal pro-
cessing methods that incorporate shaping transforma-
tions in which we can imagine using an optimal
procedure that shapes the data but at the same time mini-
mizes the distortion to the original data.

Linear Estimation
As another example of an algorithm suggested by the
quantum detection framework, where we use the ideas
of LS inner product shaping to design an optimal linear
algorithm subject to a stochastic inner product con-
straint, in [54] we derive a new linear estimator for the
unknown deterministic parameters in a linear model.
The estimator is chosen to minimize an MSE criterion,
subject to a constraint on the covariance of the estima-
tor. This new estimator is defined as the covariance shap-
ing LS (CSLS) estimator.

Many estimation problems can be represented by the
linear model y Hx w= + , whereH is a known matrix, x is
a vector of unknown deterministic parameters to be esti-
mated, and w is a random vector with covariance C w . A
common approach to estimating the parameters x is to re-
strict the estimator to be linear in the data y and then find
the linear estimate of x that results in an estimated data
vector that is as close as possible to the given data vector y
in a (weighted) LS sense, so that it minimizes the total
squared error in the observations [55]-[58]. It is well
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known that among all possible unbiased linear estima-
tors, the LS estimator minimizes the variance [56]. How-
ever, this does not imply that the resulting variance or
MSE is small, where the MSE of an estimator is the sum
of the variance and the squared norm of the bias. In par-
ticular, a difficulty often encountered when using the LS
estimator to estimate the parameters x is that the error in
estimating x can have a large variance and a covariance
structure with a very high dynamic range. This is due to
the fact that in many cases the data vector y is not very
sensitive to changes in x, so that a large error in estimating
x may translate into a small error in estimating the data
vector y, in which case the LS estimate may result in a
poor estimate of x. This effect is especially predominant
at low to moderate SNR, where the data vector y is typi-
cally affected more by the noise than by changes in x; the
exact SNR range will depend on the properties of the
model matrix H.

The CSLS estimator, denoted by $x CSLS , is a biased es-
timator directed at improving the performance of the
traditional LS estimator at low to moderate SNR by
choosing the estimate to minimize the (weighted) total
error variance in the observations subject to a constraint
on the covariance of the estimation error, so that we con-
trol the dynamic range and spectral shape of the
covariance of the estimation error. Thus, $x GyCSLS = is
chosen to minimize

( )ε CSLS = ′− ′ ′− ′−E w( ) ( )*y HGy C y HGy1 , (26)

where y y y′ = − E( ), subject to the constraint that the
covariance of the error in the estimate $x CSLS , which is
equal to the covariance of the estimate $x CSLS , is propor-
tional to a given covariance matrix R. ThusG must satisfy

GC G Rw c* = 2 , (27)
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MMSE Covariance Shaping

In [1] we show that the MMSE covariance shaping
problem can be interpreted as an LS inner product

shaping problem, so that the MMSE shaping transfor-
mation can be found by applying results derived in that
context. In the simplest case in which Ca and R are in-
vertible, the optimal shaping transformation is given
by

T R C R RC R= =− −α α( ) ( )/ /
a a

1 2 1 2 ,
(17)

where if c in (15) is specified then α = c, and if c is cho-
sen to minimize the MSE then

α = Tr
Tr

(( ) )
( )

/C R
R

a
1 2

.
(18)

Here ( ) /⋅ 1 2 denotes the unique nonnegative-definite
square root of the corresponding matrix.

When R I= so that T is a whitening transformation,
(17) reduces to

T C= −α a
1 2/

(19)

and (18) becomes

( )α = 1 1 2

m aTr C / .
(20)

It is interesting to note that the MMSE whitening
transformation has the additional property that it is the
unique symmetric whitening transformation (up to a
factor of ±1) [103]. It is also proportional to the
Mahalanobis transformation, which is frequently used

in signal processing applications incorporating whitening
(see, e.g., [57], [50], and [51]).

Another interesting case is when the random vector a is
white so thatC Ia = and the problem is to optimally shape its
covariance. The MMSE transformation in this case is

T R= α 1 2/ ,
(21)

where if c is fixed then α = c, and if c is chosen to minimize
the MSE then

α = Tr
Tr
( )
( )

/R
R

1 2

.
(22)

We may also consider a weighted MMSE covariance shap-
ing problem in which the shaping T is chosen to minimize a
weighted MSE. Thus we seek a transformation T such that
b TA= has covarianceC Rb c= 2 for some c > 0and such that

εMSE
w E= − −(( ) ( ))*a b A a b ,

(23)

is minimized, where A is some nonnegative-definite
Hermitian weighting matrix. In the simplest case in whichCa ,
R, and A are all invertible, the weighted MMSE covariance
shaping transformation is

T RAC A RA= −α( ) /
a

1 2 ,
(24)

where if c is specified then α = c, and if c is chosen to mini-
mize the weighted MSE then

α = Tr
Tr

(( ) )
( )

/RAC A
RA

a
1 2

.
(25)
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Covariance Shaping Least-Squares Estimation

If the model matrix H has full column rank, then the
covariance shaping LS estimator that minimizes (26)

subject to (27) is given by

$ ( )* / *x y,CSLS = − − −β RH C H RH Cw w
1 1 2 1

(28)

where if c in (27) is specified thenβ = c, and if c is chosen to
minimize the error then

β =
−

−

Tr
Tr
(( ) )

( )

* /

*

RH C H
RH C H

w

w

1 1 2

1
. (29)

The CSLS estimator can also be expressed as an LS esti-
mator followed by a weighted MMSE covariance shaping
transformation. Specifically, suppose we estimate the pa-
rameters x using the LS estimate $xLS . Since $ ~x x wLS = +
where ~ ( )w w= − −H * C H H * Cw w

1 1 , the covariance of the
noise component ~w in~xLS is equal to the covariance of $xLS ,
denoted C $xLS

, which is given by C H C H$
*( )

xLS
= − −σ2 1 1

w . To im-
prove the performance of the LS estimator, we may shape
the covariance of the noise component in the estimator
$xLS . Thus we seek a transformation W such that the
covariance matrix of $ $x xLS= W , denoted by C $x

, satisfies
C WC W R$ $x

c= =
x LS

* 2 , for some c > 0. To minimize the dis-
tortion to the estimator $xLS , we choose the transformation
W that minimizes the weighted MSE

( )E ( $ $ ) ( $ $ )*
$′ − ′ ′ − ′−x x x xLS LS x LS LS

LS
W C W1 . (30)

As we show in [54], the resulting estimator $x is equal to
$xCSLS , so that the CSLS estimator can be determined by first
finding the LS estimator $xLS and then optimally shaping its
covariance. The CSLS estimator with fixed scaling can also
be expressed as a matched correlator estimator followed
by MMSE shaping.

If the noise w in the model y H w= +x is Gaussian with
zero-mean and covariance Cw , then the CSLS estimator
achieves the CRLB for biased estimators with bias B equal
to the bias of the CSLS estimator, which is given by

( )B w= −−β( )* /RH C H1 1 2 I x. (31)

Thus, from all estimators with bias given by (31) for someβ
and R, the CSLS estimator minimizes the variance.

While it would be desirable to analyze the MSE of the
CSLS estimator for more general forms of bias, we cannot
directly evaluate the MSE of the CSLS estimator since the
bias, and consequently the MSE, depend explicitly on the
unknown parameters x. Instead, we may compare the MSE
of the CSLS estimator with the MSE of the LS estimator. The
analysis in [54] indicates that there are many cases in
which the CSLS estimator performs better than the LS esti-
mator in a MSE sense, for all values of the unknown pa-
rameters x. Specifically, for a variety of choices of the
output covarianceR, there is a threshold SNR, such that for

SNR values below this threshold the CSLS estimator yields
a lower MSE than the LS estimator, for all values of x.

If the output covariance is chosen to be equal to σR,
where C Cw = σ2 for some covariance matrix C, then it can
be shown that there is a threshold SNR value so that for
SNR values below this threshold, the MSE of the CSLS esti-
mator is always smaller than the MSE of the LS estimator,
regardless of the value of x. Specifically, let ζ σ= x 2 2/ ( )m
denote the SNR per dimension. Then with B H C H= −* 1 ,
γ σ= arg max k , and σk denoting the eigenvalues of
Q I I= − −(( ) ) (( ) )/ * /RB RB1 2 1 2 , the MSE of the CSLS estima-
tor is less than or equal to the MSE of LS estimator for
ζ ζ≤ $

WC , where

$ ( ) ( )ζ
σγ

WC

Tr Tr= −−B R1

. (32)

The bound $ζWC is a worst case bound, since it corre-
sponds to the worst possible choice of parameters, namely
when the unknown vector x is in the direction of the
eigenvector of Q corresponding to the eigenvalue σγ . In
practice the CSLS estimator will outperform the LS estima-
tor for higher values of SNR than $ζWC .

Since we have freedom in designing R, we may always
choose R so that $ζWC > 0. In this case we are guaranteed
that there is a range of SNR values for which the CSLS esti-
mator leads to a lower MSE than the LS estimator for all
choices of the unknown parameters x.

For example, suppose we wish to design an estimator
with covariance proportional to some given covariance
matrix Z, so that R Z= a for some a > 0. If we choose
a < −Tr Tr( ) / ( )B Z1 , then we are guaranteed that there is an
SNR range for which the CSLS estimator will have a lower
MSE than the LS estimator for all values of x.

In specific applications it may not be obvious how to
choose a particular proportionality factor a. In such cases, we
may prefer using the CSLS estimator with optimal scaling. In
this case, the scaling is a function of R and therefore cannot
be chosen arbitrarily, so that in general we can no longer
guarantee that there is a positive SNR threshold, i.e., that
there is always an SNR range over which the CSLS performs
better than the LS estimator. However, as shown in [54], in
the special case in which R = I, there is always such an SNR
range. Specifically, with { , }λk k m1≤ ≤ denoting the
eigenvalues ofB H C H= −* 1 , and α λ=

=∑( ) //

k

m

k1

1 2 ( )
k

m

k=∑ 1
λ ,

the MSE of the CSLS estimator is less than or equal to the
MSE of LS estimator for ζ ζ≤ WC , where

ζ
λ α

αλγ

WC =
−

−
=

−∑( / )
/

1

1
1

1 2

1 2 2

m
k

m

k , (33)

and γ αλ= −argmax k
1 2 2

1/ .
Here again ζWC is a worst case bound; in practice the CSLS

estimator will outperform the LS estimator for higher values
of SNR than ζWC . Examples presented in [54] indicate that in a
variety of applications ζWC can be pretty large.



where c >0 is a constant that is either specified or chosen
to minimize the error (26).

The CSLS estimator $x CSLS is developed in [1] and
[54]. Some of its properties are discussed in “Covariance
Shaping Least-Squares Estimation.”

Various modifications of the LS estimator under the
linear model assumption have been previously proposed
in the literature. Among the more prominent alternatives
are the ridge estimator [59] (also known as Tikhonov
regularization [60]) and the shrunken estimator [61]. In
[1] we show that both the ridge estimator and the
shrunken estimator can be formulated as CSLS estima-
tors, which allows us to interpret these estimators as the
estimators that minimize the total error variance in the
observations, from all linear estimators with the same
covariance.

As shown in [54], the CSLS estimator has a prop-
erty analogous to the property of the LS estimator. Spe-
cifically, it achieves the Cramer-Rao lower bound
(CRLB) for biased estimators [56], [62], [63] when
the noise is Gaussian. This implies that for Gaussian
noise, there is no linear or nonlinear estimator with a
smaller variance, or MSE, and the same bias as the
CSLS estimator.

Analysis of the MSE of the CSLS estimator [54] dem-
onstrates that the covariance of the estimation error can
be chosen such that over a wide range of SNR, the CSLS
estimator results in a lower MSE than the traditional LS
estimator, for all values of the unknown parameters. Sim-
ulations presented in [1] and [54] strongly suggest that
the CSLS estimator can significantly decrease the MSE of
the estimation error over the LS estimator for a wide
range of SNR values. As an example, in Fig. 11 we plot
the MSE in estimating a set of AR parameters in an
ARMA model contaminated by white noise, using both
the CSLS with R = I and the LS estimators from 20 noisy
observations of the channel, averaged over 2000 noise re-
alizations, as a function of −10 2log σ where σ2 is the

noise variance. As can be seen from the figure, in this ex-
ample the CSLS estimator significantly outperforms the
LS estimator. In general, the performance advantage us-
ing the CSLS estimator will depend on the properties of
the model matrixHand the noise covarianceC w , as indi-
cated by the analysis in [54] and in “Covariance Shaping
Least-Squares Estimation.”

Multiuser Detection
Based on the concept of CSLS estimation, we propose a
new class of linear receivers for synchronous code-divi-
sion multiple-access (CDMA) systems, which we refer to
as the covariance shaping multiuser (CSMU) receivers.
These receivers depend only on the users’ signatures and
do not require knowledge of the channel parameters.
Nonetheless, over a wide range of these parameters the
performance of these receivers can approach the perfor-
mance of the linear MMSE receiver which is the optimal
linear receiver that assumes knowledge of the channel pa-
rameters and maximizes the output signal-to-interference
ratio. These receivers generalize the recently proposed or-
thogonal multiuser receiver [52].

Consider the problem of detecting information trans-
mitted by each of the users in an m-user CDMA system.
Each user transmits information by modulating a signa-
ture sequence. The discrete-time model for the received
signal y is given by [64]

y SAb w= + , (34)

where S is the n m× matrix of columns s k and s k is the
length-n s ignature vector of the kth user,
A = diag( , , )A Am1 K where Ak >0 is the received ampli-
tude of the kth user’s signal, b is a vector of elements bk
where bk ∈ −{ , }1 1 is the bit transmitted by the kth user,
and w is a white Gaussian noise vector with zero mean
and covariance C Iw = σ2 .

Given the received signal y the problem is to detect the
information bits bk of the different users. One approach
consists of estimating the vector x Ab= and then detect-
ing the kth symbol as $ ( )b xk k= sgn where xk is the kth com-
ponent of x.

Estimating x using an LS estimator results in the
well-known decorrelator receiver, first proposed by
Lupas and Verdu [65]. Alternatively, we may estimate x
using the CSLS estimator, which results in a new receiver
which we refer to as the CSMU receiver. The form of this
receiver is discussed in “Covariance Shaping Multiuser
Detection.”

From the general properties of the CSLS estimator [1],
[54], it follows that the CSMU receiver can be imple-
mented as a decorrelator receiver followed by a (weighted)
MMSE covariance shaping transformation that optimally
shapes the covariance of the output of the decorrelator.
The choice of shaping can be tailored to the specific set of
signatures. It can also be shown that this receiver is equiva-
lent to an MF receiver followed by an MMSE covariance
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shaping transformation. Finally, the CSMU receiver can
also be implemented as a correlation demodulator with
correlating signals with inner product matrix R that are
closest in an LS sense to the signature vectors.

In the special case in which R I= , the shaping transfor-
mation is a whitening transformation, and the CSMU re-
ceiver is equivalent to a decorrelator receiver followed by
MMSE whitening. This receiver has been referred to as
the orthogonal multiuser receiver [22], [53]. By allowing
for other choices of R we can improve the performance
over both the decorrelator and the orthogonal multiuser
receiver for a wide range of channel parameters.

To demonstrate the performance advantage in using
the CSLS estimator, we consider the case in which the sig-
nature vectors are chosen as pseudonoise sequences cor-
responding to maximal-length, shift-register sequences
[64], [66], so that

s sk l

l k
n l k

*
, ;

/ , .=
=

− ≠



1
1 (41)

The shaping R is chosen as a circulant matrix with param-
eter ρ:

R =

⋅ ⋅ ⋅
⋅ ⋅ ⋅

⋅ ⋅ ⋅
















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

1
1

1

ρ ρ ρ
ρ ρ ρ

ρ ρ ρ
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.

(42)

Fig. 12 compares the theoretical probability of bit error
of the CSMU receiver in the case of ten users with ρ =035.
and with accurate power control so that Am =1 for all m.
The corresponding curves for the decorrelator, MF, and
linear MMSE receivers are plotted for comparison. The
MMSE receiver is the linear receiver that maximizes the
signal-to-interference ratio and, unlike the decorrelator,
MF, and CSMU receivers, requires knowledge of the chan-
nel parameters. We see that the CSMU receiver performs
better than the decorrelator and the MF and performs sim-
ilarly to the linear MMSE receiver, even though it does not
rely on knowledge of the channel parameters.

In [67] we develop methods to analyze the output sig-
nal-to-interference+noise ratio (SINR) of the CSMU receiver
in the large system limit. We show that the SINR converges to
a deterministic limit and compare this limit to the known
SINRlimits for thedecorrelator,MF,and linearMMSEreceiv-
ers [67]-[69]. The analysis suggests that this modified receiver
can lead to improved performance over the decorrelator and
MF receiver and can approach the performance of the linear
MMSEreceiverover awide rangeof channelparameterswith-
out requiring knowledge of these parameters.

Applications of Subspace Measurements
Simple Subspace Measurements
A simple subspace QSP measurement is equivalent to a
linear projection operator. Numerous signal processing
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Covariance Shaping Multiuser Detection

The CSMU detector results from estimating x = Ab
in (34) using the CSLS estimator, which in the case

of linearly independent signature vectors leads to the
estimator

$ ( )* / *xCSLS = −RS S RS y1 2 ,

(35)

whereR is any positive-definite Hermitian matrix. Note
that the scaling of $xCSLS will not effect the detector out-
put and therefore can be chosen arbitrarily. The result-
ing receiver cross-correlates y with each of the
columns qk of Q = −SR S SR( )* /1 2 to yield the outputs
dk k= q y* . The kth users’ bit is then detected as
$ ( )b dk k= sgn .

In the large system limit when both the number of us-
ers and the length of the signature vectors goes to infinity
with fixed ratio β = n m/ , it can be shown that the SINR γ
at the output of the CSMU detector withR I= converges to
a deterministic limit when random Gaussian signatures
and accurate power control are used. Specifically, in [53]
we show that

( ) ( )[ ]

γ

η η η η η η η η
π β ζ

. .
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−
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m s
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where1/ ζ is the received SNR,
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dt

k t

dx

x k x
( )

sin ( )( )

/
=

−
=

− −
∫ ∫

1 1 12 20

2

2 2 20

1π

(37)

E k k tdt
k x
x

dx( ) sin
/

= − = −
−∫ ∫1

1
1

2 2

0

2 2 2

20

1π

(38)

are the complete elliptic integrals of the first and sec-
ond kinds, respectively [104], and

( )η β1

2

1= −

(39)

( )η β2

2

1= + .

(40)

The notation →m.s.
denotes convergence in the

mean-squared (L2) sense [105].



and detection algorithms based on orthogonal projec-
tions have been developed. Algorithms based on
oblique projections have received much less attention in
the signal processing literature. Recently, oblique pro-
jections have been applied to various detection prob-
lems [70], [71], to signal and parameter estimation
[72], to computation of wavelet transforms [73], and to
the formulation of consistent interpolation and sam-
pling methods [20], [74].

In [20] the authors develop consistent reconstruction
algorithms for sampled signals, in which the recon-
structed signal is in general not equal to the original signal
but nonetheless yields the same samples. Using a simple
subspace QSP measurement corresponding to an oblique
projection operator, in [23] and [24] the results of [20]
are extended to a broader framework that can be applied
to arbitrary subspaces of an arbitrary Hilbert space, as
well as arbitrary input signals. The algorithms developed
yield perfect reconstruction for signals in a subspace of �,
and consistent reconstruction for arbitrary signals, so that
this framework includes the more restrictive perfect re-
construction theories as special cases. This framework
leads to some new sampling theorems and can also be
used to construct signals from a certain class with pre-
scribed properties [75]. For example, we can use this
framework to construct a finite-length signal with speci-
fied low-pass coefficients or an odd-symmetric signal
with specified local averages.

Subspace Coding and Decoding
Subspace measurements also lead to interesting and po-
tentially useful coding and decoding methods for com-
munication-based applications over a variety of channel
models. In particular, in [1] a subspace approach for
transmitting information over a noisy channel is pro-
posed, in which the information is encoded in disjoint
subspaces. To detect the information, we design a receiver
based on a subspace QSP measurement and show that for
a certain class of channel models this receiver implements
a generalized likelihood ratio test. Although the discus-
sion constitutes a rather preliminary exploration of such
coding techniques, it represents an interesting and poten-
tially useful model for communication in many contexts.
In particular, decoding methods suggested by the QSP
framework may prove useful in the context of recent ad-
vances in multiple-antenna coding techniques [76], [77].

Combined Measurements
An interesting class of measurements in quantum me-
chanics results from restricting measurements to a
subspace in which the quantum system is known a pri-
ori to lie. This leads to the notion of generalized mea-
surements, or positive operator-valued measures
(POVMs) [78], [79]. It can be shown that a general-
ized measurement on a quantum system can be imple-
mented by performing a standard measurement on a

larger system. Alternatively, we can view a generalized
quantum measurement as a combination of a standard
measurement followed by an orthogonal projection
onto a lower space.

Drawing from the quantum mechanical POVM, as
part of the QSP framework we also consider combined
QSP measurements. The QSP analogue of a quantum
POVM is a ROM followed by a simple subspace QSP
measurement corresponding to an orthogonal projection
operator. Since the QSP framework does not depend on
the physics associated with quantum mechanics, we may
extend the notion of a (physically realizable) POVM to
include other forms of combined QSP measurements,
where we perform any two measurements successively.
As developed further in [1], such measurements lead to a
variety of extensions and rich insights into frames, to new
classes of frames, and to the concept of oblique frame ex-
pansions. This framework also leads to subspace MF de-
tectors and randomized algorithms for improving
worst-case performance.

Combined Measurements and Tight Frames
Emulating the quantum POVM leads to combined mea-
surements where a ROM is followed by an orthogonal
projection onto a subspace �. Such measurements are
characterized by an effective set of measurement vectors.
In [80] we show that the family of possible effective mea-
surement vectors in � is equal to the family of rank-one
POVMs on � and is precisely the family of (normalized)
tight frames for �.

Frames are generalizations of bases which lead to re-
dundant signal expansions [81], [82]. A frame for a
Hilbert space � is a set of not necessarily linearly inde-
pendent vectors that spans � and has some additional
properties. Frames were first introduced by Duffin and
Schaeffer [81] in the context of nonharmonic Fourier se-
ries and play an important role in the theory of nonuni-
form sampling [81]-[83]. Recent interest in frames has
been motivated in part by their utility in analyzing wave-
let expansions [84], [85]. A tight frame is a special case of
a frame for which the reconstruction formula is particu-
larly simple and is reminiscent of an orthogonal basis ex-
pansion, even though the frame vectors in the expansion
are linearly dependent.

Exploiting the equivalence between tight frames and
quantum POVMs, we develop frame-theoretic analogues
of various quantum-mechanical concepts and results
[80]. In particular, motivated by the construction of opti-
mal LS quantum measurements [32], we consider the
problem of constructing optimal LS tight frames for a
subspace � from a given set of vectors that span �.

The problem of frame design has received relatively lit-
tle attention in the frame literature. A popular frame con-
struction from a given set of vectors is the canonical frame
[86]-[89], first proposed in the context of wavelets in
[90]. The canonical frame is relatively simple to con-
struct, can be determined directly from the given vectors,
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and plays an important role in wavelet theory [18], [91],
[92]. In [80] we show that the canonical frame vectors
are proportional to the LS frame vectors.

This relationship between combined measurements
and frames suggests an alternative definition of frames in
terms of projections of a set of linearly independent sig-
nals in a larger space. This perspective provides additional
insights into frames and suggests a systematic approach
for generating new classes of frames by changing the
properties of the signals or changing the properties of the
projection.

Geometrically Uniform Frames
In the context of a single QSP measurement, we have seen
that imposing inner product constraints on the measure-
ment vectors of a ROM leads to interesting new process-
ing techniques. Similarly, in the context of combined
measurements imposing such constraints leads to the def-
inition of geometrically uniform frames [93]. This class of
frames is highly structured, resulting in nice computa-
tional properties, and possesses strong symmetries that
may be advantageous in a variety of applications such as
channel coding [94]-[96] and multiple description
source coding [97]. Further results regarding these
frames are developed in [93].

Consistent Sampling and
Oblique Dual Frame Vectors
We also explore extensions of frames that result from
choosing an oblique projection operator onto �. In this
case the the measurement is described in terms of two
sets of effective measurement vectors, where the first
set forms a frame for � and the second set forms what
we define as an oblique dual frame. The frame operator
corresponding to these vectors is referred to as an
oblique dual frame operator and is a generalization of the
well-known dual frame operator [86]. As we show in
[23], these frame vectors have properties that are very
similar to those of the conventional dual frame vectors.
However, in contrast with the dual frame vectors, they
are not constrained to lie in the same space as the origi-
nal frame vectors. Thus, using oblique dual frame vec-
tors we can extend the notion of a frame expansion to
include redundant expansions in which the analysis
frame vectors and the synthesis frame vectors lie in dif-
ferent spaces.

Based on the concept of oblique dual frame vectors, in
[23] we develop redundant consistent sampling proce-
dures with (almost) arbitrary sampling and reconstruc-
tion spaces. By allowing for arbitrary spaces, the
sampling and reconstruction algorithms can be greatly
simplified in many cases with only a minor increase in ap-
proximation error [20], [21], [98]-[101]. By using
oblique dual frame vectors, we can further simplify the
sampling and reconstruction processes while still retain-
ing the flexibility of choosing the spaces almost arbi-

trarily, due to the extra degrees of freedom offered by the
use of frames that allow us to construct frames with pre-
scribed properties [84], [102]. Furthermore, if the mea-
surements are quantized prior to reconstruction, then as
we show the average power of the reconstruction, error
using this redundant procedure can be reduced by as
much as the redundancy of the frame in comparison with
the nonredundant procedure.
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