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procedures, appropriate to the different file types, to compare their re-
sistance to noise with our NCD results.
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Optimal Encoding of Classical Information in a
Quantum Medium

Noam Elron and Yonina C. Eldar, Member, IEEE

Abstract—We investigate optimal encoding and retrieval of digital data,
when the storage/communication medium is described by quantum me-
chanics. We assume an m-ary alphabet with arbitrary prior distribution,
and an n-dimensional quantum system. Under these constraints, we seek
an encoding–retrieval setup, comprised of code-states and a quantum mea-
surement, which maximizes the probability of correct detection. In our de-
velopment, we consider two cases. In the first, the measurement is prede-
fined and we seek the optimal code-states. In the second, optimization is
performed on both the code-states and the measurement. We show that one
cannot outperform “pseudo-classical transmission,” in which we transmit
n symbols with orthogonal code-states, and discard the remaining symbols.
However, such pseudo-classical transmission is not the only optimum. We
fully characterize the collection of optimal setups, and briefly discuss the
links between our findings and applications such as quantum key distribu-
tion and quantum computing.

Index Terms—Bilinear matrix inequality, quantum detection, quantum
key distribution, semidefinite programming, transmitter design.

I. INTRODUCTION

Underlying any scheme for the storage or transmission of informa-
tion is a physical medium. The encoding and the retrieval of infor-
mation must therefore involve considerations as to the nature of the
medium, with regard to possible corruption of the retrieved data, due
to interaction with the environment or to physical limitations of the
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medium itself. This work is concerned with the encoding of digital in-
formation in media, whose physics is described by the laws of quantum
mechanics [1].

We concentrate on digital information with a finite alphabet, i.e., the
data is one of m possible messages, each one associated with a prior
probability pi. Retrieval of the data is done by performing a measure-
ment, thereby detecting the state of the system.

In classical models of communication channels (e.g., the additive
white Gaussian noise (AGWN) channel), much effort has been made
to find optimal constellations, i.e., a set of signals and a detector, which
minimize the detection error [2], [3]. The aim of this correspondence
is to do the same for a quantum model of a communications link.

The state of a quantum system is mathematically represented by a
unit trace positive semidefinite operator � on an n-dimensional Hilbert
space H. Encoding digital information in a quantum system is done
by preparing the system in one of m predefined states f�igmi=1, each
associated with one of the possible messages.

Retrieval is achieved by performing a quantum measurement, and
determining in which of these predetermined states the system has been
prepared. The outcome of a measurement is random, i.e., a quantum
encoding–retrieval setup is characterized by transition probabilities

Prfi j jg Prfout = symbol i j in = symbol jg:

This is reminiscent of the more common classical setups, but whereas
the randomness there is induced by noise from the environment, in
the quantum model, the randomness is inherent in the system itself.
In the general case, no quantum measurement can determine without
fail which of the states is present; there is a nonzero probability of de-
tection error, i.e., Prfi j jg > 0 for i 6= j. The question is then, what
collection of code-states f�ig and valid quantum measurement would
yield favorable performance. A popular measure of performance is the
probability of correct detection

Pd =

m

i=1

pi Prfi j ig:

The focus of this correspondence is the design of a complete digital
communications channel (or memory unit), in which the designer can
choose both the code-states �i and the detection measurement. We as-
sume that the nature of the data, which is designated by the number of
possible symbols m and their prior probabilities pi, is known. We also
assume that the dimension n of the quantum system is given. The di-
mension of the quantum system determines the ability of the medium
to transmit (or store) data reliably, much like the signal-to-noise ratio
in classical systems.

Thus, we seek the optimal setup, comprised of code-states and a mea-
surement that maximize Pd under a constraint of the dimension n of
the system. We find the maximum attainable value of Pd for data with
an arbitrary prior distribution, and completely characterize the optimal
setups, which achieve this value of Pd.

When the number of symbols m is no larger than the dimension of
the Hilbert space n, one can simply choose �i as orthogonal pure states
and attain perfect detection. When m > n, this is no longer possible,
and quantum encoding becomes nontrivial.

Motivation for using many symbols in a quantum system of low di-
mension may stem from benefits, which a protocol provides, for which
one is willing to sacrifice the probability of detection or the informa-
tion rate. For instance, in protocols of quantum key distribution [4], the
use of many states enables the detection of eavesdropping on the com-
munication. In Section V-C we elaborate on this point.
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This problem also has relevance for quantum computation in prac-
tical situations. Assume one wishes to conduct a computation which
has a number of outputs m, but due to technological or budget lim-
itations, cannot realize enough qubits such that the dimension of the
system is large enough. The possible outputs cannot be encoded using
the “computational basis” vectors, since there are not enough of them.
By applying our results, a quantum algorithm can be designed, such
that the probability of error in the outcome is small.

The problem of distinguishing among a collection of specified
quantum states, i.e., when the code-states �i are a given, is regularly
referred to as quantum detection or quantum state discrimination,
and has been studied in detail. Necessary and sufficient conditions
for an optimal measurement, which maximizes the probability of
correct detection Pd, have been derived [5]–[7]. Explicit solutions to
the problem are known in some particular cases [8]–[12], including
ensembles obeying a large class of symmetries [13]. The optimal
measurement can also be calculated numerically, to within arbitrary
accuracy, and in polynomial complexity [7].

Several alternative approaches have also been investigated. These
include optimization with regard to other performance criteria, such
as mutual information [5] or the worst case posterior probability
[14]. Another approach is unambiguous detection [15]–[17] in which
one allows for an inconclusive result but does not allow for error.
More recently, interest has grown in detection in a noisy environment
[18]–[20], and in situations where the states are only partially known
[21] or the prior probabilities not specified [22].

In Section II, the problem is presented in more detail. Then, in Sec-
tion III, we show that the optimal code-states for a predetermined mea-
surement are states which lie in the eigenspaces of the measurement
operators associated with the maximal eigenvalues. This result is of
interest both in its own right, and as part of the design of complete op-
timal encoding–retrieval setups.

Sections IV and V are the heart of this work. In Section IV, we show
that when encoding digital information in a quantum system of dimen-
sion n, the maximum attainable probability of correct detection may
be achieved by simply discarding m� n of the symbols and using an
orthonormal set to encode the remaining n symbols with perfect recon-
struction. We dub this method pseudo-classical transmission. This is,
however, not the only possible encoding–retrieval setup which achieves
the maximal value of Pd. In Section V, we show that all setups that
attain the maximum are composed of pure code-states and of rank-1
measurement operators, and fully characterize the collection of optimal
setups. The importance of finding all the optimal setups is discussed in
Subsection V-C, where we outline possible use of our results in the
analysis of quantum communication and computation protocols.

II. PROBLEM FORMULATION

A. Notation

According to the postulates of quantum mechanics [1], a physical
system is mathematically represented by an n-dimensional complex
Hilbert space H. The state of the system � is represented by a positive
semidefinite (PSD) Hermitian operator on H, such that Tr(�) = 1.
Throughout, we shall use the notation A � 0 to indicate that an oper-
ator A is PSD, and the notation A � B to imply that A � B is PSD.
If rank(�) = 1, then it is known as a pure state.

As is customary in work relating to quantum theory, we shall use
Dirac’s notation of linear algebra, wherein a vector is denoted by jui,
its Hermitian conjugate by huj, and inner and outer products are signi-
fied by hu j vi and juihvj, respectively. We do not assume that jui is
normalized. We denote by R(A) the range space of a Hermitian oper-
ator A, and by M(A) the eigenspace of its maximal eigenvalue.

B. Encoding Data in Quantum Media

We wish to encode digital information in a quantum medium. The
information is represented by an m-ary alphabet, where each symbol
has a prior probability pi. Without loss of generality, we assume that
the prior distribution obeys p1 � p2 � � � � � pm > 0. The encoding is
achieved by associating with each symbol a predefined quantum state
�i, and preparing the system in the appropriate state. We shall refer to
the states �i as code-states. To a set of code-states f�igmi=1 we refer as
an ensemble.

Retrieval of the information is accomplished by using a positive op-
erator valued measurement (POVM), which is a set of m operators
� = f�ig

m

i=1, which satisfy

�i � 0; 1 � i � m
m

i=1

�i = I:

This is the most general type of measurement allowed by the laws of
quantum physics.

The measurement results in one of m possible outcomes, where,
given that the state of the system is �, the probability of the ith out-
come is

Prfig = Tr(�i�):

Thus, the probability of correctly detecting the encoded message is

Pd(f�ig; f�ig) =

m

i=1

piTr(�i�i):

We use Pd as the criterion for measuring the quality of an encoding–re-
trieval setup.

In the next section, we find the optimal code-states, in the sense of
maximal Pd, for a given measurement. We then characterize, in Sec-
tions IV and V, all optimal encoding–retrieval setups, when the design
specifications are the nature of the data (the prior probabilities pi), and
the dimension n of the quantum system.

III. DESIGNING CODE-STATES FOR AN ARBITRARY MEASUREMENT

In this section, we answer the following question. If the detector, i.e.,
the measurement �, and the prior probabilities of the data pi are pre-
determined, what would be a good choice of code-states �i to encode
the data in a quantum medium of dimension n, in terms of Pd? This
question is of interest, due to possible implementation restrictions on
the detector. As indicated in the introduction, the reverse situation, that
of designing a measurement to discriminate among arbitrary states, has
been thoroughly studied.

Our result is stated formally in Theorem 1.

Theorem 1: Let fpigmi=1 be a probability distribution, and let
f�ig

m

i=1 be the measurement operators of a detector. An ensemble of
quantum states f�igmi=1 maximizes Pd if and only if

R(�i) �M(�i):

Denoting the maximal eigenvalue of �i as �max� , the maximal proba-
bility of correct detection is given by

P
opt

d
=

m

i=1

pi�
max
� :
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Note that for all i such that �i = 0, one has that M(�) = H, and
any choice of �i is optimal.

Proof: The optimal states �̂i are a solution to

max
�

m

i=1

piTr(�i�i)

s.t.
�i � 0

Tr(�i) = 1:
(1)

The objective function in (1) is additive in the variables �i, and the
constraints on each of the �i are independent. Hence, (1) is separable in
i, i.e., the states �̂i are optimal if and only if they are also the solutions
to m problems of the form (one for each i)

max
�

Tr(��)

s.t.
� � 0

Tr(�) = 1:
(2)

Any quantum state �, such that � � 0 and Tr(�) = 1, has an eigen-
decomposition of the form

� =

n

j=1

gj jujihuj j;

where gj � 0; n

j=1
gj = 1, and huj juji = 1. Since � � 0, we

have that

Tr(��) =

n

j=1

gjhuj j�juji

� hûj�jûi

n

j=1

gj

= hûj�jûi

� �
max

�

where hûj�jûi = maxjhuj j�juji and �max� is the largest eigenvalue
of �. If � = 0, then the upper bound is zero and any � � 0 is optimal.
When � 6= 0, equality is achieved if Tr(��) = �max� , i.e., only when
� lies in the eigenspace corresponding to �max� .

Note that the optimal code-states �̂i are independent of each other
and of the prior probabilities pi. Also, note that the optima (the solu-
tions of the problem (1)) form a convex set.

Corollary 1.1: If for all i;dimM(�i) = 1, then the ensemble
which maximizes Pd is unique.

Proof: When dimM(�i) = 1 then �i must be the pure state
which spans M(�i), which is unique (due to the requirement of nor-
malization). If this is true for all i, then the entire set of code-states is
unique.

In applications, one may have the freedom to choose which symbol
will be detected by which of the detection operators. Recalling that,
we assumed the prior probabilities pi to be sorted in descending order,
maximal Pd can be attained when the detection operators are sorted
such that �max� � �max� � � � � � �max� . Doing this, and selecting
the optimal code-states as above, will lead to the maximal value of
Pd =

i
pi�

max

� .

IV. OPTIMAL QUANTUM ENCODING

We now find the maximal attainable value of Pd when encoding data
in a quantum medium. We assume that the nature of the data itself,

which is manifested in the prior probabilities pi, is predetermined, and
so is the quantum system itself (i.e., the dimension n). We aim to find
an encoding–retrieval setup that maximizes Pd.

Thus, our goal is to find the solutions to

max
� ;�

m

i=1

piTr(�i�i)

s.t.
�i � 0; Tr(�i) = 1

�i � 0; m

i=1
�i = I:

(3)

This optimization problem is of a class known as Bilinear Matrix In-
equality (BMI) problems [23]. BMIs are nonconvex, and in general,
finding a global optimum is an NP-hard problem [24]. Nonetheless,
for this particular BMI (3), we are able to formulate a closed-form so-
lution, and to completely specify the optimal set.

When the dimension n of the quantum system is equal to the number
of possible messages m, then perfect retrieval (Pd = 1) is achievable
by choosing the code-states �i to be mutually orthogonal pure states,
and the measurement such that �i = �i. When n < m, this is no
longer possible. The most straightforward approach to quantum en-
coding when n < m is to simply disregard m � n of the messages
and aim to perfectly retrieve the remaining n messages. It is clear that
the smallest probability of error will occur if the disregarded messages
are the ones with smallest prior probabilities. Thus, this approach is
embodied in the ensemble–detector setup

�i =
juiihuij; 1 � i � n

0; n < i � m

�i =
juiihuij; 1 � i � n

don't care; n < i � m
(4)

where fjuiigni=1 is some orthonormal system. When using this setup
Pd = n

i=1
pi.

The distinction between classical and quantum systems is very
strongly linked to the fact that nonorthogonality between two quantum
states affects the ability to distinguish between them. There is no
classical analogue of this property. When the states that a quantum
system may be in are mutually orthogonal, it is said to be in “the
classical limit.” The fact that the setup (4) is comprised only of pure
mutually orthogonal states implies that it is classical in nature and
that the losses encountered are not due to the fact that the system
is governed by quantum mechanics, but to a lossy preprocessing
(disregarding some of the messages). In the sequel, we refer to (4) as
pseudo-classical transmission.

It would, at first glance, seem that one may somehow be able to uti-
lize the “quantumness” of the system, i.e., nonorthogonal code-states
and measurements, in order to improve the probability of correct de-
tection Pd. We now formulate and prove a theorem which shows this
to be impossible.

Theorem 2: Let fpigmi=1 be a probability distribution with p1 �
p2 � � � � � pm < 0. Denoting by P̂d the maximal probability of
correct detection for a quantum system of dimension n � m, we have
that

P̂d =

n

i=1

pi:

Proof: Let ~Pd = n

i=1
pi. Since the pseudo-classical setup (4)

achieves Pd(f�ig; f�ig) = ~Pd, we have that P̂d � ~Pd. We prove
the theorem by showing that P̂d � ~Pd.
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The maximal value of Pd is the solution of (3). From Theorem 1,
after maximizing with respect to �i, (3) reduces to

max
�

m

i=1

pi�
max
�

s.t.

�i � 0 (a)
m

i=1

�i = I: (b)
(5)

The constraint (5a) implies that

�
max
� � 0; 1 � i � m (6)

and from (5b)

�
max
� � 1; 1 � i � m
m

i=1

�
max
� � n: (7)

(The bottom expression in (7) is obtained by taking the trace of (5b)).
We now replace (5) by a scalar program

max
�

m

i=1

pi�i

s.t.

0 � �i � 1
m

i=1

�i � n: (8)

Problem (8) was created by relaxing the constraints of problem (5)—we
keep only the constraints on the eigenvalues and disregard the original
matrix–inequality constraints. Therefore, the solution of (8) is always
larger or equal to the solution of (5), and thus, serves as an upper bound.

The optimization problem (8) is a linear program. Its Lagrange dual
[25] is given by

min
� ;� ;�

g(�i; �)

s.t.
�i; �i; � � 0 (a)

pi � �i + �i � � = 0 (b)
(9)

where 1 � i � m and

g(�i; �) =

m

i=1

�i + n�:

Using the constraint (9b), the variables �i can be eliminated, yielding

min
� ;�

g(�i; �)

s.t.
�i; � � 0 (a)

�i + � � pi: (b)
(10)

From Lagrange duality theory, for any point in the feasibility set
of (10), the objective g(�i; �) is greater or equal to the solution of
the primal problem (8). In other words, for any dual feasible point
(�; �); g(�i; �) is an upper bound on the solution of (5). Consider

�̂i =
pi � pn+1; 1 � i � n

0; n < i � m

�̂ = pn+1: (11)

Because p1 � � � � � pm it is dual feasible. For this choice

g(�̂i; �̂) =

m

i=1

�̂i + n�̂ =

n

i=1

(�̂i + �̂) =

n

i=1

pi:

In conclusion, we have shown that

max(3) = max(5) � max(8) � min(10) �

n

i=1

pi

which implies that for any valid ensemble and detector

Pd =

m

i=1

piTr(�i�i) � ~Pd:

The implication of Theorem 2 is that one can achieve the optimal
probability of correct detection by using orthogonal pure states and
von Neumann measurements, which are easy to implement. Never-
theless, there may be setups f�i;�ig

m
i=1 other then (4) which attain

Pd(f�ig; f�ig) = P̂d. In the next section, we identify all the en-
semble–detector setups which achieve maximum probability of correct
detection. The importance of characterizing the set of optima is that we
may be able to select an optimum that has preferable performance with
regard to other quality of service measures. Also, there may be com-
munication protocols which require using a “nonclassical” ensemble.
These aspects are discussed in greater detail in Section V-C.

V. CHARACTERIZATION OF OPTIMAL SETUPS

In this section, we introduce the notion of tight frame encoding
setups, and show that all optima are of this form (Theorem 3). We
then fully characterize the set of optima for a given prior probability
distribution (Theorem 4 and corollaries).

A. Tight Frame Encoding Setups

A tight frame [26] is a set of m vectors fjuiigmi=1 which satisfy

m

i=1

juiihuij = I: (12)

We define a “Tight Frame Encoding Setup” (TFES) to be an en-
semble–detector setup of the form

�i = juiihuij;

�i =
1

hu ju i
juiihuij; hui j uii > 0

don't care; hui j uii = 0

where the vectors juii obey (12). The pseudo-classical setup (4) is an
example of a TFES. The probability of correct detection when using a
TFES is Pd = m

i=1
pihui juii.

The constraint (12) on the vectors ensures that � is a valid POVM.
It also implies several properties of the vectors juii, which are summa-
rized in the following lemma.

Lemma 1: Let fjuiigmi=1 be a set of vectors which satisfy (12). Then

hui juii � 1 (13)

if hui juii = 1 then hui j uji = �i;j (14)
m

i=1

hui juii = n: (15)
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Proof: Can be found in many texts on tight frames, e.g.,
[27], [28].

Tight frames are of interest in many fields and applications where
one seeks a set of vectors whose mutual “interference” is minimal.
Specifically, in classical communication, they play an important role in
syncronous code-division multiple-access (CDMA) systems [29], [30].
Also, the simplex constellation, which is known to be optimal under
certain energy constraints [2], is a tight frame.

The significance of TFESs to quantum encoding is established by
the following result.

Theorem 3: All ensemble–detector setups f�̂i; �̂ig
m
i=1 which

achieve Pd(f�̂ig; f�̂ig) = P̂d are TFESs.

The proof of Theorem 3, relies on the following lemma, whose proof
is given in the Appendix.

Lemma 2: For any ensemble–detector setup (�̂i; �̂i)which achieves
Pd(f�̂ig; f�̂ig) = P̂d, the largest eigenvalues of the detection opera-
tors satisfy

m

i=1

�
max

�̂
= n:

Proof (of Theorem 3): For any POVM, we have that

Tr(�i) � �
max
� (16)

m

i=1

Tr(�i) = n (17)

where (17) comes from taking the trace of the requirement
m

i=1
�̂i = I .

Assume that an ensemble–detector setup f�̂i; �̂ig achieves P̂d.
Using (17) with Lemma 2, we get that

m

i=1

Tr(�̂i) =

m

i=1

�
max

�̂

which, in conjunction with (16), shows that for any such detector

Tr(�̂i) = �
max

�̂
; 1 � i � m

This in turn implies that

rank(�̂i) � 1; 1 � i � m

i.e., the detection elements of any detector which is part of an optimal
setup are of the form �̂i = juiihuij (where juii may also be the null
vector). In order for �̂ to be a valid POVM, the set of vectors fjuiigmi=1
must obey (12).

Since f�̂i; �̂ig is assumed to be an optimal setup, then �̂i must be an
optimal ensemble for the detector �̂. Thus, from Theorem 1 we have
that for any i, such that hui j uii > 0

�̂i =
1

hui juii
juiihuij:

If hui j uii = 0, then �̂i can be any quantum state.

An interesting aspect of the above result is that P̂d can only be at-
tained by setups in which the detected code-states (those for which the
corresponding measurement operator is not zero) are pure states. This
is hardly surprising, since obviously, for mixed states the chances of
“interference” between code-states are greater.

B. Choice of TFES

From Theorem 3 we know that all optima are TFESs. Not all choices
of TFES are, however, necessarily optimal. We now show that the set of
optimal TFESs is dependent on the prior probabilities fpigmi=1, and on
the dimension of the quantum medium n, and characterize this depen-
dence. The following results (Theorem 4 and corollaries) fully char-
acterize all optimal solutions for a given prior distribution and dimen-
sion n.

In order to formulate our results, we introduce a classification of the
symbols into three distinct subsets, according to the prior probability
distribution and the dimension n. Recalling that we assume p1 � p2 �
� � � � pm, we define

• I1 = fi j pi > png,
• I2 = fi j pi = png,
• I3 = fi j pi < png.

Note that I1 and I3 may be empty.

Theorem 4: Let fpigmi=1 be a nonincreasing distribution of probabil-
ities, and let fjuiigmi=1 be the vectors of a TFES in a quantum system
of dimension n. This TFES is optimal in the sense of probability of
correct detection if and only if i) for all i 2 I1; hui juii = 1, and ii)
for all i 2 I3; hui j uii = 0.

Before proving Theorem 4, we point out the following important
corollaries.

Corollary 4.1: Let fpigmi=1 be a nonincreasing distribution of proba-
bilities, and let f�̂i; �̂ig

m
i=1 be an optimal encoding setup in a quantum

system of dimension n. Then
1) Prfj j ig = �i;j ; i 2 I1,
2) Prfdetect ig = 0; i 2 I3.

Proof: From Theorem 3, we know that the ensemble–detector
setup is a TFES. From Theorem 4, for all i 2 I1; �̂i = juiihuij, such
that hui juii = 1. Together with (14), it is easy to see that

Prfj j ig = Tr(�̂j �̂i) =
1

hui juii
jhui jujij

2 = �i;j :

Also from Theorem 4, for all i 2 I3; �̂i = 0, indicating that
the probability of detecting the ith message is Prfdetect ig =

j
pjTr(�̂i�̂j) = 0.

Corollary 4.2: Let fpigmi=1 be a nonincreasing distribution of prob-
abilities. If pn > pn+1 then any optimal setup f�̂i; �̂ig

m
i=1 must be of

the form (4) (pseudo-classical).
Proof: From Theorem 3, the optimal setup must be a TFES. When

pn > pn+1, we have I3 = fn+ 1; . . . ; mg, which, using Theorem 4,
indicates that

hui juii = 0; n+ 1 � i � m:

Together with (12) this implies

n

i=1

juiihuij = I: (18)

A set of n vectors in n-dimensional space can satisfy (18) if and only
if they form an orthonormal set. Thus, the only optimal setup when
pn > pn+1 is (4).

Corollary 4.3: If pi = 1

m
for all i, then all TFESs achieve P̂d.

Proof: The Corollary follows directly from Theorem 4, for I1 =
I3 = ;.

We now prove Theorem 4.
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Proof (of Theorem 4): Assume that fjuiigmi=1 are the vectors of
a TFES which is optimal in the sense of Pd. Assume that I1 6= ; and
denote by k the largest index in I1 (i.e., I1 = f1; . . . ; kg). This means
that pk > pk+1 = pk+2 = � � � = pn (from the definition of I1, we
have that k < n). For any TFES we can write

Pd =

m

i=1

pihui juii

=

k

i=1

pihui juii+
m

i=k+1

pihui juii

�
k

i=1

pihui juii+ pk+1

m

i=k+1

hui juii (19)

=

k

i=1

pihui juii+ pk+1 n�
k

i=1

hui juii (20)

=

k

i=1

[pihui juii+ pk+1(1� hui juii)] + (n� k)pk+1 (21)

where the transition from (19) to (21) relies on (15).
Recall that for all i 2 I1 we have pi > pk+1. If for some 1 � i �

k; hui j uii < 1, then from (21)

Pd <

k

i=1

[pihui j uii+ pi(1� hui juii)] + (n� k)pk+1

=

k

i=1

pi + (n� k)pk+1 =

n

i=1

pi = P̂d:

Here we have relied on the fact that pk+1 = pk+2 = � � � = pn.
Therefore, in order to achieve P̂d, the vectors juii must satisfy

hui juii = 1; i 2 I1:

This concludes the proof of the first statement of the “only if” direction.
We go on to prove the second statement. Assume that k0 =

max I2 < m (i.e., I3 = fk0 + 1; . . . ; mg 6= ;). By definition
pk > pk +1. We again have

Pd =

m

i=1

pihui juii =
k

i=1

pihui juii+
m

i=k +1

pihui j uii:

If for some i 2 I3; hui juii > 0, then

Pd <

k

i=1

pihui j uii+ pk

m

i=k +1

hui juii (22)

=

n

i=1

pihui j uii+ pn

m

i=n+1

hui juii (23)

=

n

i=1

pihui j uii+ pn n�
n

i=1

hui juii (24)

=

n

i=1

pihui j uii+ pn

n

i=1

(1� hui j uii)

�
n

i=1

pihui j uii+
n

i=1

pi(1� hui juii)

=

n

i=1

pi = P̂d

where the transitions from (22) to (24) rely on the fact that k0 2 I2 and
on (15). Thus, for any TFES which achieves maximal Pd

hui juii = 0; i 2 I3:

We continue by proving the “if” direction. Assume that for all i 2
I1; hui juii = 1, and that for all i 2 I3; hui juii = 0. We must first
note that under these conditions, using (15) yields

k

i=1

hui juii = n: (25)

If I1 = ;, then I2 = f1; . . . ; k0g. We can then write

Pd =

m

i=1

pihui juii (26)

= p1

k

i=1

hui juii (27)

= np1 =

n

i=1

pi = P̂d (28)

where the transition from (26) to (27) relies on the facts that for all
i > k0; hui juii = 0 and p1 = p2 = � � � = pn. The transition from
(27) to (28) is based on (25).

If I1 = f1; . . . ; kg and I2 = fk + 1; . . . ; k0g then similarly

Pd =

m

i=1

pihui j uii

=

k

i=1

pihui j uii+ pk+1

k

i=k+1

hui juii

=

k

i=1

pi + (n� k)pk+1 =

n

i=1

pi = P̂d

thereby completing the proof.

Theorem 5, below, summarizes the assertions of Theorems 2, 3,
and 4, in concise form, and completely characterizes all optimal
transmitter–receiver setups.

Theorem 5: Let fpigmi=1 be a probability distribution with p1 �
p2 � � � � � pm > 0. For a given number n � m, define the index sets

• I1 = fi j pi > png,
• I2 = fi j pi = png,
• I3 = fi j pi < png.

The maximal probability of correct detection for a quantum system of
dimension n � m is

P̂d =

n

i=1

pi:

The optimum is achieved if and only if the ensemble–detector setup is
of the form

�i = juiihuij

�i =
1

hu ju i
juiihuij; hui j uii > 0

don't care; hui j uii = 0

where the vectors fjuiigmi=1 obey
m

i=1

juiihuij = I

hui juii = 1; i 2 I1

hui juii = 0; i 2 I3:

Put in words, maximum Pd can only be attained by a TFES, where
the messages with high prior probabilities (i 2 I1) are encoded using
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orthogonal code states, and are thus recovered perfectly (Corollary
4.1), and the messages with low prior probabilities (i 2 I3) are
discarded—much like in pseudo-classical encoding. In choosing the
remaining frame vectors, one has freedom and they can be chosen
to be nonorthogonal. Important special cases are when pn+1 > pn,
where one has no freedom and the only optimum is pseudo-classical
encoding (Corollary 4.2), and the equiprobable case pi =

1

m
, where

there is complete freedom in choosing the TFES frame vectors (Corol-
lary 4.3).

C. Application to the Analysis of Communication Protocols

In many applications, additional constraints, other than the ones
imposed by physics, are placed on the encoding-retrieval setup. In
quantum key distribution (QKD) [4], for example, constraints arise
due to the need for security against eavesdropping. Further constraints
may occur due to technical (implementation) issues. Our results can
then serve two purposes. The first is to quantify the degradation in Pd
due to the need to meet the extra design constraints. This can be done
by simply comparing the performance of the constrained system to the
theoretical upper bound P̂d. The second possible use of this work, in
this context, is to search within the set of optimal TFESs for a setup,
which is close to meeting the demands posed by the application. When
taking the latter approach we are assured optimal performance with
regard to Pd.

As an example, consider the BB84 protocol [31]. In this QKD pro-
tocol, Alice wishes to send Bob secure binary information. In order
to counter possible eavesdropping, she sends one of m = 4 messages
with pi = 1

4
over a two-dimensional quantum channel. The code-states

used are denoted juiji, where i; j = 0; 1, and they obey the relations

jhuij jui j ij
2 =

�j;j ; i = i0

1=2; i 6= i0

1

2

1

i;j=0

juijihuij j = I: (29)

Note that (29) indicates that this collection of vectors is a tight frame.
Bob utilizes the POVM (of order 4) �ij = 1

2
huij j uiji, in order

to retrieve Alice’s message. They then exchange knowledge on which
“pair of states” was received (by, for example, comparing the i index).
If both the sent and the detected symbols originate from the same pair,
then the transferred bit of information is taken as the member of the
pair that was detected (the j index). If the symbols originate from dif-
ferent pairs, then the received symbol is discarded. In order to promote
security, Alice and Bob use m > n, at a cost of reduced data rate. The
security of this protocol has been extensively studied (e.g., [32]).

The probability of correct detection achieved by Bob prior to the ex-
change of the i index is Pd = 1=2. This is equal to the upper bound P̂d
for this case, meaning that under the requirement of countering eaves-
dropping, Bob achieves the maximal possible performance. The fact
that the upper bound is reached is hardly surprising in the context of
a protocol as simple as BB84. It does, however, serve to illustrate the
possible use of the unconstrained upper bound P̂d in quantifying the
efficacy of more complex communication protocols.

VI. CONCLUSION

We have addressed the question of retrieval of digital data encoded
in a quantum medium, using as our main performance criterion the
probability of correct detection. We have found the optimal code-states
for an arbitrary detector, and the optimal encoding–retrieval setups for
an arbitrary prior distribution.

In terms of Pd, one cannot do better than pseudo-classical transmis-
sion (orthonormal code-states and measurement operators). We have,
however, indicated that under certain circumstances, there are benefits
for using fully quantum setups (nonorthogonal code-states).

The natural extension of this work is the design of optimal setups
with added constraints. Such constraints may arise due to requirements
other than reliable communication, such as the need for security dis-
cussed above. Constraints may also stem from implementation issues
which are typical to specific quantum systems that regularly serve for
transmission and storage of information.

APPENDIX

PROOF OF LEMMA 2

Assume that (��i; ��) is a feasible point of the program (10), such that
�� = 0. From the constraint (10b), ��i must satisfy ��i � pi and then

g(��i; ��) �

m

i=1

pi >

n

i=1

pi = g(�̂i; �̂)

where (�̂i; �̂) are defined in (11). Thus, (��i; ��) cannot be a dual optimal
point. All dual optimal points must satisfy � 6= 0.

One of the Karush–Kuhn–Tucker (KKT) conditions for the solution
to problem (8) is

� n�

m

i=1

�i = 0:

Since the dual optimal � 6= 0, then any optimal values of �i must
satisfy

m

i=1

�i = n: (A1)

Let f�ig be a POVM, which is part of an optimal ensemble–detector
setup, i.e.,

i
pi�

max
� = P̂d. By choosing

�̂i = �max� (A2)

we get
i
pi�̂i = P̂d, ensuring that �̂i are an optimum of (8), and thus

satisfy (A1). In conjunction with (A2), this proves the lemma.
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A Generalized Bose-Chowla Family of Optical Orthogonal
Codes and Distinct Difference Sets
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Abstract—A new construction of optical orthogonal codes is provided
in this correspondence which is a generalization of the well-known con-
struction of distinct difference set (DDS) by Bose and Chowla. This con-
struction is optimal with respect to the Johnson bound and has parameters
n = q � 1; ! = q; and � = 1.

Index Terms—Distinct difference set (DDS), optical code-division mul-
tiple access (OCDMA), optical orthogonal code (OOC), optical CDMA.

I. INTRODUCTION

Recently, there has been an upsurge of interest in applying code-
division multiple access (CDMA) techniques to optical networks (see,
for example, [1]–[4]). Part of the revived interest in optical CDMA is
on account of the inherent added security, flexibility, and simplicity of
network control that CDMA provides [5].

An (n; !; �) optical orthogonal code (OOC) C where 1 � � � ! �
n is a family of f0; 1g-sequences of length n and Hamming weight !
satisfying

n�1

k=0

x(k)y(k �n � ) � � (1)

whenever either x 6= y or � 6= 0, where by �n we mean addition
modulo n. We will refer to � as the maximum correlation parameter.
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