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We study the low-rank phase retrieval problem, where our goal is to recover a d1 × d2 low-rank matrix
from a series of phaseless linear measurements. This is a fourth-order inverse problem, as we are trying to
recover factors of a matrix that have been observed, indirectly, through some quadratic measurements. We
propose a solution to this problem using the recently introduced technique of anchored regression. This
approach uses two different types of convex relaxations: we replace the quadratic equality constraints
for the phaseless measurements by a search over a polytope and enforce the rank constraint through
nuclear norm regularization. The result is a convex program in the space of d1 × d2 matrices. We analyze
two specific scenarios. In the first, the target matrix is rank-1, and the observations are structured to
correspond to a phaseless blind deconvolution. In the second, the target matrix has general rank, and we
observe the magnitudes of the inner products against a series of independent Gaussian random matrices.
In each of these problems, we show that anchored regression returns an accurate estimate from a near-
optimal number of measurements given that we have access to an anchor matrix of sufficient quality. We
also show how to create such an anchor in the phaseless blind deconvolution problem from an optimal
number of measurements and present a partial result in this direction for the general rank problem.

1. Introduction

We consider the problem of recovering a low-rank matrix X� from phaseless linear measurements of the
form

ym = |〈Φm, X�〉|2 + ξm, m = 1, . . . , M. (1)

We refer to this inverse problem as low-rank phase retrieval (LRPR). LRPR is a combination of two
problems that have received a lot of attention over the past decade. The phase retrieval problem, where
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286 K. LEE ET AL.

the goal is to recover a vector x ∈ R
d from M quadratic measurements of the form |〈x, φm〉|2, is known to

be solvable when the φm are generic and M � d (e.g. see [33] and references therein). There are tractable
algorithms for solving the equations that use convex relaxations based on semi-definite programming
[14, 16, 61] and polytope constraints [6, 28]. There also exist fast iterative algorithms for nonconvex
programming (e.g. [17, 18, 51, 55, 56, 62]). The problem of recovering a d1 × d2 matrix of rank r
from M linear measurements of the form 〈Φm, X〉 has also been thoroughly analyzed in the literature
for generic Φm [12, 53], Φm that return samples of the matrix [13, 15, 36, 52] and Φm with structured
randomness [4, 30]; a survey of these results can be found in [22].

Our contribution in this paper is to show that for certain choices of Φm, we can recover X� from
phaseless measurements (1) from far fewer than d1d2 measurements by taking advantage of the low-
rank structure of X�. Our recovery algorithm uses the recently developed idea of anchored regression
[6, 7]. The common approaches to estimate X� from the nonlinear observations (1) lead to nonconvex
programs. The anchored regression, however, enables estimation by convex programming as follows.
The first step is effectively relaxing the nonlinear equations (1) to convex feasibility constraints. The
second step is to use an anchor matrix X0, which serves as an initial guess for the solution, to formulate
a simple convex program that finds a matrix that is feasible in the relaxed constraints and is best aligned
with X0. When the measurements are noiseless (ξm = 0), we solve

minimizeX −Re 〈X0, X〉 + λ‖X‖∗
subject to |〈Φm, X〉|2 ≤ ym, m = 1, . . . , M.

(2)

This is a convex program over the space of d1×d2 matrices. Geometrically, each constraint |〈Φm, X〉|2 ≤
ym is a convex set that has the target X� on its surface. The program finds an extreme point of the
intersection of these convex sets by minimizing the linear functional −Re 〈X0, X〉 regularized by the
nuclear norm ‖X‖∗ to account for the low-rank structure of the solution. The success of this program
in recovering the target (to within a global phase ambiguity) depends on the behavior of the constraints
around X� and having an anchor X0 sufficiently correlated with X�.

When there is noise, we relax the constraints in (2) and solve

minimizeX −Re 〈X0, X〉 + λ‖X‖∗
subject to 1

M

∑M
m=1(|〈Φm, X〉|2 − ym)+ ≤ η ,

(3)

where (·)+ denotes the positive part function. This yields a stable solution in the sense that if the
conditions for noise-free recovery are met, and we choose η larger than the positive part of the
perturbations, that is,

η = 1

M

M∑
m=1

(−ξm)+ + ε, for some ε ≥ 0,

then the solution X̂ to (3) obeys ‖X̂ − ejθ X�‖F � η for some θ ∈ [0, 2π). Here ε denotes an error in
estimating the average of the positive part of perturbations by η.

We analyze two scenarios in detail. In the first scenario, the target matrix X� is of rank r, and the
measurement matrices Φm have independent real-valued Gaussian entries. Theorem 4.2 below shows
that if we start with an anchor matrix that is sufficiently close to X�, exact recovery occurs when M �
r(d1 + d2) log(d1 + d2). Lemma 4.5 shows that the anchor matrix can be computed from the data by a
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PHASE RETRIEVAL OF LOW-RANK MATRICES BY ANCHORED REGRESSION 287

variation of spectral initialization [17] when the number of measurements M satisfies M � r3κ4(d1 +
d2) log(d1 +d2), where κ denotes the condition number of X�. We also show that the recovery procedure
is stable in the presence of noise.

In our second scenario, the target matrix has rank one, X� = σuv∗ with u ∈ C
d1 , v ∈ C

d2 , ‖u‖2 =
‖v‖2 = 1, as do the measurement matrices, Φm = amb∗

m. As we discuss below, this scenario is a model
for the blind deconvolution of two signals from magnitude measurements in the frequency domain. Our
analysis in Theorem 4.1 below takes the am and bm to be complex-valued independent Gaussian random
vectors. Under this model, we show that anchored regression produces a stable estimate of (u, v) when
M is within a logarithmic factor of d1 + d2. Lemma 4.3 gives a computationally efficient technique for
constructing the anchor in a commensurate number of measurements.

2. Application: blind deconvolution from Fourier magnitude observations

LRPR arises in a variation of the blind deconvolution, which estimates two unknown signals from
the Fourier magnitudes of the convolution. While blind deconvolution is itself an ill-posed, nonlinear
problem, the absence of phase information in the Fourier measurements makes it even more challenging.
The type of phaseless blind deconvolution problem we describe below arises in various applications
in communications and imaging. In optical communications, high spectral efficiency and robustness
against adversarial channel conditions for multiple-input multiple-output channels can be achieved
using orthogonal frequency division multiplexing (OFDM). Calibrating these communication channels
involves solving a blind deconvolution problem. This problem has to be solved from phaseless
observations, as practical direct detection receivers work with intensity-only measurements [5] to
provide robustness against synchronization errors, which has been one of the key issues in the OFDM
systems [10, 54].

A similar calibration problem arises in Fourier ptychography [25]. In this application, an image
is computed from phaseless Fourier domain measurements. If there is uncertainty in the point spread
function of the optical system, recovering the image becomes a phaseless blind deconvolution problem.

Blind deconvolution that identifies unknown signals x, h ∈ C
M (up to reciprocal scaling) from their

circular convolution is in general ill-posed but can be solved with a priori information on x and h. The
circular convolution of x and h can be equivalently expressed in the Fourier domain as the element-wise
product, namely

F(x � h) = √
MFx 
 Fh, (4)

where F ∈ C
M×M is the unitary discrete Fourier matrix of size M.

We will impose subspace priors on x and h, modeling x ∈ C
M as being in the low-dimensional

column space of D ∈ C
M×d1 and h as being in the column space of E ∈ C

M×d2 . Then x and h are
represented as

x = Du and h = Ev, (5)

for some u ∈ C
d1 and v ∈ C

d2 . Here v denotes the entry-wise complex conjugate of v. Let am
denote the mth column of D∗F∗ and bm denote the mth column of E�F� for m = 1, . . . , M. Then
the Fourier measurement of the convolution at frequency m (after an appropriate normalization) is given
as a∗

muv∗bm. Under this subspace model, it suffices to recover u and v.
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288 K. LEE ET AL.

In particular applications, the subspace model for h might be introduced as a linear approximation
of parametric models via principal component analysis. This technique is used for source localization
and channel estimation in underwater acoustics [49, 57]. Some analysis in the context of dimensionality
reduction of manifolds is provided in [24, 48].

In the scenario where only noisy Fourier magnitudes of the convolution is observed, the correspond-
ing quadratic measurements are given in the form of

ym = |a∗
muv∗bm|2 + ξm, m = 1, . . . , M,

where ξ1, . . . , ξM denote additive noise. Through the lifting reformulation [3] that substitutes uv∗ by a
rank-1 matrix X�, the recovery reduces to a LRPR that estimates the unknown rank-1 matrix X� from its
noisy quadratic measurements:

ym = |〈amb∗
m, X�〉|2 + ξm, m = 1, . . . , M. (6)

This is a particular instance of LRPR and generates quadratic measurements with rank-1 matrices
a1b∗

1, . . . , aMb∗
M .

In other words, the recovery combines blind deconvolution and phase retrieval; hence, it suffers
from the ambiguities in both problems. Similar to phase retrieval, the absence of the phases in
the measurements makes the reconstruction a nonconvex problem, even after it has been lifted. By
themselves, both phase retrieval and blind deconvolution amount to solving a system of quadratic
equations. However, the phaseless blind deconvolution problem (6) is a system of fourth-order
equations. Below, we will show that this system can indeed be tractably solved under certain randomness
assumptions on the considered subspaces.

3. Related work

Recovery of a structured signal from nonlinear measurements has received a significant amount of
attention in the past decade, particularly in terms of theoretical analysis of various optimization
formulations. A prominent example is the phase retrieval problem, which recovers an unknown signal
from quadratic measurements. Unique identification of the solution and performance guarantees of
optimization algorithms in the case where the unknown signal is sparse have been recently studied
in [7, 11, 19, 26, 34, 39, 45].

Another example, discussed in the previous section, is the blind deconvolution problem, which
amounts to solving a system of bilinear equations. Although many approaches for blind deconvolution
and its variations have been proposed in the communications, signal processing and computational imag-
ing literature, there has been significant progress in recent years in identifying provable performance
guarantees. These results offer theoretical guarantees on the number of measurements M in (4) as a
function of the subspace dimensions d1, d2 (number of columns of D, E in (5)) needed to recover u, v.
Results that exhibit near-optimal scaling of M versus d1, d2 are known both for convex relaxations of
the problem and for iterative algorithms that minimize a nonconvex loss [3, 32, 44]. These results have
also been extended to sparsity (in place of subspace) models where the recovery is performed through
alternating minimization [42]; however, the near optimal result in this work makes some technical, and
perhaps too restrictive, assumptions on the success of projection steps.

The blind deconvolution problem can be made easier if we have the freedom to obtain diversified
observations. Specifically, the identification of unknown channel impulse responses excited by an
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unknown source has been studied extensively in the communications literature since the 1990s (e.g. [50,
65]). These classical results assumed that the channel responses have finite length and provided algebraic
performance guarantees. In recent years, its generalization to the blind gain and phase calibration
problem has been analyzed and robust optimization algorithms were proposed along with performance
guarantees [2, 21, 41, 43, 46, 47, 63]. There also exists further generalization to the off-the-grid sparsity
models [20, 66].

The nonlinear recovery problem considered in this paper is motivated to study a version of
blind deconvolution where the convolution measurements are observed through certain nonlinearities.
Bendory et al. [9] studied a similar problem arising in blind ptychgraphy and identified a set of
conditions under which a signal can be identified uniquely from the magnitudes of a short-time Fourier
transform taken with an unknown window. In this paper, we are more interested in the recovery by a
practical convex program from Fourier magnitudes. The lifting reformulation renders the reconstruction
problem into phase retrieval of a low-rank matrix.

The problem of recovering a low-rank matrix from phaseless linear measurements can also be
interpreted as a generalization of classical subspace learning (i.e principal components analysis). This
connection was made explicit in [19], where the problem of estimating a covariance matrix from
compressed, streaming data was considered. In a subsequent work, [59] considered the quadratic
subspace learning problem in a more general setting. A regularized gradient descent method was
proposed to solve the LRPR problem, and they provided an analysis for the accuracy of the initialization
step under certain randomness assumptions on the measurement matrices.

Unlike the aforementioned works [19, 59], we take a different approach to solving the LRPR
problem that uses the recently introduced anchored regression [6, 28] technique for relaxing nonlinear
measurements. Unlike lifting techniques, this method recasts phase retrieval as a convex program
without increasing the number of optimization variables. Unlike techniques based on nonconvex
optimization, its analysis relies only on geometry rather than the trajectory of a certain sequence
of iterates, which significantly simplifies the derivations. The anchored regression formulation also
makes it straightforward to incorporate structural priors on the data through the introduction of convex
regularizers [7]. Importantly, we present performance guarantees for stable recovery of low-rank
matrices from its random quadratic measurements, which implies exact reconstruction in the noiseless
case. Previously, it was only shown that the initialization by a truncated spectral method provides an
accurate approximation [59]. After an early version of this paper [40], another approach to the same
problem was independently studied in [1]. In contrast to their work, our approach is not restricted to
the case of rank-1 measurement matrices and more importantly, anchored regression provides flexibility
that allows nonlinearities in the measurement model beyond the quadratic function.

While a general theory for solving equations with convex nonlinearities has been developed, of
which (1) is an example, it still remains to compute the key estimates that depend on the structure of the
problem (the low-rankness in our case). Furthermore, it is crucial to design an appropriate initialization
scheme that provides a valid anchor matrix. We propose a unified approach to the initialization that
takes advantage of the separability of the unknown matrix.

It would be of independent interest to see various estimates on functions of random matrices by
the noncommutative Rosenthal inequality [35]. All of the matrix Bernstein inequalities [37, 58] and
noncommutative Rosenthal inequality [35] provide tail estimates of a sum of independent random
matrices. In applying the matrix Bernstein inequalities, one has to verify that all summands have
bounded spectral norms (deterministically or almost surely) or compute their Orlicz norms. On the
contrary, the noncommutative Rosenthal inequality [35] first computes moment bounds and then
provides a tail estimate by the Markov inequality. Particularly when random matrices are given by a
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290 K. LEE ET AL.

set of Gaussian random variables, the spectral norm is not bounded almost surely and computing the
Orlicz norm of the spectral norm is not trivial. Therefore, it is desirable to derive relevant tail estimates
by using the noncommutative Rosenthal inequality. Additionally, the expectations of high-order tensor
products of Gaussian random vectors in the appendix might be useful in the study of other applications
sharing similar tensor structures.

4. Main results

We have four main results. The first two, presented in Section 4.1, give sample complexity bounds that
relate the accuracy of the estimate returned by (3) to the number of measurements M observed as in (1).
In both cases where the Φms are rank-1 matrices such that

Φm = amb∗
m, am ∼ CN (0, I), bm ∼ CN (0, I), m = 1, . . . , M, (7)

and when they have i.i.d. standard Gaussian entries, i.e.

vec(Φm) ∼ N (0, I), m = 1, . . . , M, (8)

where vec(Φm) denotes the column vector obtained by vertically stacking the columns of Φ, we achieve
a sample complexity that scales nearly optimally with the size of the target matrix X� and its rank. These
results assume that we have an anchor matrix X0 that is sufficiently correlated with X�.

Our next two main results, presented in Section 4.2, show how such an anchor matrix can be created
from the measurements using a spectral initialization method. For the random rank-1 measurements, we
are able to construct a sufficiently accurate anchor from a number of observations M that is proportional
to the degrees of freedom in the model of X� up to a logarithmic factor. In the case of Gaussian
measurements, we only have a partial result in general and show that a very rough anchor can be
bootstrapped into a more accurate one. In a special case where X� is positive semi-definite or is rank-1,
however, the results are near-optimal.

4.1 Sample complexity

We begin by presenting theorems that give guarantees on the accuracy of the solution to the convex
program (3) in relation to the number of measurements M. In both of the theorems below, we assume
that we have an anchor matrix X0 that is roughly aligned with the target X�; we defer the construction
of this anchor to Section 4.2.

We start with the case where X� is rank-1, and the measurements are formed by taking the outer
product of two random vectors, Φm = amb∗

m. As discussed in Section 2 above, this scenario is motivated
by problems that involve blind deconvolution from quadratic measurements. Since these applications
typically involve the Fourier transform, we formulate our results using complex-valued vectors and
matrices.

Theorem 4.1 Let X� = σ�u�v∗
� be a complex rank-1 matrix observed as in (6) with Φm = amb∗

m for
m = 1 . . . , M, where a1, . . . , aM and b1, . . . , bM are independent complex Gaussian random vectors as
in (7). Suppose that X0 = u0v∗

0 with ‖u0‖2 = ‖v0‖2 = 1 satisfies

inf
θ∈[0,2π)

∥∥∥u0v∗
0 − eiθ u�v∗

�

∥∥∥
F

≤ δ (9)
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for δ ≤ 0.2. Then one can set the regularization parameter in (3) such that there exist numerical constants
C1, C2, C3 and a constant Cδ that depends only on δ, for which the following holds.1 If

M

log2 M
≥ Cδ(d1 + d2), (10)

then the solution X̂ to (3) satisfies

inf
θ∈[0,2π)

‖X̂ − eiθ X�‖F ≤ C1

‖X�‖F

(
1

M

M∑
m=1

|ξm| + ε

)
(11)

with probability at least 1 − e−C3M . Furthermore, the left and right singular vectors û and v̂ of X̂ satisfy

sin 
 (̂u, u�) ∨ sin 
 (̂v, v�) ≤ C2

‖X�‖2
F

(
1

M

M∑
m=1

|ξm| + ε

)
. (12)

The sufficient number of measurements for stable recovery of X� (and hence its factors u� and v�)
required by (10), scales nearly optimally. That is, the sufficient number of samples is proportional to the
degrees of freedom of the unknown rank-1 matrix, i.e. d1 +d2. In Section 4.2 below, we will see that we
can also find u0, v0 that obey (9) from a comparable number of measurements. Combining these results
shows that we can recover a d1 × d2 rank-1 matrix from phaseless rank-1 measurements when M equals
to d1 + d2 up to a logarithmic factor.

Our second sample complexity result states a performance bound for (3) when the measurements
are unstructured Gaussian random matrices and the target is a d1 × d2 matrix of rank r. This type of
measurement model has served as a standard benchmark in the structured recovery literature, and indeed
we do obtain a much tighter bound in this case if the target is well conditioned. To ease the derivation,
we state the result for real-valued matrices, but it is straightforward to extend it to the complex-valued
case at the cost of making the calculations slightly more involved.

Theorem 4.2 Let X� ∈ R
d1×d2 be of rank r, X� = U�Σ�V�

� denote the compact singular value

decomposition (SVD) of X�, and Φ1, . . . , ΦM ∈ R
d1×d2 be Gaussian random matrices as in (8). Suppose

that we have an anchor matrix X0 = U0V�
0 , where U�

0 U0 = V�
0 V0 = Ir, that satisfies

min
(∥∥∥U0V�

0 − U�V�
�

∥∥∥
F

,
∥∥∥U0V�

0 + U�V�
�

∥∥∥
F

)
≤ δ

∥∥∥U�V�
�

∥∥∥
F

(13)

for δ that obeys

δ

1 − λ
≤ 0.45 (2.8 − κ), (14)

1 As shown in the proof of Theorem 4.1, given δ, one can choose λ explicitly as 0.9 − δ. For specific methods of constructing
the anchor matrix, an appropriate value of δ can be determined.
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292 K. LEE ET AL.

where κ and λ denote the condition number of X� and the regularization parameter in (3), respectively.
Then there exist universal constants C1, C2 and a constant Cδ that only depends on δ for which the
following holds. If

M ≥ Cδr(d1 + d2) log(d1 + d2), (15)

then the solution X̂ to (3) satisfies

min
(
‖X̂ − X�‖F, ‖X̂ + X�‖F

)
≤ C1

‖X�‖F

( 1

M

M∑
m=1

|ξm| + ε
)

,

with probability at least 1 − e−C2M .

Although to the authors’ knowledge this is the first result of its kind in the literature, and the bound
(15) scales in the rank r and dimensions d1, d2 as well as one could hope, we point out a few ways this
result could be improved. First, the condition (14) is very restrictive in the sense that it applies only
to matrices with a small condition number. Second, constructing U0V�

0 that obeys (13) is non-trivial;
as we will see in Section 4.2 below, we will only really be able to do this with confidence when X� is
positive semi-definite or is rank-1.

4.2 Spectral initialization with partial trace

Our main results, presented as Theorems 4.1 and 4.2 above, give bounds on the number of equations M
that are needed to guarantee that the solution to (3) has a certain accuracy. This accuracy depends on the
anchor matrix X0 being sufficiently close to the unknown matrix X�. In both cases, we use X0 = U0V∗

0
as an anchor, where U0Σ0V∗

0 is the compact SVD of an approximation of X�; we are after U0, V0, each
with orthonormal columns, such that for some δ > 0 and a unit modulus z, we have∥∥∥U0V∗

0 − zU�V∗
�

∥∥∥
F

≤ δ

∥∥∥U�V∗
�

∥∥∥
F

. (16)

In each of the main theorems below, the bounds on M scale like δ−2, and we will achieve the tightest
results when we can take δ as a constant independent of the matrix dimensions and rank. In this section,
we describe a data-driven technique for constructing such an anchor matrix.

To understand the challenges in creating the anchor, let us first recall the now well-known spectral
initialization for standard phase retrieval for vectors (d2 = 1 in the formulation above). In this case, we
use the observations ym to form the d1 × d1 matrix

R̂ = 1

M

M∑
m=1

ymΦmΦ∗
m, (17)

and then use the leading eigenvector of R̂ as the anchor matrix X0. The idea is that when ym =
|〈X0, Φm〉|2 and the Φm are random and drawn independent of one another, the expectation of
E[ymΦmΦ∗

m] has a leading eigenvector that is exactly X0, and for M large enough, the sum in (17)
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provides a good approximation to this expectation. In [17], it is shown that (9) holds for constant δ

when M � d1 log d1.
We might consider using the same initialization when X� and the Φm are matrices. Using a vectorized

version of the above, we can form

R̂ = 1

M

M∑
m=1

ymvec(Φm)vec(Φm)∗,

compute the leading eigenvector, then reshape into a d1 × d2 matrix. We are now guaranteed a good
anchor when M � d1d2 log(d1d2). The problem, though, is that this bound is independent of the rank
of X�; we are interested in recovery results that scale as closely as possible to the intrinsic number of

degrees of freedom r(d1 + d2) in our matrix model. Simply finding the largest eigenvector of R̂ and
then re-arranging into a d1 × d2 matrix will not, by itself, result in a matrix that is rank r, and there is
no known algorithm with provable performance guarantees for finding a rank-constrained matrix that is
maximally aligned with the column space of R̂ (this is a variation on the ‘Sparse principal component
analysis (PCA)’ problem).

Our approach for estimating the anchor matrix will be to estimate the row and column spaces of X�

individually. We will find a d1 × r matrix U0 whose columns are orthonormal and approximately span
the column space, a d2 × r matrix V0 whose columns are orthonormal and approximately span the row
space and then take

X0 = U0V∗
0.

For the column space estimate U0, we choose d2 × q compression matrices Ψ m and form

Υ = 1

M

M∑
m=1

ymΦmΨ mΨ ∗
mΦ∗

m, (18)

then take the r leading eigenvectors of Υ as U0. Similarly for the row space, we choose d1 ×q Ψ ′
m, form

Υ ′ = 1

M

M∑
m=1

ymΦ∗
mΨ ′

mΨ ′∗
mΦm, (19)

and take the r leading eigenvectors as V0.
With the measurement matrix Φm random, we want to choose the compression matrices Ψ m in (18)

to meet two criteria:

1. The expectation E[Υ ] has leading eigenvectors that span the same r-dimensional space as the
eigenvectors of X�X∗

� .

2. The spectral gap between the rth and (r + 1)th eigenvalues of E[Υ ] is large enough so that it
upper bounds the perturbation error ‖Υ − EΥ ‖ for relatively small M. This allows us to use
the classical Davis–Kahan theorem to show that the leading eigenvectors of Υ are approximately
aligned with the leading eigenvectors of E[Υ ].

Similar statements hold for the Ψ ′
m in (19).
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For our blind deconvolution from phaseless measurements application, where X� = σuv∗ and Φm =
amb∗

m, there is a clear way to meet these criteria. If we take

Ψ m = bm

‖bm‖2
2

and Ψ ′
m = am

‖am‖2
2

, m = 1, . . . , M,

then

Υ = 1

M

M∑
m=1

ymama∗
m = σ 2

M

M∑
m=1

|a∗
mu|2|v∗bm|2ama∗

m + ξmama∗
m, (20)

Υ ′ = 1

M

M∑
m=1

ymbmb∗
m = σ 2

M

M∑
m=1

|a∗
mu|2|v∗bm|2bmb∗

m + ξmbmb∗
m. (21)

For independent am, bm that follow (7), a simple calculation yields

EΥ = σ 2uu∗ +
(

σ 2 + 1

M

M∑
m=1

ξm

)
I, EΥ ′ = σ 2vv∗ +

(
σ 2 + 1

M

M∑
m=1

ξm

)
I.

The leading eigenvector for Υ is the left singular vector u for X�, the leading eigenvector of Υ ′ is the
right singular vector v, and the spectral gap in both cases is σ 2. That Υ − EΥ and Υ ′ − EΥ ′ are small
enough so that their leading eigenvectors are close to u and v when M is within a logarithmic factor of
(d1 + d2) is essentially the content of the following lemma.

Lemma 4.3 Let Φm = amb∗
m be as in (7). Let u0 ∈ C

d1 (resp. v0 ∈ C
d2 ) be the leading eigenvector

of Υ in (20) (resp. Υ ′ in (21)) with measurements ym constructed as in (1). Let u� and v� denote the
left and right singular vectors of the rank-1 matrix X�. Let δ ∈ (0, 1) and α ∈ N. There exist numerical
constants C1, C2 that only depend on α, for which the following holds. If

M

log3 M
≥ C1δ

−2(d1 + d2) (22)

and

max
1≤m≤M

|ξm| ≤ C2‖X�‖2 log M, (23)

then (9) holds with probability at least 1 − M−α .

Remark 4.4 The inequality (23) requires that the signal-to-noise-ratio is larger than the given threshold.
The proof of Lemma 4.3 presents a stronger result that holds by (22) and

M

log M
≥ C2α

⎛⎝max1≤m≤M |ξm|
‖X�‖2

∨ δ−1

(
max1≤m≤M |ξm|

‖X�‖2

)2
⎞⎠ δ−1(d1 + d2). (24)
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Indeed, (23) together with (22) implies (24). Even if (23) is violated, (9) still holds with high probability
whenever M is large enough to satisfy (24) that naturally adapts to the signal-to-noise-ratio. To achieve
the order of the logarithmic term in (22), it is necessary to satisfy M � ed1+d2 . Since this upper bound
is rather trivial compared to (22), we omit the condition in the statement of Lemma 4.3.

Lemma 4.3 along with Theorem 4.1 give us a clean solution to the phaseless blind deconvolution
problem. For generic am, bm, the system

ym = |〈u, am〉〈bm, v〉|2 + noise, m = 1, . . . , M,

can be (stably) solved for u, v when M is within a logarithmic factor of d1 + d2, the total number of
unknowns.

For phaseless measurements of a d1 × d2 matrix of rank r, the story is unfortunately not as clean,
even when the Φm in (1) are i.i.d. Gaussian. The following lemma gives us a partial result on our ability
to create a data-driven anchor. It shows that given an estimate of the row space, this estimate can be
leveraged into an accurate estimate of the column space.

Lemma 4.5 Let X� and Φms be as in Theorem 4.2. Let V̂ ∈ R
d2×r satisfy V̂

�
V̂ = Ir. Suppose that V̂

is given a priori and provides an estimate of the row space of X� so that∥∥∥(Id2
− V̂V̂

�
)V�V�

�

∥∥∥ ≤ δin (25)

for some δin < 1. Take Υ as in (18) with Ψ m = V̂, and let the columns of U0 be the eigenvectors of
Υ corresponding to the r-largest eigenvalues. Fix δout ∈ (0, 1) and α ∈ N. Then there exist numerical
constants C1, C2 that only depend on α, for which the following holds. If

M

log3 M
≥ C1α

3κ4r3d1

δ2
out(1 − δin)

2
(26)

and

max1≤m≤M |ξm|
‖X�‖

�
√

r log M ∧ κ2r2 log2 M

δout(1 − δin)
, (27)

then ∥∥∥(Id1
− U0U�

0 )U�U�
�

∥∥∥ ≤ δout, (28)

holds with probability 1 − M−α , where κ denotes the condition number of X�.

Remark 4.6 If the noise is weak enough to satisfy (27), then (26) implies

M

log M
≥ C2α

⎛⎝ κ2 max1≤m≤M |ξm|
δout(1 − δin)‖X�‖2

∨ r

(
κ2 max1≤m≤M |ξm|
δout(1 − δin)‖X�‖2

)2
⎞⎠ rd1. (29)
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Similarly to Remark 4.4, Lemma 4.5 can also be strengthened by substituting (27) by (29). The signal-
to-noise-ratio need not be larger than the threshold in (27) whenever M also satisfies (29). Indeed, this
version of Lemma 4.5 is proved in Appendix D.

Lemma 4.5 shows that one obtains an estimate of the column space of accuracy δout from a given
estimate of the row space of accuracy δin. Here the accuracy is measured by the sine of the principal angle
between two subspaces. The number of measurements M in (26) that guarantees this result increases as
one wishes for a more accurate estimate (smaller δout) or the input to the initialization method is less
accurate (larger δin).

Furthermore, it is straightforward to exchange the roles of U� and V� above. If we have an estimate

Û of U�, then we can form Υ ′ as in (19) with Φm = Û, take its leading eigenvectors and have (under
analogous conditions as those in the theorem) an accurate estimate of V�.

The scaling of the number of measurements in (26) has suboptimal dependence on the rank, but its
dependence on the side length of the matrix is linear.

Producing an estimate of X� from matrices U0 and V0 whose ranges approximate its row and column
spaces is itself non-trivial. It involves solving another phase retrieval problem, finding a diagonal Σ so
that

ym ≈ |〈U0ΣV�
0 , Φm〉|2, m = 1, . . . , M.

Although it might be possible to control the error propagation from the estimates U0, V0 to the solution
of the problem above, this analysis appears to be extremely complicated.2 However, there are two
specific scenarios where we can upper-bound the error in estimating U�V�

� by the subspace estimation
errors.

1. Rank-1 case: let σ�u�v�
� be the SVD of X�. Let φ := 
 (u0, u�) and ψ := 
 (v0, v�). Then

∥∥∥u0v�
0 − u�v�

�

∥∥∥2

F
∧

∥∥∥u0v�
0 + u�v�

�

∥∥∥2

F
= 2 − 2 cos φ cos ψ ≤ 2 − 2 cos2(φ ∨ ψ)

= 2 sin2(φ ∨ ψ) =
∥∥∥(Id1

− u0u�
0

)
u�

∥∥∥2

2
∨

∥∥∥(Id2
− v0v�

0

)
v�

∥∥∥2

2
.

2. Positive semi-definite case: let U�Λ�U�
� be the SVD of X�. Then

∥∥∥U0U�
0 − U�U�

�

∥∥∥2

F
= 2r − 2

∥∥∥U�
0 U�

∥∥∥2

F
= 2

∥∥∥(Id1
− U0U�

0

)
U�

∥∥∥2

F
≤ 2r

∥∥∥(Id1
− U0U�

0

)
U�

∥∥∥2
.

For the above two cases, one can combine Theorem 4.2 and Lemma 4.5 to get a complete analysis
of the regularized anchored regression. In the latter case, we still assume that an estimate of U� is
given a priori. Lemma 4.5 provides a refined estimate so that we can invoke Theorem 4.2 with the
resulting U0.

2 An alternative approach is to estimate Σ from U0 and V0 through extra independent random measurements. However, this
approach doubles the number of observations and may not be interesting in practice. Therefore, we pursue analysis in some special
cases without extra observations.
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5. Proof of main results

The convex program for phase retrieval of low-rank matrices in (3) is variation to a special case of the
anchored regression studied in [7] and the performance guarantees in this paper primarily follow from
the main results in [7]. The theorems stated in the previous section are basically obtained by computing
the key quantities that determine the sample complexity.

5.1 Theoretical analysis of regularized anchored regression

At the core of our analysis is an adaptation of the main result of [7]. The main idea of [7, Theorem
2.1] is to use the small-ball method to find a uniform lower bound for a certain empirical process
that is determined by the independent random matrices Φ1, . . . , ΦM and indexed by a deterministic set
H ⊂ C

d1×d2 containing Δ = X̂ − X�. Then this uniform lower bound implies an upper bound for the
estimation error Δ.

However, the original statement of [7, Theorem 2.1] cannot be applied directly to the problem of
interest in this paper because of two important differences. First, due to technical challenges in our
specific problem, as elaborated in Section 4.2, we can only construct a weaker form of anchor compared
to that considered originally in [7]. Second, we want to address the case of recovering complex and
rank-1 matrices as considered in Theorem 4.1. The results of [7], however, only consider variables and
operations in the real space. Therefore, we need to adapt the result of [7] with slight modifications so
that it becomes compatible with our setting.

As discussed in Section 4.2, instead of an anchor that approximates the ground truth X�, we require
the anchor to approximate U�V∗

� up to a global phase. To be explicit, we only need to consider a complex
phase ambiguity in the case of recovering a complex rank-1 target, where we have U� = u� and V� = v�

and the anchor should basically approximate u�v∗
� . In the case of recovering a real-valued low-rank

matrix, the phase ambiguity simply reduces to a sign ambiguity.
With these consideration in mind, here and throughout, we assume that the global phase of the

anchor X0 is aligned with U�V∗
� , namely

Re 〈X0, U�V∗
�〉 ≥ 0, Im 〈X0, U�V∗

�〉 = 0, (30)

which, if we operate entirely in the real domain, simply reduces to 〈X0, U�V�
� 〉 ≥ 0. The assumption

(30) can be made without loss of generality because of the following equivariance property. For any
θ ∈ [0, 2π), if we replace the anchor X0 in (3) by eiθ X0, then the original solution X̂ accordingly
changes to eiθ X̂. This property is due to fact that the nuclear norm as well as the constraints in (3) are
invariant under the mapping X �→ eiθ X. Since we define the accuracy as the distance to the orbit of
X�, i.e. {eiωX� : ω ∈ [0, 2π)}, the mentioned adjustment of the anchor will not affect the accuracy
guarantees. Indeed, under (30), the assumption in (16) simplifies to

‖X0 − U�V∗
�‖F ≤ δ‖U�V∗

�‖F = δ
√

r. (31)

Since X̂ is a minimizer to (3) and X� is within its feasible set, it naturally follows that Δ = X̂ − X�

belongs to the set of all ascent directions of the objective function given by

A :=
{

H ∈ C
d1×d2 : inf

G∈λ∂‖X�‖∗
Re 〈X0 − G, H〉 ≥ 0

}
.
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It is desirable to construct the anchor matrix X0 from the available measurements and avoid sample
splitting schemes. However, for such constructions of the anchor matrix, the set A will also depend on
the measurement matrices {Φm}M

m=1 that complicates the analysis. To avoid these complications, similar
to the approach of [7], we relax A to some superset that is not dependent on the measurement matrices.
Here we consider the superset Aδ of A, defined as

Aδ :=
{

H ∈ C
d1×d2 : inf

G∈λ∂‖X�‖∗

√
rδ‖H‖F + Re 〈U�V∗

� − G, H〉 ≥ 0
}

, (32)

which is clearly independent of {Φm}M
m=1. Inclusion of A in Aδ follows from (31), the triangle inequality

and the Cauchy–Schwarz inequality.
To address a technical challenge that only arises when operating in the complex domain, for recovery

of complex rank-1 matrices we need to make another modification compared to the original result of
[7]. Specifically, similar to [6], with X� = σ�u�v∗

� as the complex rank-1 ground truth, we introduce the
set

Rδ :=
⎧⎨⎩H ∈ C

d1×d2 :

∥∥∥∥∥H − X�〈X�, H〉
‖X�‖2

F

∥∥∥∥∥
F

≥
√

1 − δ2
∣∣∣Im〈X�, H〉

∣∣∣
δ‖X�‖F

⎫⎬⎭ . (33)

Obviously, Rδ is only important if we operate in the complex domain; in the real domain, Rδ is the
entire space and effectively can be ignored. The following lemma, proved in Appendix E, the set Rδ

also contains Δ when X0 and X� are at most δ-apart.

Lemma 5.1 With X� = σ�u�v∗
� , suppose that (30) and∥∥∥∥∥X0 − X�〈X�, X0〉

‖X�‖2
F

∥∥∥∥∥
F

≤ δ‖X0‖F (34)

hold. Then X̂ − X� ∈ Rδ .

Finally, based on the arguments in [7,Theorem 2.1], our result depends on the following two key
quantities defined with respect to the set H = Aδ ∩ Rδ . First, the Rademacher complexity of H is
defined as

CM(H) := E sup
H∈H\{0}

1√
M

M∑
m=1

εmRe(〈X�, Φm〉〈Φm, H〉)
‖H‖F

, (35)

where ε1, . . . , εM are i.i.d. Rademacher random variables independent of everything else. Second, for
τ > 0, we also consider a variation of small-ball probability that is defined as

Pτ (H) := inf
H∈H

P(Re(〈X�, Φm〉〈Φm, H〉) ≥ τ‖H‖F). (36)

Equipped with these notions, the following theorem provides the accuracy guarantees for the regularized
anchored regression in the context of LRPR problem.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/article/10/1/285/5910381 by W
eizm

ann Institute of Science user on 15 June 2021



PHASE RETRIEVAL OF LOW-RANK MATRICES BY ANCHORED REGRESSION 299

Theorem 5.2 (An adaptation of 7, Theorem 2.1 for LRPR). Suppose that Φ1, . . . , ΦM in (3) are
independent random matrices, and X0 satisfies (16), (30), and (34), where 0 < δ < 1. Recalling the
definitions (32), (33), (35) and (36), for any t > 0, if

M ≥ 4
(CM(Aδ ∩ Rδ) + tτ

τPτ (Aδ ∩ Rδ)

)2
, (37)

then the solution X̂ to (3) obeys

inf
θ∈[0,2π)

‖X̂ − eiθ X�‖F ≤ 2

τPτ (Aδ ∩ Rδ)

( 1

M

M∑
m=1

|ξm| + ε
)

with probability at least 1 − e−2t2 .

Remark 5.3 A few remarks on Theorem 5.2 are in order.

1. We emphasize again that the required conditions in (30) for the anchor can be made without loss
of generality due to the equivariance property discussed above.

2. The original result in [7,Theorem 2.1] considered the problem only in the real domain, where
the condition (30) is reduced to the (implicit) assumption 〈X0, X�〉 ≥ 0. As mentioned above, in
this scenario the set Rδ becomes trivial (i.e. Rδ = R

d1×d2 ) as well.

3. The additive noise ξm to the quadratic measurement |〈Φm, X�〉|2 is arbitrary fixed. Specifically,
we assume that ξm does not depend on Φ1, . . . , ΦM .

Theorems 4.1 and 4.2 are then obtained from Theorem 5.2 by specifying key estimates depending
on the corresponding measurement matrices. For the convenience in computing these estimates, we
provide a more explicit characterization of Aδ as follows. The subdifferential of ‖ · ‖∗ at X�, whose
SVD is U�Σ�V∗

� , is expressed as

∂‖X�‖∗ =
{

Z : PT(Z) = U�V∗
� , ‖PT⊥(Z)‖ ≤ 1

}
, (38)

where PT : C
d1×d2 → C

d1×d2 denotes the orthogonal projection onto the tangent space T of the
manifold of rank-r matrices at X� given by

T =
{

U�Ṽ
∗ + ŨV∗

� : Ṽ ∈ C
d2×r, Ũ ∈ C

d1×r
}

and PT⊥ : C
d1×d2 → C

d1×d2 denotes the projection onto T⊥, the perpendicular subspace of T . By
plugging in the expression of the subdifferential in (38) to (32), we obtain an alternative expression of
Aδ given by

Aδ =
{

H ∈ C
d1×d2 :

√
rδ‖H‖F − λ‖PT⊥(H)‖∗ + (1 − λ)Re 〈U�V∗

� , H〉 ≥ 0
}

. (39)
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5.2 Proof of Theorem 4.2

All matrices and scalars are real-valued in Theorem 4.2. Thus, Rδ becomes trivial and it suffices to
compute estimates of Pτ (H) and CM(H) for H = Aδ . The following lemmas respectively provide
estimates of Pτ (Aδ) and CM(Aδ) whose proofs are deferred to Appendices F and G.

Lemma 5.4 Suppose the hypotheses in Theorem 4.2 hold. Then for any τ ′ > 0,

inf
H∈Aδ

P

(
Re(〈X�, Φm〉〈Φm, H〉) ≥ τ ′‖X�‖F‖H‖F

)
≥ exp(−20τ ′)

10
. (40)

Lemma 5.5 Suppose the hypotheses in Theorem 4.2 hold. Then

CM(Aδ) ≤ C(1 − λ + δ)‖X�‖F

√
r(d1 + d2) log(d1 + d2)

λ
(41)

for a numerical constant C.

To prove Theorem 4.2, we only need to apply the above estimates in Theorem 5.2. We first show
that the assumptions of Theorem 4.2 are sufficient to invoke Theorem 5.2. Following the discussion in
Section 5.1, the condition (30) can be satisfied without loss of generality by flipping the sign of X0 if
necessary. Fix τ ′ to a positive constant (e.g. τ ′ = 0.1). Let τ = τ ′‖X�‖F. Then Lemma 5.4 implies
that τPτ (Aδ) ≥ c‖X�‖F for a numerical constant c > 0. Choosing λ = 0.9 − δ makes the right-hand
side of (41) an increasing function of δ. Then, by Lemma 5.5, the Rademacher complexity CM(Aδ) is
upper-bounded by

√
r(d1 + d2) log(d1 + d2) up to a constant solely determined by δ. Therefore, (15)

implies that (37) holds whenever tτ ′ is dominated by
√

M. We can choose t so that the probability of
failure is at most e−2t2 = e−cM , for some numerical constant c > 0.

5.3 Proof of Theorem 4.1

Theorem 4.1 considers recovery of complex-valued rank-1 matrices. We apply Theorem 5.2 for H =
Aδ ∩ Rδ to prove Theorem 4.1. The following lemmas, proved in Appendices H and I, respectively,
provide a lower bound on Pτ (H) and an upper bound on CM(H).

Lemma 5.6 Suppose the hypotheses in Theorem 4.1 hold. Suppose that δ + λ < 1 and δ ≤ 0.2. Then
there exists a numerical constant τ ′ > 0 such that

inf
H∈Aδ∩Rδ

P

(
Re(b∗X∗

�aa∗Hb) ≥ τ ′‖X�‖F‖H‖F

)
≥ Cτ ′ ,

where Cτ ′ is a positive numerical constant that only depends on τ ′.

Lemma 5.7 Suppose the hypotheses in Theorem 4.1 hold. Then

CM(Aδ) ≤ C(1 − λ + δ)‖X�‖F

√
d1 + d2 log M

λ
(42)

for a numerical constant C.
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Fig. 1. Empirical phase transition in the noiseless case with rank-1 measurements. The success rate out of 100 trials is plotted in
a gray scale (white: all success, black: all failure).

The error bound in (11) then follows from Theorem 5.2 with the above estimates given by
Lemmas 5.6 and 5.7. To apply Lemma 5.6, we choose λ = 0.9 − δ. Then similar to the proof of
Theorem 4.2, the factor (1 − λ + δ)/λ becomes an increasing function in δ. The constant Cδ is given by
this function of δ together with the result of Lemma 5.6.

Finally, the error bound for the estimation of u and v in (12) follows immediately from the Davis–
Kahan theorem (Theorem C.1).

6. Numerical results

We conducted a Monte Carlo simulation to study the empirical performance of the proposed convex
programs. Specifically, we considered the optimization problem in (2) in the noiseless case where the
measurement matrices are given as the outer product of two Gaussian random vectors and the unknown
rank-1 matrix is a square matrix (d1 = d2 = d). To solve (2), we used the software package TFOCS [8]
that uses a smoothed conic dual formulation.

Figure 1 illustrates the empirical phase transition. For a fixed number of measurements M, we vary
the matrix size d where the ratio M/d belongs to a given interval. In Fig. 1, the convex program provides
the exact recovery when d is below a certain threshold determined by M. The sample complexity
result by Theorem 4.1 and Lemma 4.3 quantifies this threshold as CM/ logα M for some constants
C, α > 0. Alternatively, if the oversampling rate M/d exceeds a polylog factor of M, then the convex
program provides the exact recovery. The empirical phase transition occurs at M/d ≈ 0.14 log5 M
or d ≈ 7.3M/ log5 M indicated by the green curve in the figure. Although the requirements for
the constants C and α in our proofs seem conservative, our theory is consistent with the empirical
performance up to the choice of these constants.
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7. Discussions

We proposed a simple initial estimation using partial traces. The regularized anchored regression with
the nuclear norm given by this initial estimate provides a stable estimate for LRPR. Performance
guarantees were derived for several random measurement models.

One may consider several alternative approaches to LRPR. By applying the lifting trick twice, LRPR
can be equivalently cast as a linear inverse problem where the solution is a 4-way tensor of rank-1. Then
recovery can be carried out by tensor nuclear norm minimization as a convex relaxation. This fully
convexified approach can be attractive as it does not require any initial estimate. However, it is NP-
hard to compute the tensor nuclear norm [31], which renders the approach impractical. Recent iterative
nonconvex methods such as Wirtinger flow [17] and its variation for the case of sparse signals [11] can
be adapted to address low-rank recovery problems. Nevertheless, it will be still required to obtain an
accurate initial estimate. Furthermore, the analysis might involve more complications such as the need
for resampling in each iteration. In contrast, anchored regression, originally proposed for ordinary phase
retrieval and later modified to a regularized version to accommodate various priors on the solution,
allows a streamlined analysis by leveraging the geometry of the corresponding convex optimization
problem. Its low computational cost also competes with that of the nonconvex approaches.
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A. Expectations of symmetric Gaussian tensors

We repeatedly use the expectation of various tensor products of an i.i.d. Gaussian vector, which are
summarized below. First, we consider the expectation of the fourth-order tensor product.

Lemma A.1 Let g ∼ N (0, Id). Then

E g ⊗ g ⊗ g ⊗ g =
d∑

j,k=1

(ej ⊗ ej ⊗ ek ⊗ ek + ej ⊗ ek ⊗ ej ⊗ ek + ej ⊗ ek ⊗ ek ⊗ ej),

where ej denotes the jth column of Id for j = 1, . . . , d.

Proof of Lemma A.1 The expectation of g ⊗ g ⊗ g ⊗ g is written as

E

d∑
i1,i2,i3,i4=1

(ei1e�
i1 ⊗ ei2 e�

i2 ⊗ ei3 e�
i3 ⊗ ei4e�

i4 )(g ⊗ g ⊗ g ⊗ g)

=
d∑

i1,i2,i3,i4=1

Egi1 gi2 gi3 gi4(ei1 ⊗ ei2 ⊗ ei3 ⊗ ei4),

where gi denotes the ith entry of g for i = 1, . . . , d. The proof completes by noting that all odd moments
of a standard normal variable vanish.

The following lemma is a direct consequence of Lemma A.1.

Lemma A.2 Let x, y ∈ R
d and g ∼ N (0, Id). Then

E(x�gg�y)gg� = (x�y)Id + xy� + yx�.

Next we consider the expectation of an 8-way tensor product applying to a fourth-order tensor
product of a unit vector.
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Lemma A.3 Let x ∈ S
d−1 and g ∼ N (0, Id). Then

E(x�g)4(g ⊗ g ⊗ g ⊗ g) = 24(x ⊗ x ⊗ x ⊗ x)

+ 12
d∑

l=1

(x ⊗ x ⊗ el ⊗ el + x ⊗ el ⊗ x ⊗ el + x ⊗ el ⊗ el ⊗ x

+ el ⊗ x ⊗ x ⊗ el + el ⊗ x ⊗ el ⊗ x + el ⊗ el ⊗ x ⊗ x)

+ 3
d∑

j,k=1

(ej ⊗ ej ⊗ ek ⊗ ek + ej ⊗ ek ⊗ ej ⊗ ek + ej ⊗ ek ⊗ ek ⊗ ej),

(A.1)

where el denotes the jth column of Id for l = 1, . . . , d.
Proof of Lemma A.3 The expectation E(x�g)4(g ⊗ g ⊗ g ⊗ g) is rewritten as

E(g ⊗ g ⊗ g ⊗ g)(g ⊗ g ⊗ g ⊗ g)�(x ⊗ x ⊗ x ⊗ x)

=
∑

B1,B2,B3,B4∈{Px,Px⊥}
E(B1 ⊗ B2 ⊗ B3 ⊗ B4)(g ⊗ g ⊗ g ⊗ g)(g ⊗ g ⊗ g ⊗ g)�(x ⊗ x ⊗ x ⊗ x),

(A.2)

where Px and Px⊥ denote the orthogonal projection operators onto the subspace spanned by x and its
orthogonal complement, respectively.

If any of B1, B2, B3, B4 is different from the other three matrices, then the corresponding summand
in (A.2) becomes zero since it has a factor that is an odd moment of x�g ∼ N (0, 1). Therefore, it
suffices to consider the following three cases.
Case 1: B1 = B2 = B3 = B4 = Px.

Since

Px ⊗ Px ⊗ Px ⊗ Px = (xx� ⊗ xx� ⊗ xx� ⊗ xx�) = (x ⊗ x ⊗ x ⊗ x)(x ⊗ x ⊗ x ⊗ x)�,

it follows that the corresponding summand is written as:

(x ⊗ x ⊗ x ⊗ x)E(x ⊗ x ⊗ x ⊗ x)�(g ⊗ g ⊗ g ⊗ g)(g ⊗ g ⊗ g ⊗ g)�(x ⊗ x ⊗ x ⊗ x)

= E(x�g)8(x ⊗ x ⊗ x ⊗ x) = 105(x ⊗ x ⊗ x ⊗ x).
(A.3)

Case 2: Two of B1, B2, B3, B4 are Px and the other two matrices are Px⊥ .
First, we consider the sub-case where B1 = B2 = Px and B3 = B4 = Px⊥ . Since Px⊥g and x�g are

independent, we can replace x�g by x�g′ where g′ is an independent copy of g. Then the corresponding
summand is written as

Eg′(g′�x)6
EgPx⊥g ⊗ Px⊥g ⊗ x ⊗ x = 15(Px⊥ ⊗ Px⊥)(Egg ⊗ g) ⊗ x ⊗ x

= 15(Px⊥ ⊗ Px⊥)vec(Eggg�) ⊗ x ⊗ x = 15(Px⊥ ⊗ Px⊥)vec(Id) ⊗ x ⊗ x

= 15 vec(Px⊥IdPx⊥) ⊗ x ⊗ x = 15 vec(Id − Px) ⊗ x ⊗ x

= 15
(

− x ⊗ x ⊗ x ⊗ x +
d∑

l=1

el ⊗ el ⊗ x ⊗ x
)

.
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The summands corresponding to the other sub-cases of Case 2 are calculated similarly, and the
partial summation of (A.2) for Case 2 is written as

− 90 x ⊗ x ⊗ x ⊗ x + 15
d∑

l=1

(x ⊗ x ⊗ el ⊗ el + x ⊗ el ⊗ x ⊗ el + x ⊗ el ⊗ el ⊗ x

+ el ⊗ x ⊗ x ⊗ el + el ⊗ x ⊗ el ⊗ x + el ⊗ el ⊗ x ⊗ x).

(A.4)

Case 3: B1 = B2 = B3 = B4 = Px⊥ .
Again by the independence between Px⊥g and x�g, the corresponding summand is written as

Eg′(g′�x)4
Eg(Px⊥ ⊗ Px⊥ ⊗ Px⊥ ⊗ Px⊥)(g ⊗ g ⊗ g ⊗ g)

= 3(Px⊥ ⊗ Px⊥ ⊗ Px⊥ ⊗ Px⊥)Eg(g ⊗ g ⊗ g ⊗ g).
(A.5)

By plugging in the expression of E g ⊗ g ⊗ g ⊗ g in Lemma A.1, the right-hand side of (A.5) is written
as

3 (Px⊥ ⊗ Px⊥ ⊗ Px⊥ ⊗ Px⊥)

d∑
j,k=1

ej ⊗ ej ⊗ ek ⊗ ek︸ ︷︷ ︸
(§)

+ 3 (Px⊥ ⊗ Px⊥ ⊗ Px⊥ ⊗ Px⊥)

d∑
j,k=1

ej ⊗ ek ⊗ ej ⊗ ek︸ ︷︷ ︸
(§§)

+ 3 (Px⊥ ⊗ Px⊥ ⊗ Px⊥ ⊗ Px⊥)

d∑
j,k=1

ej ⊗ ek ⊗ ek ⊗ ej︸ ︷︷ ︸
(§§§)

.

(A.6)

The first term (§) in (A.6) is rewritten as

(§) = (Px⊥ ⊗ Px⊥ ⊗ Px⊥ ⊗ Px⊥)[vec(Id) ⊗ vec(Id)]

= [(Px⊥ ⊗ Px⊥)vec(Id)] ⊗ [(Px⊥ ⊗ Px⊥)vec(Id)]

= vec(Px⊥) ⊗ vec(Px⊥) = vec(Id − Px) ⊗ vec(Id − Px)

= vec(Px) ⊗ vec(Px) + vec(Id) ⊗ vec(Id) − vec(Id) ⊗ vec(Px) − vec(Px) ⊗ vec(Id)

= x ⊗ x ⊗ x ⊗ x +
d∑

j,k=1

ej ⊗ ej ⊗ ek ⊗ ek −
d∑

l=1

(x ⊗ x ⊗ el ⊗ el + el ⊗ el ⊗ x ⊗ x).
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Similarly, (§§) and (§§§) are written as the sum of rank-1 tensors. Then applying these results to (A.6)
provides

Eg′(g′�x)4
Eg(Px⊥ ⊗ Px⊥ ⊗ Px⊥ ⊗ Px⊥)(g ⊗ g ⊗ g ⊗ g)

= 9 x ⊗ x ⊗ x ⊗ x − 3
d∑

l=1

(x ⊗ x ⊗ el ⊗ el + x ⊗ el ⊗ x ⊗ el + x ⊗ el ⊗ el ⊗ x

+ el ⊗ x ⊗ x ⊗ el + el ⊗ x ⊗ el ⊗ x + el ⊗ el ⊗ x ⊗ x)

+ 3
d∑

j,k=1

(ej ⊗ ej ⊗ ek ⊗ ek + ej ⊗ ek ⊗ ej ⊗ ek + ej ⊗ ek ⊗ ek ⊗ ej).

(A.7)

The identity in (A.1) is then obtained by combining (A.3), (A.4) and (A.7) through (A.2).

B. Moment and tail bounds of random matrices

The following lemma, which provides a central moment bound on a standard normal variable, is a direct
consequence of the Khintchine inequality (e.g. 60, Corollary 5.12).
Lemma B.1 Let g ∼ N (0, 1). Then there exists a numerical constant C such that

(E |g|p)1/p ≤ C
√

p, ∀p ∈ N.

We also use moment and tail bounds of random matrices in the spectral norm given by the
noncommutative Rosenthal inequality [35, Theorem 0.4].

Theorem B.2 (Noncommutative Rosenthal inequality [35, Theorem 0.4]). Let Y1, . . . , YM be
independent random matrices with zero-mean. Then there exists a numerical constant C such that(

E

∥∥∥ M∑
m=1

Ym

∥∥∥p)1/p ≤ C
[√

p
(∥∥∥ M∑

m=1

EYmY∗
m

∥∥∥1/2 ∨
∥∥∥ M∑

m=1

EY∗
mYm

∥∥∥1/2) ∨ p
( M∑

m=1

E ‖Ym‖p
)1/p]

for all 1 ≤ p < ∞.
Then the following lemma follows immediately from Theorem B.2.

Lemma B.3 Let g1, . . . , gM ∈ R
d be independent copies of g ∼ N (0, Id), λ = [λ1, . . . , λM]� ∈ R

M ,
and ν ∈ (0, 1). Then there exist numerical constants C1, C2 > 0 such that

(
E

∥∥∥ 1

M

M∑
m=1

λm(gmg�
m − Id)

∥∥∥p)1/p ≤ C1‖λ‖∞
[
M−1/2

√
pd + M1/p−1p(d + p)

]
(B.1)

for all p ∈ N and ∥∥∥ 1

M

M∑
m=1

λm(gmg�
m − Id)

∥∥∥ ≤ δ

holds with probability 1 − ν provided

M ≥ C2

(
δ−1‖λ‖∞ ∨ δ−2‖λ‖2∞

) (
d log(M/ν) ∨ log2(M/ν)

)
. (B.2)
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Proof of Lemma B.3 We apply Theorem B.2 for Ym = λm(gmg�
m − Id) for m = 1, . . . , M. By the

triangle inequality, we have

(E‖Ym‖p)1/p ≤ λm + λm(E‖gmg�
m‖p)1/p = λm + λm(E‖gm‖2p

2 )1/p ≤ C1λm(d + p).

Here the last step follows since:

‖‖g‖2 − √
d‖L2p

≤ C
√

2p
∥∥∥‖g‖2 − √

d
∥∥∥

ψ2
≤ C′√p,

where ‖ · ‖ψ2
denotes the subgaussian norm. Therefore, we obtain(

M∑
m=1

E ‖Ym‖p

)1/p

≤ C3‖λ‖∞M1/p(d + p). (B.3)

Furthermore, the expectation of Y2
m = λ2

m(gmg�
mgmg�

m − 2gmg�
m + Id) is computed by using Lemma

A.2 as EY2
m = λ2

m(d + 1)Id. Therefore, it follows that:∥∥∥∥∥
M∑

m=1

EY2
m

∥∥∥∥∥
1/2

= √
d + 1‖λ‖2 ≤ C4

√
Md‖λ‖∞. (B.4)

Then (B.1) is obtained by plugging in (B.3) and (B.4) to Theorem B.2.
Next, by the Markov inequality, we have

P

(∥∥∥∥∥ 1

M

M∑
m=1

Ym

∥∥∥∥∥ > δ

)
≤ δ−p

E

∥∥∥∥∥ 1

M

M∑
m=1

Ym

∥∥∥∥∥
p

≤ C1δ
−p ‖λ‖p∞

[
M−1/2

√
pd + M1/p−1p(d + p)

]p
. (B.5)

Let p = log(M/ν). Then (B.2) implies that the right-hand side of (B.5) is upper-bounded by ν. This
completes the proof.

C. Proof of Lemma 4.3

Let φ := 
 (u0, u�) and ψ := 
 (v0, v�). Then

inf
θ∈[0,2π)

∥∥∥u0v�
0 − eiθ u�v�

�

∥∥∥2

F
= 2 − 2 cos φ cos ψ ≤ 2 − 2 cos2(φ ∨ ψ) = 2 sin2(φ ∨ ψ).

Therefore, it suffices to show

sin(φ ∨ ψ) = sin φ ∨ sin ψ ≤ δ√
2

.

We will only show sin φ ≤ √
δ/2. The derivation of the other part is essentially the same due to

symmetry. Without loss of generality, we assume ‖X�‖F = 1 (or equivalently σ� = 1).
Since X� is a scalar multiple of the most dominant eigenvector of EΥ , we use the Davis–Kahan

theorem [23] to bound the error in estimating u� as the dominant eigenvector of Υ . Among variations
of the Davis–Kahan theorem, we use the version given in terms of the principal angle between two
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310 K. LEE ET AL.

subspaces. The following theorem states this result and is obtained by combining the argument of [29,
Corollary 7.2.6] and the sin θ theorem for any unitarily invariant norm [64].

Theorem C.1 (Davis–Kahan sin θ theorem). Let A, Δ ∈ C
n×n satisfy that A and A + Δ are positive

semidefinite. Let Q ∈ C
n×r (resp. Q̂ ∈ C

n×r) denote the matrix whose columns are the eigenvectors of
A (resp. A + Δ) corresponding to the r-largest eigenvalues. Suppose that λr(A) > λr+1(A). If

‖Δ‖ ≤ λr(A) − λr+1(A)

5
,

then

sin 
 (span(Q), span(Q̂)) ≤ 4‖Δ‖
λr(A) − λr+1(A)

.

To prove Lemma 4.3, we apply Theorem C.1 to A = EΥ and Δ = Υ − EΥ with r = 1. Since

A = u�u∗
� +

(
1 + 1

M

M∑
m=1

ξm

)
Id1

,

it follows that:

λk(A) = λk(u�u∗
� ) + 1 + 1

M

M∑
m=1

ξm.

Therefore, we obtain

λ1(A) − λ2(A) = λ1(u�u∗
� ) − λ2(u�u∗

� ) = 1.

It remains to show

‖Δ‖ ≤ δ

4
√

2
. (C.1)

Let us first decompose Δ into its noise-free portion and the remainder as

Δ = 1

M

M∑
m=1

|b∗
mv�|2|a∗

mu�|2ama∗
m − E |b∗

mv�|2|a∗
mu�|2ama∗

m + 1

M

M∑
m=1

ξm(ama∗
m − Id1

).

Then (C.1) is implied by∥∥∥∥∥ 1

M

M∑
m=1

|b∗
mv�|2|a∗

mu�|2ama∗
m − E |b∗

mv�|2|a∗
mu�|2ama∗

m

∥∥∥∥∥ ≤ δ

8
√

2
(C.2)

and ∥∥∥∥∥ 1

M

M∑
m=1

ξm(ama∗
m − Id1

)

∥∥∥∥∥ ≤ δ

8
√

2
. (C.3)

Indeed, by Lemma B.3, (24) implies that (C.3) holds with probability 1 − ν/2 where ν = M−α .
In the remainder of the proof, we show (22) implies (C.2) with probability 1 − ν/2. Let

Ym = Zm − EZm, m = 1, . . . , M,
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where

Zm = |b∗
mv�|2|a∗

mu�|2ama∗
m. (C.4)

Then (C.2) is written as ∥∥∥∥∥ 1

M

M∑
m=1

Ym

∥∥∥∥∥ ≤ δ

8
√

2
. (C.5)

To show (C.5), we use the noncommutative Rosenthal inequality in Theorem B.2. By direct
calculation, we obtain

EZm = u�u∗
� + Id1

.

Next, by plugging in (C.4) into EZ∗
mZm, we obtain

EZ∗
mZm = E |b∗

mv�|4|a∗
mu�|4ama∗

mama∗
m. (C.6)

By decomposing the right-hand side of (C.6) with Pu + Pu⊥ = Id1
, EZ∗

mZm is rewritten as

EZ∗
mZm = E |b∗

mv�|4|a∗
mu�|4Pu�

ama∗
mPu�

ama∗
mPu�

(C.7a)

+ E |b∗
mv�|4|a∗

mu�|4Pu�
ama∗

mPu⊥
�

ama∗
mPu�

(C.7b)

+ E |b∗
mv�|4|a∗

mu�|4Pu⊥
�

ama∗
mPu�

ama∗
mPu⊥

�
(C.7c)

+ E |b∗
mv�|4|a∗

mu�|4Pu⊥
�

ama∗
mPu⊥

�
ama∗

mPu⊥
�

(C.7d)

+ E |b∗
mv�|4|a∗

mu�|4Pu�
ama∗

mPu⊥
�

ama∗
mPu⊥

�
(C.7e)

+ E |b∗
mv�|4|a∗

mu�|4Pu⊥
�

ama∗
mPu⊥

�
ama∗

mPu�
(C.7f)

+ E |b∗
mv�|4|a∗

mu�|4Pu�
ama∗

mPu�
ama∗

mPu⊥
�

(C.7g)

+ E |b∗
mv�|4|a∗

mu�|4Pu⊥
�

ama∗
mPu�

ama∗
mPu�

. (C.7h)

Since u∗
�am and Pu⊥

�
am are independent, which follows from am ∼ CN (0, Id1

), we can substitute

Pu⊥
�

am by Pu⊥
�

ăm, where ăm is an independent copy of am. For a standard complex Gaussian random

variable ğ ∼ CN (0, 1), we have

E |ğ|2 = 1, E |ğ|4 = 2, E |ğ|6 = 6, E |ğ|8 = 24.
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312 K. LEE ET AL.

Therefore, by using these even-order moments of CN (0, 1) together with the independence between am
and ăm, we can compute (C.7a) to (C.7d) as follows:

E |b∗
mv�|4|a∗

mu�|4Pu�
ama∗

mPu�
ama∗

mPu�
= 48Pu�

,

E |b∗
mv�|4|a∗

mu�|4Pu�
amă∗

mPu⊥
�

ăma∗
mPu�

= 12(d1 − 1)Pu�
,

E |b∗
mv�|4|a∗

mu�|4Pu⊥
�

ăma∗
mPu�

amă∗
mPu⊥

�
= 12Pu⊥

�

E |b∗
mv�|4|a∗

mu�|4Pu⊥
�

ămă∗
mPu⊥

�
ămă∗

mPu⊥
�

= 4(d1 + 1)Pu⊥
�

.

Furthermore, each of the remaining summands (C.7e) to (C.7h) vanishes since it has a factor given as a
central Gaussian moments of an odd order.

Applying the above results to (C.7) provides

EZ∗
mZm = (12d1 + 36)Pu�

+ (4d1 + 16)Pu⊥
�

.

Then, by the definition of Ym, we have

EY∗
mYm = EZ∗

mZm − (EZm)∗(EZm) = (12d1 + 32)Pu�
+ (4d1 + 15)Pu⊥

�
.

Therefore, for d1 ≥ 3, we have∥∥∥∥∥
M∑

m=1

EYmY∗
m

∥∥∥∥∥
1/2

∨
∥∥∥∥∥

M∑
m=1

EY∗
mYm

∥∥∥∥∥
1/2

≤ C1

√
Md1. (C.8)

Next we compute the pth moment of the spectral norm. The pth moment is considered as the norm
in Lp. Then by the triangle inequality in Lp, we obtain(

E ‖Ym‖p)1/p ≤ (
E ‖Zm‖p)1/p + ‖EZm‖ ≤ (

E ‖Zm‖p)1/p + 2. (C.9)

Again by the triangle inequality, we obtain

(E ‖Zm‖p)1/p =
[
E

(
|b∗

mv�|2|a∗
mu�|2‖Pu�

am‖2
2 + |b∗

mv�|2|a∗
mu�|2‖Pu⊥

�
am‖2

2

)p]1/p

≤
(
E |b∗

mv�|2p|a∗
mu�|4p

)1/p +
(
E |b∗

mv�|2p|a∗
mu�|2p‖Pu⊥

�
ăm‖2p

2

)1/p

≤
(
E |b∗

mv�|2p
)1/p (

E |a∗
mu�|4p

)1/p +
(
E |b∗

mv�|2p
)1/p (

E |a∗
mu�|2p

)1/p (
E ‖ăm‖2p

2

)1/p
.

(C.10)

Since a∗
mu� ∼ CN (0, 1) and b∗

mv� ∼ CN (0, 1), by Lemma B.1, there exists a numerical constant C2
such that

(E |a∗
mu�|p)1/p = (E |b∗

mv�|p)1/p ≤ C2
√

p.

Since 2‖ăm‖2
2 is a chi-square random variable of the degree-of-freedom 2d1, we obtain(

E ‖ăm‖2p
2

)1/p ≤ C3(d1 + p), ∀p ≥ 2.
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Applying these upper estimates of the moments to (C.10) then to (C.9) provides

(E ‖Ym‖p)1/p ≤ C4(p
2d1 + p3),

which implies

p

(
M∑

m=1

E ‖Ym‖p

)1/p

≤ C4M1/p(p3d1 + p4). (C.11)

By applying (C.8) and (C.11) to Theorem B.2, we obtain⎛⎝E

∥∥∥∥∥ 1

M

M∑
m=1

Ym

∥∥∥∥∥
p
⎞⎠1/p

≤ C5

[√
pd1

M
+ M1/p(p3d1 + p4)

M

]
(C.12)

for all p ≥ 2 and d1 ≥ 3.
Finally, similar to [27, Proposition 7.11], we derive a tail bound from moment bounds. It follows

from the Markov inequality that:

P

(∥∥∥∥∥ 1

M

M∑
m=1

Ym

∥∥∥∥∥ >
δ

8
√

2

)
≤

(
8
√

2

δ

)p

E

∥∥∥∥∥ 1

M

M∑
m=1

Ym

∥∥∥∥∥
p

. (C.13)

By plugging in (C.12) to (C.13), it follows that (C.5) holds with probability ν provided that

C6

[√
pd1

M
+ M1/p(p3d1 + p4)

M

]
≤ δν1/p.

Then we set p = log(M/ν) so that (22) implies that (22) holds with probability 1 − ν/2. Therefore, the
probability for violating (C.5) becomes ν = M−α . This completes the proof.

D. Proof of Lemma 4.5

To simplify notation, let

Zm := 〈Φm, X�〉2ΦmV̂V̂
�
Φ�

m , m = 1, . . . , M.

Then Υ is written as

Υ = 1

M

M∑
m=1

(Zm + ξmΦmV̂V̂
�
Φ�

m︸ ︷︷ ︸
(�)

). (D.1)

We derive the expectation of Υ in the following steps: first the expectation of the noise part (�) in
(D.1) is computed as

E ξmΦmV̂V̂
�
Φ�

m = ξmtr(V̂V̂
�
)Id1

= rξmId1
. (D.2)

Next we compute EZm by using Lemma A.1. Let x� = vec(X�) and φm = vec(Φm) for m = 1, . . . , M.
Then Zm is rewritten as

Zm = (tr ⊗ Id1
)
[
(V̂

� ⊗ Id1
)〈φm, x�〉2φmφ�

m(V̂ ⊗ Id1
)
]
.
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Since the partial trace operator is linear, the expectation of Zm is written as

EZm = (tr ⊗ Id1
)
[
(V̂

� ⊗ Id1
)E〈φm, x�〉2φmφ�

m(V̂ ⊗ Id1
)
]

= (tr ⊗ Id1
)
[
(V̂

� ⊗ Id1
)(2x�x�

� + ‖X�‖2
FId1d2

)(V̂ ⊗ Id1
)
]

= 2X�V̂V̂
�

X�
� + r‖X�‖2

FId1
,

(D.3)

where the second identity follows from Lemma A.1. Then by combining (D.2) and (D.3), the expectation
of Υ is written as

EΥ = 2X�V̂V̂
�

X�
� +

(
r‖X�‖2

F + r

M

M∑
m=1

ξm

)
Id1

. (D.4)

It follows from (25) that X�V̂V̂
�

X�
� in the right-hand side of (D.4) has rank-r and its invariant space

coincides with that of X�X�
� = U�Σ

2
�U�

� . The inclusion of the former subspace to the latter is obvious

from the construction. Furthermore, the rank of X�V̂V̂
�

X�
� is at most r. Indeed, the rth largest singular

value of X�V̂V̂
�

X�
� satisfies

σr(X�V̂V̂
�

X�
� ) ≥ σr(X�)

2σr(V̂V̂
�

V�V�
� )

≥ σr(X�)
2
(
σr(V�V�

� ) − ‖(Id2
− V̂V̂

�
)V�V�

� ‖
)

≥ (1 − δin)σr(X�)
2,

where the last step follows from (25). Therefore, we deduce that X�V̂V̂
�

X�
� and X�X�

� have the same
invariant subspace.

Recall that the columns of U0 are the eigenvectors of Υ corresponding to the r-largest eigenvalues.
Furthermore, the subspace spanned by the top r eigenvectors of EΥ is the same to the column space
of U�. Therefore, the Davis–Kahan theorem (Theorem C.1) provides an upper bound for the estimation
error measured by the principal angle between subspaces (the left-hand side of (28)). To this end, we
apply Theorem C.1 to A = EΥ and Δ = Υ − EΥ as shown below.

Since the spectral gap in A satisfies

λr(A) − λr+1(A) = λr(EΥ ) − λr+1(EΥ ) = λr(2X�V̂V̂
�

X�
� ) ≥ 2(1 − δin)[σr(X�)]

2,

the error bound in (28) is obtained by Theorem C.1 provided that

‖Δ‖ = ‖Υ − EΥ ‖ ≤ (1 − δin)δoutσr(X�)
2

2
. (D.5)

By the triangle inequality, we obtain a sufficient condition for (D.5) given by∥∥∥∥∥ 1

M

M∑
m=1

(Zm − EZm)

∥∥∥∥∥ ≤ (1 − δin)δoutσr(X�)
2

4
(D.6)
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and

∥∥∥∥∥ 1

M

M∑
m=1

ξm

(
ΦmV̂V̂

�
Φ�

m − rId1

)∥∥∥∥∥ ≤ (1 − δin)δoutσr(X�)
2

4
. (D.7)

In the remainder, we show that (D.6) and (D.6) hold with high probability when the conditions in
(26) and (29) are satisfied. First, by Lemma B.3, it follows from (29) that (D.7) holds with probability
1−M−α/2. Then it remains to show that (D.6) holds with probability 1−M−α/2 when (26) is satisfied.
By the Markov inequality,

P

(∥∥∥∥∥ 1

M

M∑
m=1

(Zm − EZm)

∥∥∥∥∥ >
(1 − δin)δoutσr(X�)

2

4

)

≤
(

4

(1 − δin)δoutσr(X�)
2

)p

· E
∥∥∥∥∥ 1

M

M∑
m=1

(Zm − EZm)

∥∥∥∥∥
p

for any p > 0. Therefore, (D.6) holds with probability 1 − M−α/2 if

⎛⎝E

∥∥∥∥∥ 1

M

M∑
m=1

(Zm − EZm)

∥∥∥∥∥
p
⎞⎠1/p

︸ ︷︷ ︸
(‡)

≤ (1 − δin)δoutσr(X�)
2M−α/p

4
. (D.8)

To get an upper estimate of (‡) in (D.8), we apply the noncommutative Rosenthal inequality
(Theorem B.2) to Ym = Zm − EZm for m = 1, . . . , M. The first step is to compute the expectation
of Y2

m as follows: let Q1, Q2, Q3, Q4 ∈ R
d1×d2 . Note that each entry of Q1Q�

2 Q3Q�
4 is given as a linear

combination of the entries of vec(Q1) ⊗ vec(Q2) ⊗ vec(Q3) ⊗ vec(Q4). Therefore, there exists a linear

map R : R(d1d2)
4 → R

d1×d1 that satisfies

R[vec(Q1) ⊗ vec(Q2) ⊗ vec(Q3) ⊗ vec(Q4)] = Q1Q�
2 Q3Q�

4 .

We also define

Tm := 〈Φm, X�〉4[vec(ΦmV̂) ⊗ vec(ΦmV̂) ⊗ vec(ΦmV̂) ⊗ vec(ΦmV̂)].
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Then Z2
m is written as Z2

m = R(Tm). Since vec(ΦmV̂) = (V̂
� ⊗ Id1

)vec(Φm), it follows that ETm is
written as:

ETm = [(V̂
� ⊗ Id1

) ⊗ (V̂
� ⊗ Id1

) ⊗ (V̂
� ⊗ Id1

) ⊗ (V̂
� ⊗ Id1

)]E(φ�
mvec(X�))

4(φm ⊗ φm ⊗ φm ⊗ φm)

= 24 [vec(X�V̂) ⊗ vec(X�V̂) ⊗ vec(X�V̂) ⊗ vec(X�V̂)]

+ 12
d∑

k1=1

d∑
k2=1

[
vec(X�V̂) ⊗ vec(X�V̂) ⊗ vec(ek1̃

e�
k2

V̂) ⊗ vec(ek1̃
e�

k2
V̂)

+ vec(X�V̂) ⊗ vec(ek1̃
e�

k2
V̂) ⊗ vec(X�V̂) ⊗ vec(ek1̃

e�
k2

V̂)

+ vec(X�V̂) ⊗ vec(ek1̃
e�

k2
V̂) ⊗ vec(ek1̃

e�
k2

V̂) ⊗ vec(X�V̂)

+ vec(ek1̃
e�

k2
V̂) ⊗ vec(X�V̂) ⊗ vec(X�V̂) ⊗ vec(ek1̃

e�
k2

V̂)

+ vec(ek1̃
e�

k2
V̂) ⊗ vec(X�V̂) ⊗ vec(ek1̃

e�
k2

V̂) ⊗ vec(X�V̂)

+ vec(ek1̃
e�

k2
V̂) ⊗ vec(ek1̃

e�
k2

V̂) ⊗ vec(X�V̂) ⊗ vec(X�V̂)
]

+ 3
d1∑

j1,k1=1

d2∑
j2,k2=1

[
vec(ej1̃e�

j2 V̂) ⊗ vec(ej1̃ e�
j2 V̂) ⊗ vec(ek1̃

e�
k2

V̂) ⊗ vec(ek1̃
e�

k2
V̂)

+ vec(ej1̃ e�
j2 V̂) ⊗ vec(ek1̃

e�
k2

V̂) ⊗ vec(ej1̃e�
j2 V̂) ⊗ vec(ek1̃

e�
k2

V̂)

+ vec(ej1̃ e�
j2 V̂) ⊗ vec(ek1̃

e�
k2

V̂) ⊗ vec(ek1̃
e�

k2
V̂) ⊗ vec(ej1̃e�

j2 V̂)
]
,

where Lemma A.3 is used to compute ETm in the second step. Also by the linearity of the map R, it
follows that:

EZ2
m = R(ETm)

= 24X�V̂V̂
�

X�
� X�V̂V̂

�
X�

�

+ 12‖X�‖2
F

d∑
l1=1

d∑
l2=1

[
X�V̂V̂

�
X�

� el1̃e�
l2 V̂V̂

�̃
el2 e�

l1 + X�V̂V̂
�̃

el2 e�
l1 X�V̂V̂

�̃
el2 e�

l1

+ X�V̂V̂
�̃

el2 e�
l1 el1̃ e�

l2 V̂V̂
�

X�
� + el1̃ e�

l2 V̂V̂
�

X�
� X�V̂V̂

�̃
el2 e�

l1

+ el1̃e�
l2 V̂V̂

�
X�

� el1̃ e�
l2 V̂V̂

�
X�

� + el1̃ e�
l2 V̂V̂

�̃
el2e�

l1 X�V̂V̂
�

X�
�

]
+ 3‖X�‖4

F

d1∑
j1,k1=1

d2∑
j2,k2=1

[
ej1̃e�

j2 V̂V̂
�̃

ej2 e�
j1 ek1̃

e�
k2

V̂V̂
�̃

ek2
e�

k1

+ ej1̃e�
j2 V̂V̂

�̃
ek2

e�
k1

ej1̃ e�
j2 V̂V̂

�̃
ek2

e�
k1

+ ej1̃e�
j2 V̂V̂

�̃
ek2

e�
k1

ek1̃
e�

k2
V̂V̂

�̃
ej2 e�

j1

]
.
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After direct calculation, the above expression for EZ2
m simplifies to

EZ2
m = 24X�V̂V̂

�
X�

� X�V̂V̂
�

X�
�

+ 12(2r + d1 + 2)‖X�‖2
FX�V̂V̂

�
X�

� + 12‖X�‖2
F‖X�V̂‖2

FId1

+ 3‖X�‖4
Fr(r + d1 + 1)Id1

.

(D.9)

Then, by combining (D.3) and (D.9), we obtain

EY2
m = EZ2

m − (EZm)2

= 20X�V̂V̂
�

X�
� X�V̂V̂

�
X�

� + 4(5r + 3d1 + 6)‖X�‖2
FX�V̂V̂

�
X�

�

+
(

12‖X�‖2
F‖X�V̂‖2

F + ‖X�‖4
Fr(2r + 3d1 + 3)

)
Id1

.

Therefore, the spectral norm of EY2
m is upper-bounded by

‖EY2
m‖ ≤ 20‖X�‖4 + 4(5r + 3d1 + 6)‖X�‖2

F‖X�‖2 + 12‖X�‖2
F‖X�V̂‖2

F + r(2r + 3d1 + 3)‖X�‖4
F.

Collecting the results for m = 1, . . . , M gives∥∥∥∥∥
M∑

m=1

EY2
m

∥∥∥∥∥
1/2

≤ Cr3/2
√

Md1‖X�‖2. (D.10)

Moreover, by applying the triangle inequality in Lp twice to (D.3), we obtain

(E ‖Ym‖p)1/p ≤
[
E

(
〈Φm, X�〉2‖ΦmV̂V̂

�
Φ�

m − rId1
‖
)p]1/p

︸ ︷︷ ︸
(�)

+ r
[
E

(
〈Φm, X�〉2 − ‖X�‖2

F

)p]1/p

︸ ︷︷ ︸
(��)

+ 2‖X�V̂V̂
�

X�
� ‖︸ ︷︷ ︸

(���)

.

(D.11)

By the Cauchy–Schwarz inequality in L2, the first term (�) on the right-hand side of (D.11) is upper-
bounded by

(�) ≤
(
E〈Φm, X�〉4p

)1/2p ·
(
E ‖ΦmV̂V̂

�
Φ�

m − rId1
‖2p

)1/2p
.

Since 〈X�, Φm〉 ∼ N (0, ‖X�‖2
F), by Lemma B.1, we have(

E〈Φm, X�〉4p
)1/2p ≤ Cp‖X�‖2

F.

Then it follows from vec(ΦmV̂) = (V̂
� ⊗ Id1

)φm that

Evec(ΦmV̂)vec(ΦmV̂)� = E(V̂
� ⊗ Id1

)φmφ�
m(V̂ ⊗ Id1

)φm = V̂
�

V̂ ⊗ Id1
= Id2d1

,
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which implies that Φ1V̂, . . . , ΦMV̂ ∈ R
d1×r are independent copies of a standard i.i.d. Gaussian matrix.

Thus, Lemma B.3 implies(
E‖ΦmV̂V̂

�
Φ�

m − rId1
‖2p

)1/2p ≤ C
[√

rpd1 + r1/2pp
(
d1 + p

)]
.

Then, by the triangle inequality in Lp and Lemma B.1, (��) is upper-bounded as

(��) ≤ r
(
E〈Φm, X�〉2p

)1/p + r‖X�‖2
F ≤ C′rp‖X�‖2

F.

The last term is trivially upper-bounded by (���) ≤ ‖X�‖2
F.

By collecting the above results, we obtain that the Lp-norm of ‖Ym‖ is upper-bounded by

(E ‖Ym‖p)1/p ≤ C1‖X�‖2
F p

(
r + √

rpd1 + r1/2pp
(
d1 + p

))
. (D.12)

Then, by applying (D.10) and (D.12) to Theorem B.2, we obtain that (‡) in (D.8) is upper-bounded by

(
E

∥∥∥ 1

M

M∑
m=1

(Zm − EZm)

∥∥∥p)1/p

≤ C3‖X�‖2
(

r3/2M−1/2
√

pd1 + M1/p−1p2r
(

r + √
rpd1 + r1/2pp

(
d1 + p

)) )
.

Finally, we choose p = log(M/M−α) = (α + 1) log M. Then (26) implies (D8). This completes the
proof.

E. Proof of Lemma 5.1

Since X̂ is a minimizer to (3), it satisfies

Im 〈X0, X̂〉 = 0. (E.1)

Then by (E.1) and (30) together with the fact that rank(X�) = 1, we have

Im 〈X0, H〉 = 0,

where H = X̂ − X�. Let PX�
denote the orthogonal projection onto CX�, that is

PX�
: M �→ X�〈X�, M〉

‖X�‖2
F

.

Then it follows that:

0 = |Im 〈X0, H〉| ≥ |Im 〈PX�
(X0), H〉| − |Im 〈X0 − PX�

(X0), H〉|,
which is rearranged as

|Im 〈PX�
(X0), H〉| ≤ |Im 〈X0 − PX�

(X0), H〉|. (E..2)
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By (30), the left-hand side of (E.2) is bounded from below as

|Im 〈PX�
(X0), H〉| =

∣∣∣Im(〈X0, X�〉〈X�, H〉)
∣∣∣

‖X�‖2
F

= 〈X0, X�〉
‖X�‖F

·
∣∣∣Im〈X�, H〉

∣∣∣
‖X�‖F

≥
√

1 − δ2 · ‖X0‖F ·
∣∣∣Im〈X�, H〉

∣∣∣
‖X�‖F

.

Since the linear operator ι : M �→ M − PX�
(M) is self-adjoint and idempotent, the right-hand side of

(E..2) is bounded from above as

|Im 〈X0 − PX�
(X0), H〉| = |Im 〈X0 − PX�

(X0), H − PX�
(H)〉|

≤ ‖X0 − PX�
(X0)‖F · ‖H − PX�

(H)‖F ≤ δ ‖X0‖F · ‖H − PX�
(H)‖F.

Applying the above bounds to (E.2) completes the proof.

F. Proof of Lemma 5.4

The following lemma provides a tail probability of the product of two jointly Gaussian variables.

Lemma F.1 (A variation of [6, Lemma 5]). Let g1, g2 be random variables that satisfy[
g1
g2

]
∼ N

(
0,

[
1 ρ

ρ 1

])
.

Then for all t > 0

P(g1g2 > t) ≥ 2

π
cos−1

(√
3 − ρ

2

)
exp

(
− 2t

1 + ρ

)
. (F.1)

Proof of Lemma F.1 Let w1 and w2 be independent copies of a standard normal random variable
following N (0, 1). Then g1 and g2 are written as

g1 =
√

1 + ρ

2
w1 +

√
1 − ρ

2
w2 and g2 =

√
1 − ρ

2
w1 −

√
1 − ρ

2
w2.

With this representation, we have

P(g1g2 > t) = P

(
1 + ρ

2
w2

1 − 1 − ρ

2
w2

2 > t

)
= P

(
ρ − 1

2
+ w2

1

w2
1 + w2

2

>
t

w2
1 + w2

2

)
.

Since w2
1/(w

2
1 + w2

2) and 1/(w2
1 + w2

2) respectively depend only on the direction and the �2 norm of the
standard normal random vector [w1, w2]�, they are mutually independent. Furthermore, R = w2

1 + w2
2

follows the exponential distribution with mean 1/2 and w1/

√
w2

1 + w2
2 is written as cos θ where θ is a
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uniform random variable on [0, 2π). Then it follows that:

P

(
ρ − 1

2
+ w2

1

w2
1 + w2

2

>
t

w2
1 + w2

2

)
≥ P

(
w2

1

w2
1 + w2

2

≥ 3 − ρ

4
and

1 + ρ

4
>

t

w2
1 + w2

2

)

= P

(
w2

1

w2
1 + w2

2

≥ 3 − ρ

4

)
P

(
w2

1 + w2
2 >

4t

1 + ρ

)

= P

(
cos2 θ ≥ 3 − ρ

4

)
P

(
R >

4t

1 + ρ

)
. (F.2)

The lower bound in (F.1) is obtained by computing the probabilities in (F.2).
We apply Lemma F.1 for g1 = 〈X�, Φ〉/‖X�‖F, g2 = 〈Φ, H〉/‖H‖F and t = τ ′. Since the probability

in (F.1) is a monotone increasing function in ρ, to get a lower bound on the tail probability, it suffices to
compute a lower estimate of ρ.

Let X� = U�Σ�V�
� denote the SVD of X�. Let σ1, . . . , σr denote the singular values of X� in the

non-increasing order. Then ‖X�‖∗ = ∑r
k=1 σk. By the triangle inequality, we have

ρ = 〈X�, H〉
‖X�‖F‖H‖F

≥ 〈‖X�‖∗U�V�
� , H〉

r‖X�‖F‖H‖F︸ ︷︷ ︸
(��)

− |〈rX� − ‖X�‖∗U�V�
� , H〉|

r‖X�‖F‖H‖F︸ ︷︷ ︸
(���)

. (F.3)

Note that, for all H ∈ Aδ , the first summand (��) is further bounded from below by

〈‖X�‖∗U�V�
� , H〉

r‖X�‖F‖H‖F
≥ − ‖X�‖∗

r‖X�‖F
·

√
rδ

1 − λ
.

The second term (���) can be upper-bounded by the Cauchy–Schwarz inequality with∥∥∥∥X� − ‖X�‖∗U�V�
�

r

∥∥∥∥
F

≤
√

r(σ1 − σr)

2
.

By plugging in the above estimates to (F.3), we obtain a sufficient condition for ρ ≥ −0.9 given by

δ

1 − λ
≤

√
r‖X�‖F

‖X�‖∗
·
(

0.9 −
√

r(σ1(X�) − σr(X�))

2‖X�‖F

)
. (F.4)

Here the right-hand side of (F.4) is no larger than (2.8 − κ)/2. Therefore, (14) implies that 1 + ρ ≥ 0.1.
Then Lemma F.1 provides the lower bound in (40). This completes the proof.

G. Proof of Lemma 5.5

Without loss of generality, we may assume ‖X�‖F = ‖H‖F = 1. Since PT and PT⊥ are orthogonal pro-
jection operators onto corresponding subspaces, they are self-adjoint and idempotent linear operators.
Therefore, it follows that:

〈Φm, H〉 = 〈PT(Φm),PT(H)〉 + 〈PT⊥(Φm),PT⊥(H)〉.
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Then by Hölder’s inequality, we obtain

CM(Aδ) = E sup
H∈Aδ

1√
M

M∑
m=1

εm〈X�, Φm〉〈Φm, H〉

≤ E

∥∥∥ 1√
M

M∑
m=1

εmPT(Φm)〈Φm, X�〉
∥∥∥

F
· sup

H∈Aδ

‖PT(H)‖F

+ E

∥∥∥ 1√
M

M∑
m=1

εmPT⊥(Φm)〈Φm, X�〉
∥∥∥ · sup

H∈Aδ

‖PT⊥(H)‖∗

≤ E

∥∥∥ 1√
M

M∑
m=1

εmPT(Φm)〈Φm, X�〉
∥∥∥

F
(G.1)

+ E

∥∥∥ 1√
M

M∑
m=1

εmPT⊥(Φm)〈Φm, X�〉
∥∥∥ ·

√
r(1 − λ + δ)

λ
, (G.2)

where the last step follows from the expression of Aδ in (39).
The part in (G.1) is upper-bounded by

E

∥∥∥ 1√
M

M∑
m=1

εmPT(Φm)〈Φm, X�〉
∥∥∥

F
≤

√√√√
E

∥∥∥ 1√
M

M∑
m=1

εmPT(Φm)〈Φm, X�〉
∥∥∥2

F

=
√√√√ 1

M

M∑
m=1

E‖PT(Φm)〈Φm, X�〉‖2
F =

√
E‖PT(Φ)〈Φ, X�〉‖2

F,

where the first step follows from Jensen’s inequality; the second step holds since (εm)M
m=1 is a

Rademacher sequence; the last step holds since Φ1, . . . , ΦM are independent copies of Φ. Indeed, since

PT(Φ) = U�U∗
�Φ + (Id1

− U�U∗
� )ΦV�V∗

� ,

it follows that:

E‖PT(Φ)〈Φ, X�〉‖2
F = E‖U�U∗

�Φ‖2
F〈Φ, X�〉2 + ‖(Id1

− U�U∗
� )ΦV�V∗

�‖2
F〈Φ, X�〉2. (G.3)

The first summand in the right-hand side of (G.3) is computed as

E‖U�
� Φ‖2

F〈U�
� Φ, U�

� X�〉2 = tr
[
E〈vec(U�

� Φ), vec(U�
� X�)〉2vec(U�

� Φ)vec(U�
� Φ)�

]
= tr

(
2 vec(U�

� X�)vec(U�
� X�)

� + Ird2

)
= 2 + rd2,

where the second step follows from Lemma A.2 since vec(U�
� Φ) ∼ N (0, Ird2

).
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Let Φ ′ be an independent copy of Φ. Since (Id1
− U�U∗

� )Φ is independent of U�U∗
�Φ, the second

summand in the right-hand side of (G.3) is written as

E‖(Id1
− U�U∗

� )ΦV�V∗
�‖2

F〈U�U∗
�Φ

′, X�〉2

= EΦ

∥∥∥(V�V∗
� ⊗ (Id1

− U�U∗
� )

)
vec(Φ)

∥∥∥2

2
EΦ ′ 〈Φ ′, X�〉2

= tr
(

V�V∗
� ⊗ (Id1

− U�U∗
� )

)
= r(d1 − r).

Therefore, we obtain

E‖PT(Φ)〈Φ, X�〉‖2
F = r(d1 + d2 − r) + 2.

By Jensen’s inequality, the expectation in (G.2) is upper-bounded by

E

∥∥∥∥∥
M∑

m=1

εmPT⊥(Φm)〈Φm, X�〉
∥∥∥∥∥ ≤

⎛⎝E

∥∥∥∥∥
M∑

m=1

εmPT⊥(Φm)〈Φm, X�〉
∥∥∥∥∥

2p
⎞⎠1/2p

for all p ∈ N. Then we apply the noncommutative Rosenthal inequality (Theorem B.2) for

Ym = εmPT⊥(Φm)〈Φm, X�〉, m = 1, . . . , M.

Since PT(X�) = X� and PT(Φm) is independent from PT⊥(Φm), it follows:

Ym = εmPT⊥(Φm)〈PT(Φ ′
m), X�〉, m = 1, . . . , M,

where Φ ′
1, . . . , Φ ′

M are independent copies of Φ1, . . . , ΦM . Furthermore, we have EYm = 0 for m =
1, . . . , M. By direct computation with Lemma A.2, we obtain

EYmY�
m = tr(PV⊥

�
)PU⊥

�
and EY�

mYm = tr(PU⊥
�
)PV⊥

�
, m = 1, . . . , M.

Therefore, we obtain ∥∥∥∥∥
M∑

m=1

EYmY�
m

∥∥∥∥∥
1/2

∨
∥∥∥∥∥

M∑
m=1

EY�
mYm

∥∥∥∥∥
1/2

≤ √
M(d1 + d2).

Next we derive an upper bound for
(∑M

m=1 E‖Ym‖2p
)1/2p

, which coincides with M1/2p
(
E‖Ym‖2p

)1/2p

for any m ∈ {1, . . . , M}. Since PT(Φm) and PT⊥(Φm) are independent, it follows that the spectral norm
of Ym satisfies:

E‖Ym‖2p ≤
(
E‖PT⊥(Φm)‖2p

)
·
(
E|〈PT(Φm), X�〉|2p

)
≤ (C

√
p)2p

E‖Φm‖2p,

where the last inequality follows from the fact that 〈PT(Φm), X�〉 ∼ N (0, 1) satisfies:

E|〈PT(Φm), X�〉|2p ≤ (C
√

p)2p.

It remains to get an upper bound on E‖Φm‖2p. Note that ‖Φm‖2 = ‖Φ�
mΦm‖ where Φ�

mΦm follows the
Wishart distribution. Without loss of generality, we may assume d1 ≤ d2 (otherwise we consider ΦmΦ�

m
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instead of Φ�
mΦm). Then Lemma B.3 implies

(E‖Φ�
mΦm‖p)1/p ≤ d1 + C1

(√
pd1d2 + pd1/p

1

(
d2 + p

))
. (G.4)

Indeed, (G.4) is obtained by Lemma B.3 and the triangle inequality in the Banach space of random
variables Lp(Ω , μ). Note that Φ�

mΦm is written as

Φ�
mΦm =

d1∑
k=1

gkg�
k ,

where g1, . . . , gd1
are independent copies of g ∼ N (0, Id2

). Then it follows by Lemma B.3 that:(
E

∥∥∥∥ 1

d1
Φ�

mΦm − Id2

∥∥∥∥p)1/p

≤ C1

(
d−1/2

1

√
pd2 + d1/p−1

1 p
(
d2 + p

))
,

which, together with the triangle inequality and the homogeneity of Lp-norm, implies (G.4). Then taking
the square root on both sides of (G.4) gives

(E‖Φm‖2p)1/2p ≤ C2

(√
d1 + (pd1d2)

1/4 + √
pd1/2p

1

√
d2 + pd1/2p

1

)
.

By collecting the above estimates, Theorem B.2 implies⎛⎝E

∥∥∥∥∥ 1√
M

M∑
m=1

εmPT⊥(Φm)〈Φm, X�〉
∥∥∥∥∥

2p
⎞⎠1/2p

≤ C3

(√
p(d1 + d2) + M1/2p−1/2p3/2

(√
d1 + (pd1d2)

1/4 + √
pd1/2p

1

√
d2 + pd1/2p

1

) )
.

For the brevity, let d = d1 + d2. Let us choose p = 1 ∨ log d. Then 1/2p − 1/2 ≤ 0. Since M ≥ d, we
obtain

M1/2p−1/2 ≤ d1/2p−1/2 ≤ d1/2 log d

√
d

≤ C4d−1/2.

Furthermore, we have√
d1 + (pd1d2)

1/4 + √
pd1/2p

1

√
d2 + p3/2d1/2p

1 d1/2p
2 ≤ C5

(√
d log d + log3/2 d

)
.

Combining the above estimates provides

E

∥∥∥ 1√
M

M∑
m=1

εmPT⊥(Φm)〈Φm, X�〉
∥∥∥ ≤

(
E

∥∥∥ 1√
M

M∑
m=1

εmPT⊥(Φm)〈Φm, X�〉
∥∥∥2p)1/2p

≤ C6

√
(d1 + d2) log(d1 + d2).

Then the upper bound in (41) is obtained by applying the above estimates to (G.1) and (G.2).
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H. Proof of Lemma 5.6

The event is determined by a 1-homogeneous equation in H and X�. Therefore, without loss
of generality, we may assume that ‖H‖F = ‖X�‖F = 1. Then X� is written as u�v∗

� with
‖u�‖2 = ‖v�‖2 = 1.

First, we decompose Re(b∗v�u∗
�aa∗Hb) as

Re(b∗v�u∗
�aa∗Hb) = Re(b∗v�u∗

�aa∗Pu�
HPv�

b) + Re(b∗v�u∗
�aa∗Pu⊥

�
HPv�

b)

+ Re(b∗v�u∗
�aa∗Pu�

HPv⊥
�

b) + Re(b∗v�u∗
�aa∗Pu⊥

�
HPv⊥

�
b).

By plugging in Pu�
= u�u∗

� and Pv�
= v�v∗

� to the above identity, we rewrite Re(b∗v�u∗
�aa∗Hb) as

Re(b∗v�u∗
�aa∗Hb) = |v∗

�b|2|u∗
�a|2 Re(u∗

�Hv�) + |v∗
�b|2|u∗

�a| Re

(
u∗

�a

|u∗
�a| · a∗Pu⊥

�
Hv�

)

+ |u∗
�a|2|v∗

�b| Re

(
v∗
�b

|v∗
�b| · u∗

�HPv⊥
�

b

)
+ |u∗

�a||v∗
�b| Re

(
u∗

�a

|u∗
�a| · v∗

�b

|v∗
�b| · a∗Pu⊥

�
HPv⊥

�
b

)
.

The following facts follow from the assumption that a ∼ CN (0, Id1
) and b ∼ CN (0, Id2

) are mutually
independent:

1. |u∗
�a|, |v∗

�b|, u∗
�a/|u∗

�a|, v∗
�b/|v∗

�b|, Pu⊥
�

a, and Pv⊥
�

b are independent random variables.

2. |u∗
�a| and |v∗

�b| follow the Rayleigh distribution with scale parameter 1.

3. u∗
�a/|u∗

�a| and v∗
�b/|v∗

�b| follow the uniform distribution on the set of complex number of the unit
modulus.

Furthermore, due to the rotation invariance of the Gaussian distribution, (u∗
�a/|u∗

�a|)Pu⊥
�

a has the same

distribution with Pu⊥
�

a. Similarly, (v∗
�b/|v∗

�b|)Pv⊥
�

b and Pv⊥
�

b have the same distribution.

Combining the above facts, we obtain that Re(b∗v�u∗
�aa∗Hb) has the same distribution with

x := r2
1r2

2 Re(u∗
�Hv�) + r1r2

2 Re(a∗Pu⊥
�

Hv�) + r2
1r2 Re(u∗

�HPv⊥
�

b) + r1r2 Re(a∗Pu⊥
�

HPv⊥
�

b),

where r1, r2, a, b are independent and r1, r2 ∼ Rayleigh(1).
Now it suffices to compute the probability of the event E defined by

E := {x ≥ τ ′}.
For positive constants α, β, we define another event E0 by

E0 := {α ≤ r1 ≤ β, α ≤ r2 ≤ β}.
For example, we may set α = 0.9 and β = 1.1. Then P(E0) ≥ 0.12.

Let z1, z2, z3 be random variables defined by

z1 := Re(a∗Pu⊥
�

Hv�), z2 := Re(u∗
�HPv⊥

�
b) and z3 := Re(a∗Pu⊥

�
HPv⊥

�
b).
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Since a ∼ CN (0, Id1
), if Pu⊥

�
Hv� 
= 0, then it follows that a∗Pu⊥

�
Hv� ∼ CN (0, ‖Pu⊥

�
HPv�

‖2
F) and its

real part z1 follows N (0, ‖Pu⊥
�

HPv�
‖2

F/2). Otherwise, Pu⊥
�

Hv� = 0 implies z1 = 0. Similarly, z2 ∼
N (0, ‖Pv⊥

�
H∗Pu�

‖2
F/2) if Pv⊥

�
H∗u� 
= 0; z2 = 0 otherwise. By the independence between a and b, it

follows that z1+z2 ∼ N (0, ‖Pu⊥
�

HPv�
+Pu�

HPv⊥
�
‖2

F/2) if ‖Pu⊥
�

HPv�
‖2

F+‖Pu�
HPv⊥

�
‖2

F > 0; z1+z2 = 0

otherwise. In both cases, z1 + z2 has a symmetric distribution, that is z1 + z2 is equivalent to −(z1 + z2)

in distribution.
Furthermore, we can rewrite z3 as a Gaussian bilinear form, i.e.

z3 = ã�Q̃b

for

Q = 1

2

[
Re(Pu⊥

�
HPv⊥

�
) −Im(Pu⊥

�
HPv⊥

�
)

Im(Pu⊥
�

HPv⊥
�
) Re(Pu⊥

�
HPv⊥

�
)

]
,

where

ã = √
2

[
Re(a)

Im(a)

]
∼ N (0, I2d1

), b̃ = √
2

[
Re(b)

Im(b)

]
∼ N (0, I2d2

).

It follows that z3 has a symmetric distribution. Furthermore, since z3 is a Gaussian bilinear form, it has
a mixed subexponential-subgaussian tail given by

P(|z3| ≥ t) ≤ C exp

[
− 1

C

(
t2

‖Q‖2
F

∧ t

‖Q‖

)]
, ∀t > 0 (H.1)

for a numerical constant C. Latała [38] showed that this tail bound is tight with an analogous lower
bound given by

P(|z3| ≥ t) ≥ 1

C
exp

[
−C

(
t2

‖Q‖2
F

∧ t

‖Q‖

)]
, ∀t > 0.

By direct calculation, we obtain

‖Q‖F = 1√
2

‖Pu⊥
�

HPv⊥
�
‖F

and

‖Q‖ = 1

2
‖Pu⊥

�
HPv⊥

�
‖.

Now we are ready to derive a lower bound on the probability of the event E using the aforementioned
properties z1, z2, z3. It follows from the definition of the conditional probability that

P(E)

P(E0)
≥ P(E ∩ E0)

P(E0)
= P(E |E0) = P

(
r1r2 Re(u∗

�Hv�) + r2z1 + r1z2 + z3 ≥ τ ′

r1r2

∣∣∣ E0

)
. (H.2)

As we choose α < β as numerical constants, P(E0) is another numerical constant. It remains to show
that the lower bound in (H.2) is larger than a numerical constant. We consider the two complementary
scenarios below.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/article/10/1/285/5910381 by W
eizm

ann Institute of Science user on 15 June 2021



326 K. LEE ET AL.

Case 1: First, we consider the case when H satisfies

‖Pu⊥
�

HPv⊥
�
‖ ≤ ζ (H.3)

for some constant 0 < ζ < 1, which we will specify later.
Let τ ′′ > 0. Then by the inclusion–exclusion principle, the right-hand side of (H.2) is lower-bounded

by

P

(
r1r2 Re(u∗

�Hv�) + r2z1 + r1z2 + z3 ≥ τ ′

r1r2
| E0

)
≥ P

(
r1r2 Re(u∗

�Hv�) + r2z1 + r1z2 ≥ τ ′ + τ ′′

r1r2
| E0

)
− P

(
z3 < − τ ′′

r1r2
| E0

)
. (H.4)

In the sequel, we will use the fact that for then the tail probability is

g ∼ N (0, ς2) �⇒ P (g > t) is increasing in ς and decreasing in t ≥ 0 . (H.5)

The following cases on the sign of Re(u∗
�Hv�) have to be distinguished. First, suppose that Re(u∗

�Hv�) ≤
0. Conditioned on r1 and r2, the random variable r2z1 + r1z2 becomes a Gaussian and invoking (H.5)
yields

P

(
r2z1 + r1z2 ≥ τ ′ + τ ′′

r1r2
− r1r2 Re(u∗

�Hv�) | E0, r1, r2

)
≥ P

(
α(z1 + z2) ≥ τ ′ + τ ′′

α2 − β2 Re(u∗
�Hv�) | E0, r1, r2

)
.

Since the right-hand side of the above inequality is independent of r1 and r2, we can conclude that

P

(
r2z1 + r1z2 ≥ τ ′ + τ ′′

r1r2
− r1r2 Re(u∗

�Hv�) | E0

)
≥ P

(
α(z1 + z2) ≥ τ ′ + τ ′′

α2 − β2 Re(u∗
�Hv�)

)
.

Furthermore, z3 is symmetric and we obtain an upper estimate of the tail probability of z3 in (H.4) given
by

P

(
z3 < − τ ′′

r1r2
| E0

)
≤ P

(
z3 < − τ ′′

β2

)
= 1

2
P

(
|z3| ≥ τ ′′

β2

)
.

By combining the above bounds, the lower estimate in (H.4) is further bounded from below by

P

(
r1r2 Re(u∗

�Hv�) + r2z1 + r1z2 ≥ τ ′ + τ ′′

r1r2
| E0

)
− P

(
z3 < − τ ′′

r1r2
| E0

)
≥ P

(
z1 + z2 ≥ τ ′ + τ ′′

α3
− β2 Re(u∗

�Hv�)

α

)
− 1

2
P

(
|z3| ≥ τ ′′

β2

)
.

Because z1 + z2 ∼ N (0, ‖Pu⊥
�

HPv�
+ Pu�

HPv⊥
�
‖2

F/2), in order to lower-bound the tail probability of

z1 + z2, we need to compute a lower estimate of its variance. It follows from (39) that every H ∈ Aδ

satisfies

‖PT⊥(H)‖∗ ≤ 1 − λ + δ

λ
. (H.6)
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By (H.3) and (H.6) together with Hölder’s inequality, we also obtain

‖Pu⊥
�

HPv⊥
�
‖2

F ≤ ‖Pu⊥
�

HPv⊥
�
‖ · ‖Pu⊥

�
HPv⊥

�
‖∗ ≤ (1 − λ + δ)ζ

λ
. (H.7)

Furthermore, by Lemma 5.1, every H ∈ Rδ satisfies

1 − δ2

δ2 · |Im(u∗
�Hv�)|2 ≤ ‖H − Pu�

HPv�
‖2

F.

Then it follows that:

1 = ‖H‖2
F = ‖Pu�

HPv⊥
�

+ Pu⊥
�

HPv�
+ Pu⊥

�
HPv⊥

�
‖2

F + |Im(u∗
�Hv�)|2 + |Re(u∗

�Hv�)|2

≤
‖Pu�

HPv⊥
�

+ Pu⊥
�

HPv�
+ Pu⊥

�
HPv⊥

�
‖2

F

1 − δ2 + |Re(u∗
�Hv�)|2.

(H.8)

It also follows from (39) that every H ∈ Aδ satisfies:

Re(u∗
�Hv�) ≥ −δ

1 − λ
. (H.9)

The assumption λ + δ < 1 implies that the right-hand side of (H.9) is strictly larger than −1.
By (H.9) and Re(u∗

�Hv�) ≤ 0, we also have

|Re(u∗
�Hv�)| ≤ δ

1 − λ
. (H.10)

Therefore, by applying (H.10) to (H.8), after a rearrangement, we obtain

‖Pu�
HPv⊥

�
+ Pu⊥

�
HPv�

+ Pu⊥
�

HPv⊥
�
‖2

F ≥ (1 − δ2)

(
1 − δ2

(1 − λ)2

)
.

Then (H.7) implies

‖Pu�
HPv⊥

�
+ Pu⊥

�
HPv�

‖2
F ≥ (1 − δ2)

(
1 − δ2

(1 − λ)2

)
− (1 − λ + δ)ζ

λ
. (H.11)

Now, from (H.10) and (H.11), we obtain

P

(
z1 + z2 ≥ τ ′ + τ ′′

α3 − β2 Re(u∗
�Hv�)

α

)
≥ P

(
z1 + z2 ≥ τ ′ + τ ′′

α3 + β2δ

α(1 − λ)

)
≥ P

(
g ≥ t

σζ

)
(H.12)

for g ∼ N (0, 1), where

σζ =
√

(1 − δ2)
(

1 − δ2

(1 − λ)2

)
− (1 − λ + δ)ζ

λ

and

t = τ ′ + τ ′′

α3 + β2δ

α(1 − λ)
. (H.13)
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Moreover, the tail bound of z3 in (H.1) implies

P

(
|z3| ≥ τ ′′

β2

)
≤ C exp

(
− 2

C

[ τ ′′2/β4

‖Pu⊥
�

HPv⊥
�
‖2

F

∧ τ ′′/β2

‖Pu⊥
�

HPv⊥
�
‖
])

≤ C exp
(

− 2

C

[ λτ ′′2

β4(1 − λ + δ)ζ
∧ τ ′′

β2ζ

])
. (H.14)

Note that the tail bound in (H.12) is monotone decreasing in t/σζ . Furthermore, for those ζ that make
σζ positive, t/σζ is a monotone increasing in ζ . (The condition δ ≤ 0.2 implies the existence of such ζ .)
Hence, the tail bound in (H.12) is monotone decreasing in ζ . On the contrary, the upper bound in (H.14)
monotonically converges to 0 as ζ > 0 decreases toward 0. Therefore, there exists small enough ζ such
that the upper bound in (H.14) becomes less than half of (H.12). Then the lower bound (H.2) is further
bounded from below by the half of (H.12). Note that ζ is determined independent from all dimension
parameters and hence both ζ and the resulting lower bound for the probability in (H.2) are numerical
constants.

Next we consider the complimentary subcase where Re(u∗
�Hv�) > 0. Similarly to the previous

subcase, since z3 has a symmetric distribution, it follows that:

P

(
r1r2 Re(u∗

�Hv�) + r2z1 + r1z2 ≥ τ ′ + τ ′′

r1r2
| E0

)
− P

(
z3 < − τ ′′

r1r2
| E0

)
≥ P

(
α2 Re(u∗

�Hv�) + r2z1 + r1z2 ≥ τ ′ + τ ′′

α2 | E0

)
− 1

2
P

(
|z3| ≥ τ ′′

β2

)
.

If Re(u∗
�Hv�) ≤ α−4(τ ′ + τ ′′), since z1 + z2 is a zero-mean Gaussian variable, then it follows that:

P

(
α2 Re(u∗

�Hv�) + r2z1 + r1z2 ≥ τ ′ + τ ′′

α2 | E0

)
≥ P

(
z1 + z2 ≥ τ ′ + τ ′′

α3 − α Re(u∗
�Hv�)

)
.

Thus by choosing τ ′ + τ ′′ small enough one can satisfy (H.10). Thus, we obtain the desired conclusion
as in the previous subcase by repeating the same arguments.

If Re(u∗
�Hv�) > α−4(τ ′ + τ ′′) on the other hand, then

P

(
α2 Re(u∗

�Hv�) + r2z1 + r1z2 ≥ τ ′ + τ ′′

α2 | E0

)
≥ P

(
z1 + z2 ≥ τ ′ + τ ′′

α2β
− α2 Re(u∗

�Hv�)

β︸ ︷︷ ︸
<0

)
>

1

2
,

which is larger than the other lower bounds on the tail probability.
Case 2: Next we consider the complementary case where

‖Pu⊥
�

HPv⊥
�
‖F > ζ , (H.15)
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where ζ is the constant determined in the previous case. In this case, the lower estimate in (H.2) is
further bounded from below by

P

(
r1r2 Re(u∗

�Hv�) + r2z1 + r1z2 + z3 ≥ τ ′

r1r2
| E0

)
≥ P

(
− β2[Re(u∗

�Hv�)]− + r2z1 + r1z2 + z3 ≥ τ ′

r1r2
| E0

)
≥ P

(
r2z1 + r1z2 + z3 ≥ τ ′

r1r2
+ β2(1 − ζ ) | E0

)
≥ P

(
z3 ≥ τ ′ + τ ′′

r1r2
+ β2(1 − ζ ) | E0

)
+ P

(
r2z1 + r1z2 ≥ − τ ′′

r1r2
| E0

)
− 1

≥ P

(
z3 ≥ τ ′ + τ ′′

α2
+ β2(1 − ζ )

)
− P

(
z1 + z2 ≥ τ ′′

β3

)
≥ 1

2
P

(
|z3| ≥ τ ′ + τ ′′

α2 + β2(1 − ζ )
)

− P

(
z1 + z2 ≥ τ ′′

β3

)
,

where the second and third steps follow from (H.10) and the inclusion–exclusion principle, respectively.
Then, by (H.15), the tail bound on z3 is lower-bounded by

P(|z3| ≥ t) ≥ 1

C
exp

(
− 2C

[ t2

ζ 2 ∧ t

ζ

])
, (H.16)

where t is given in (H.13). Since ‖H‖F = 1, the variance of z1 + z2 is no larger than 1/2. Thus, the tail
bound of z1 + z2 is upper-bounded by

P

(
z1 + z2 ≥ τ ′′

β3

)
≤ exp

(
− 2τ ′′2

β6

)
. (H.17)

Note that τ ′′ still remains a free parameter. For every t > ζ the lower bound in (H.16) is an
exponential tail while the upper bound in (H.17) is a subgaussian tail. Therefore, as τ ′′ increases while
the other parameters are fixed, by (H.13), t also increases as an affine function of τ ′′ and the lower
bound in (H.16) decays slower than the upper bound in (H.17). We may choose τ ′′ so that the lower
bound in (H.16) is larger then four times the upper bound in (H.17). Then the lower bound (H.2) is
further bounded below by the resulting value of (H.17). Again, this lower bound is a numerical constant
independent of scaling of all dimension parameters.

I. Proof of Lemma 5.7

Without loss of generality, we may assume that ‖H‖F = ‖X�‖F = 1. Then X� is written as u�v∗
� where

u� ∈ C
d1 and v� ∈ C

d2 satisfy ‖u�‖2 = ‖v�‖2 = 1. With this expression of X�, the Rademacher
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complexity CM(Aδ) is written as

CM(Aδ) = E sup
H∈Aδ

1√
M

M∑
m=1

εmRe(b∗
mv�u∗

�ama∗
mHbm)

= E sup
H∈Aδ

1√
M

M∑
m=1

εmRe 〈ama∗
mu�v∗

�bmb∗
m, H〉

≤ E sup
H∈Aδ

1√
M

M∑
m=1

εmRe 〈PT(ama∗
mu�v∗

�bmb∗
m),PT(H)〉

+ E sup
H∈Aδ

1√
M

M∑
m=1

εmRe 〈PT⊥(ama∗
mu�v∗

�bmb∗
m),PT⊥(H)〉

≤ E

∥∥∥ 1√
M

M∑
m=1

εmPT(ama∗
mu�v∗

�bmb∗
m)

∥∥∥
F

· sup
H∈Aδ

‖PT(H)‖F

+ E

∥∥∥ 1√
M

M∑
m=1

εmPT⊥(ama∗
mu�v∗

�bmb∗
m)

∥∥∥ · sup
H∈Aδ

‖PT⊥(H)‖∗,

where the first inequality is obtained by taking the supremum of each summand after applying H =
PT(H) + PT⊥(H) and the second inequality holds by Hölder’s inequality.

Since PT is an orthogonal projection onto a subspace, we have ‖PT(H)‖F ≤ ‖H‖F = 1.
Furthermore, for all H ∈ Aδ , ‖PT⊥(H)‖∗ is upper-bounded by (H.6). Therefore, we obtain

CM(Aδ) ≤ E

∥∥∥ 1√
M

M∑
m=1

εmPT(ama∗
mu�v∗

�bmb∗
m)

∥∥∥
F

+ E

∥∥∥ 1√
M

M∑
m=1

εmPT⊥(ama∗
mu�v∗

�bmb∗
m)

∥∥∥ ·
(1 − λ + δ

λ

)
.

(I.1)

It remains to compute upper estimates of the expectation terms in (I.1). Since (εm)M
m=1 is a

Rademacher sequence, we have

E

∥∥∥ 1√
M

M∑
m=1

εmPT(ama∗
mu�v∗

�bmb∗
m)

∥∥∥
F

≤
√√√√
E

∥∥∥ 1√
M

M∑
m=1

εmPT(ama∗
mu�v∗

�bmb∗
m)

∥∥∥2

F

=
√√√√
E

1

M

M∑
m=1

‖PT(ama∗
mu�v∗

�bmb∗
m)‖2

F =
√
E ‖PT(aa∗u�v∗

�bb∗)‖2
F,

where the first step follows from Jensen’s inequality and the last step follows since a1, . . . aM (resp.
b1, . . . , bM) are independent copies of a (resp. b).
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Note that PT(aa∗u�v∗
�bb∗) is written as

PT(aa∗u�v∗
�bb∗) = a∗u�v∗

�b · PT(ab∗)

= a∗u�v∗
�b · (Pu�

ab∗Pv�
+ Pu⊥

�
ab∗Pv�

+ Pu�
ab∗Pv⊥

�
),

where Pu�
ab∗Pv�

, Pu⊥
�

ab∗Pv�
and Pu�

ab∗Pv⊥
�

are mutually orthogonal matrices in the Hilbert space S2.

Thus, the Pythagorean identity implies

‖PT(aa∗u�v∗
�bb∗)‖2

F = |a∗u�|2|b∗v�|2(‖Pu�
ab∗Pv�

‖2
F + ‖Pu⊥

�
ab∗Pv�

‖2
F + ‖Pu�

ab∗Pv⊥
�
‖2

F)

= |a∗u�|4|b∗v�|4 + |a∗u�|2|b∗v�|4‖Pu⊥
�

a‖2
2 + |a∗u�|4|b∗v�|2‖Pv⊥

�
b‖2

2.

Since a ∼ CN (0, Id1
) and b ∼ CN (0, Id2

) are independent, a∗u�, b∗v�, Pu⊥
�

a and Pv⊥
�

b are all mutually

independent. Therefore, exploiting this independence, one can show that the expectation is upper-
bounded by

E ‖PT(aa∗u�v∗
�bb∗)‖2

F ≤ 2‖u�‖2
2‖v�‖2

2(2 + d1 + d2).

By Jensen’s inequality, the second expectation in (I.1) is upper-bounded by

E

∥∥∥∥∥ 1√
M

M∑
m=1

εmPT⊥(ama∗
mu�v∗

�bmb∗
m)

∥∥∥∥∥ ≤
⎛⎝E

∥∥∥∥∥ 1√
M

M∑
m=1

εmPT⊥(ama∗
mu�v∗

�bmb∗
m)

∥∥∥∥∥
p
⎞⎠1/p

(I.2)

for all p ∈ 2N. To upper bound the right-hand side of (I.2), we apply Theorem B.2 for

Ym = εmPT⊥(ama∗
mu�v∗

�bmb∗
m) = εma∗

mu�v∗
�bmPu⊥

�
amb∗

mPv⊥
�

, m = 1, . . . , M,

with some p ∈ N that satisfies p ≥ 2. Note that EYm = 0 for all m = 1, . . . , M. By direct computation,
we obtain

EYmY∗
m = ‖u�‖2

2‖v�‖2
2tr(Pv⊥

�
)Pu⊥

�
and EY∗

mYm = ‖u�‖2
2‖v�‖2

2tr(Pu⊥
�
)Pv⊥

�
, m = 1, . . . , M.

Therefore, ∥∥∥∥∥
M∑

m=1

EYmY∗
m

∥∥∥∥∥
1/2

∨
∥∥∥∥∥

M∑
m=1

EY∗
mYm

∥∥∥∥∥
1/2

≤ ‖u�‖2‖v�‖2

√
M(d1 + d2).

Since the spectral norm of Ym is upper-bounded by

‖Ym‖ = |a∗
mu�||b∗

mv�|‖Pu⊥
�

am‖2‖Pv⊥
�

bm‖2 ≤ 2|a∗
mu�||b∗

mv�|(‖Pu⊥
�

am‖2
2 + ‖Pv⊥

�
bm‖2

2),

it follows that:

(E ‖Ym‖p)1/p ≤ 2(E |a∗
mu�|p)1/p · (E |b∗

mv�|2)1/p · [E(‖Pu⊥
�

am‖2
2 + ‖Pv⊥

�
bm‖2

2)
p]1/p

≤ 2(E |a∗
mu�|p)1/p · (E |b∗

mv�|2)1/p · [E(‖am‖2
2 + ‖bm‖2

2)
p]1/p.

Since a∗
mu� ∼ CN (0, 1) and b∗

mv� ∼ CN (0, 1), we have

(E |a∗
mu�|p)1/p = (E |b∗

mv�|p)1/p ≤ C1
√

p.
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for a numerical constant C1. Since 2(‖am‖2
2 + ‖bm‖2

2) is a chi-square random variable of the degree-of-
freedom 2(d1 + d2), it follows that for p ≥ 2 we have:

(E(‖am‖2
2 + ‖bm‖2

2)
p)1/p ≤ 2d1 + 2d2 + C2p

for a numerical constant C2. By collecting these estimates, we obtain

p

(
M∑

m=1

E ‖Ym‖p

)1/p

≤ C3M1/pp2(d1 + d2 + p).

Applying the above estimates to Theorem B.2 together with (I.2) provides

E

∥∥∥∥∥ 1√
M

M∑
m=1

εmPT⊥(ama∗
mu�v∗

�bmb∗
m)

∥∥∥∥∥ ≤ C4

(√
p(d1 + d2) + M1/p−1/2p2(d1 + d2 + p)

)
. (I.3)

As we set p = log M, (I3) implies

E

∥∥∥ 1√
M

M∑
m=1

εmPT⊥(ama∗
mu�v∗

�bmb∗
m)

∥∥∥ ≤ C5

√
(d1 + d2) log M ·

(
1 +

√
d1 + d2 log3/2 M√

M

)
.

Then (10) implies that the right-hand side is further upper bounded by C6

√
d1 + d2 log M. Finally, (42)

is obtained by plugging in these upper estimates to (I.1).

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/article/10/1/285/5910381 by W
eizm

ann Institute of Science user on 15 June 2021


	Phase retrieval of low-rank matrices by anchored regression
	1. Introduction
	2. Application: blind deconvolution from Fourier magnitude observations
	3. Related work
	4. Main results
	4.1 Sample complexity
	4.2 Spectral initialization with partial trace

	5. Proof of main results
	5.1 Theoretical analysis of regularized anchored regression
	5.2 Proof of Theorem 4.2
	5.3 Proof of Theorem 4.1

	6. Numerical results
	7. Discussions


