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Variability and memory of protein levels
in human cells
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Protein expression is a stochastic process that leads to phenotypic
variation among cells1–6. The cell–cell distribution of protein levels
in microorganisms has been well characterized7–23 but little is
known about such variability in human cells. Here, we studied
the variability of protein levels in human cells, as well as the tem-
poral dynamics of this variability, and addressed whether cells
with higher than average protein levels eventually have lower than
average levels, and if so, over what timescale does this mixing
occur. We measured fluctuations over time in the levels of 20
endogenous proteins in living human cells, tagged by the gene
for yellow fluorescent protein at their chromosomal loci24. We
found variability with a standard deviation that ranged, for differ-
ent proteins, from about 15% to 30% of the mean. Mixing between
high and low levels occurred for all proteins, but the mixing time
was longer than two cell generations (more than 40 h) for many
proteins. We also tagged pairs of proteins with two colours, and

found that the levels of proteins in the same biological pathway
were far more correlated than those of proteins in different path-
ways. The persistent memory for protein levels that we found
might underlie individuality in cell behaviour and could set a
timescale needed for signals to affect fully every member of a cell
population.

We asked whether and on what timescale do protein levels mix in
individual human cells. Mixing, in the present context, occurs when a
cell lineage, given enough time, reaches the different states found in a
snapshot of a cell population. Irreversible differences between cells,
such as expected from genetic changes, would lead to cells that retain
their protein state indefinitely without mixing (Fig. 1a, left). Mixing
behaviour (Fig. 1a, middle and right) can be characterized by a typical
timescale tm, called the mixing time, after which cells lose the mem-
ory of their previous protein state. Recent studies using synthetic
protein expression systems in bacteria indicate that cells with
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Figure 1 | Protein level dynamics in individual cells. a, Possible mixing
dynamics of a protein in a population of cells. b, Cells expressing YFP CD-
tagged topoisomerase 1 (TOP1) at different time-points. All cells are the
progeny of the cell shown in the first frame. Scale bar is 25 mm c, TOP1 levels
as a function of time in a cell lineage. Sharp decreases in protein levels
indicate cell-division events and lines originating after each division are the

TOP1 levels of daughter cells. d, TOP1 protein dynamics synchronized to a
cell-cycle time-base using cell division events. Protein levels were normalized
by the average protein level. e, The coefficient of variation (CV 5 s.d./mean)
across the cell cycle of 20 different proteins. f, Distribution of protein levels
measured by flow cytometry for cells at a similar cell-cycle stage, for USP7
(CV 5 0.16) and RPL13A (CV 5 0.28).
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high production tend to maintain this for about a cell generation12,
yielding mixing times on the order of 1–2 h (ref. 13). However, little
quantitative information exists about variability in protein levels
among human cells, and specifically among human cancer cells,
where acquired genetic differences might add to non-genetic sources
of noise.

To examine the extent and persistence of variability in the levels of
different proteins, we used a fluorescent labelling strategy known as
CD-tagging, which tags proteins at their endogenous chromosomal
locations24–26. A yellow fluorescent protein (YFP) sequence was retro-
virally inserted into the genome of human H1299 lung carcinoma
cells. The YFP sequence contained splice acceptor and donor flanking
sequences, which enabled the tag to be spliced into the mRNA of a
gene as a new exon, resulting in the expression of a fusion protein24,25.
The tagged gene was therefore expressed under its native promoter
on the chromosome. CD-tagging has been shown to preserve the
localization and function of most of the tagged proteins24–27.

The dynamics of YFP-tagged proteins in individual cells were fol-
lowed by time-lapse fluorescence microscopy under controlled
temperature, humidity and CO2 conditions (Fig. 1b, see also Supple-
mentary Movie 1 (transmitted light) and 2 (fluorescence) of cells
shown in Fig. 1b). Time-lapse movies were taken over 50–100 h, at
a resolution of 1 frame per 10 min.

We quantified protein levels in individual cells over multiple cell
cycles (Fig. 1c). We used proteins that were localized in the nucleus
to facilitate accurate automatic image analysis of the movies (see
Methods). The twenty proteins studied were in a variety of pathways,
including RNA splicing, transcriptional regulation, apoptosis and
DNA replication (see Supplementary Information). All proteins
studied were correctly localized.

To quantify the inherent variability between cells, we synchronized
cells in silico by aligning protein dynamics between division events24.
In silico synchronization enabled us to examine variability in cells in
which an equal fraction of the cell cycle has elapsed, eliminating
differences in cell-cycle stage7,18 as a source of variability (Fig. 1d).
We found that the average coefficient of variation of the total fluor-
escence (CV 5 standard deviation/mean) depended on the protein

measured and ranged from 0.12 to 0.28 (Fig. 1e and Supplementary
Information). Protein level distributions were single-peaked and
skewed to the right (Fig. 1f). The CV values were nearly constant
throughout the cell cycle and were comparable to those found in
bacteria and yeast (0.1–1.0)7,11,14,20. The ratio between the fluor-
escence of cells at the 90th percentile to cells at the 10th percentile
ranged from about 1.3 to 2.1 (Supplementary Information). The
density of cells in our experiments, as measured by the number of
cell–cell contacts, did not significantly contribute to the variability
in the levels of the proteins examined (see Supplementary
Information).

We next studied the mixing dynamics of these proteins. For each
protein, we followed a clonal population of cells over several genera-
tions using time-lapse microscopy, and synchronized cells to the cell-
cycle time base (Fig. 2a, b). For some proteins, such as the ubiquitin-
specific protease USP7, mixing occurred in about one cell cycle
(,20 h; Fig. 2c). By contrast, other proteins, such as the transcrip-
tion-regulating factor HMGA2, showed slower mixing, on the time-
scale of several cell generations (Fig. 2d). Cell division events did not
seem to have a strong randomizing effect on protein levels (Fig. 2c,
d), in contrast to observations on mRNA levels in bacteria28.

To compute the mixing time, we calculated the auto-correlation
function A(t) of the protein levels (Fig. 2e, f and see Methods). The
mixing time tm was defined as the time when A(t) decayed to one
half. We found that tm ranged from about 0.8 generations for CIRBP,
a protein involved in the cold-shock response, to about 2.5 genera-
tions for HMGA2 (see Supplementary Information). Furthermore,
there was a substantial correlation (R2 < 0.6) between the cell–cell
variability in protein levels (CV) and the mixing time (Fig. 3). This
correlation between mixing time and variability might pose con-
straints on possible mechanisms for protein noise (see Supple-
mentary Information).

We also investigated the correlations between different proteins in
the same cell. For this, we used CD-tagging to generate clones in
which two proteins are tagged, one with yellow (YFP) and the other
with a red (mCherry29) fluorescent tag. The levels of randomly chosen
pairs of proteins from different pathways were nearly uncorrelated
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Figure 2 | Mixing-times of different proteins. a, b, Dynamics of cells
expressing YFP CD-tagged USP7 and HMGA2 across two cell generations.
Each line represents the protein level of one cell, normalized to the
population mean. c, d, Ranks of 60 randomly selected cells for USP7 and
HMGA2 through two cell generations, where 1 is the lowest and 60 is the
highest protein level in the population at the given time-point. Lines are
colour-coded for rank at the start of the first cell cycle, with red being high
relative to the mean and blue low. e, f, The auto-correlations of protein level

ranks, calculated on the basis of at least 150 cells for each protein. The lower
dashed line is the theoretical auto-correlation for stable proteins with noisy
production, and dilution by cell growth (A(t)~e{a:t, where a is the growth
rate). The upper dashed line is the theoretical auto-correlation for proteins
whose production rate depends on an upstream stable protein with noisy
production, A(t)~e{a:t:(1za:t). For theoretical models, see
Supplementary Information. Bars denote standard errors (bootstrap
method).

LETTERS NATURE | Vol 444 | 30 November 2006

644
Nature  Publishing Group ©2006



(Fig. 4a, d; see Supplementary Information for functions of proteins
studied). The levels of proteins from the same system (ribosome) or
levels of proteins produced from different alleles of the same gene
(ribosomal protein RPL5) were substantially correlated (Fig. 4b–d).
These findings indicate that the main source of noise might be vari-
ability in upstream regulatory components specific to each system.
Such noise accounted for about 80% of the variance (g2

ext/g
2

tot) in
levels of RPL5, consistent with measurements of high abundance
proteins in microorganisms7–9,14.

We compared our finding of long mixing times to simple theor-
etical models in which proteins are produced and degraded stochast-
ically and diluted out by cell growth (see Supplementary Information).
Theoretical analysis leads to the following qualitative features: (1)
simple production–degradation models can give mixing times that
are at most one cell generation; (2) active protein degradation can
reduce the mixing time; and (3) mixing times longer than a cell
generation can occur as a result of propagation of noise from upstream
components, as suggested by the above correlations observed in pro-
teins from the same pathway, or due to feedback loops.

We found that cell–cell variability in human protein levels can
have a long mixing time: proteins whose levels are higher or lower
than average can remain so for several days. Such long-memory noise
can act, through the cells’ regulatory circuitry3,11,21, to generate vari-
ability in cellular responses and phenotypes. In particular, proteins
from co-regulated systems such as the ribosome seem to fluctuate in a
much more correlated fashion than proteins from different path-
ways. This long-lasting, concerted noise might result, for example,
in ‘outlier’ cells that have different behaviour from the bulk of the
population. The observed long memory indicates that several cell
cycles might be needed for some signals and drugs to affect fully
populations of human cancer cells.

METHODS
YFP CD-tagging of endogenous proteins. A library of CD-tagged proteins in

the H1299 non-small cell lung carcinoma cell line was constructed as described24.

Briefly, EYFP, flanked with splice acceptor and donor sequences, was integrated

into the genome using pBabeAE retroviral vectors, each containing EYFP in one

of three reading frames. Cells positive for YFP fluorescence were sorted using

flow cytometry into 384-well plates and grown into cell clones. This screen was

gated to preferentially include highly expressed proteins. Tagged protein iden-

tities were determined by 39-RACE (rapid amplification of cDNA ends), using a

nested polymerase chain reaction (PCR) that amplified the section between

EYFP and the polyA tail of the mRNA of the host gene. PCR products were

sequenced directly and aligned to the genome. Cyclohexamide treatment of three

clones (expressing CD-tagged USP7, HMGA2 and TOP1) indicated that the

proteins retained their long lifetime (.24 h) with YFP tagging (not shown).

Our library of CD-tagged proteins is detailed at www.dynamicproteomics.net.

Flow cytometry. Cells from exon-tagged clones were labelled with the vital stain

SYTO-62 (Molecular Probes), which served as an indication of cell-cycle stage.

Fluorescence from each cell was detected at 535 nm (YFP) and 630 nm (SYTO-

62) using a Becton Dickinson FACS SORT flow cytometer (BD Biosciences).

Cells at a similar cell-cycle stage (bin size of about 5% of the population by

SYTO-62 fluorescence) were used for Fig. 1f.

Time-lapse microscopy. We randomly chose 20 nuclear proteins from our CD-

tagged library to study variability dynamics. Time-lapse movies were obtained

at 203 magnification as described24 with an automated, incubated Leica

DMIRE2 inverted fluorescence microscope and an ORCA ER cooled CCD cam-

era (Hamamatsu Photonics). The system was controlled by ImagePro5 Plus

(Media Cybernetics) software which integrated time-lapse acquisition, stage

movement, and software-based auto-focus. During the experiment, cells were

grown and visualized in 12-well coverslip bottom plates (MatTek) coated with

fibronectin (Sigma).

Image analysis of time-lapse movies. Custom image analysis software described

in our previous study24 performed cell tracking and segmentation, and back-

ground and bleaching corrections. Watershed segmentation was applied to

images after flat-field correction and background subtraction. Tracking of cells

was performed by analysing the movie from end to start and linking each seg-

mented cell to the cell in the previous image with the closest centroid. Cell

divisions were automatically detected by a sharp twofold drop in total fluor-

escence between consecutive images.

Auto-correlation calculation. The auto-correlation function was computed

with a robust estimator A(t)~h Xi(t):Xi(tzt)h itii=hhXi(t)2itii , where averages

over time and over cells are denoted ,.t and ,.i, respectively. We measured

the auto-correlation of the ranked total fluorescence Ri(t), such that

Xi(t)~Ri(t){ Ri(t)h ii. This method was less sensitive to outliers in the data than

auto-correlation over the total fluorescence (see Supplementary Information).

Correlations of tagged protein pairs. mCherry29 was introduced into the genome

on a retroviral vector identical to the YFP vector, but with mCherry in reading

frame 0 instead of EYFP. Cells with YFP-tagged proteins were super-infected with

this vector and sorted for red fluorescence to produce double-labelled cell clones.

Proteins from different pathways

Proteins from
the same system

(ribosome)

 
Two alleles 
of the same 

gene

X
R

C
C

5–
TO

P
1

A
N

P
32

B
–H

M
G

A
1

R
P

L5
–H

M
G

A
2

B
A

N
F1

–U
S

P
7

A
N

P
32

B
–L

M
N

A

C
B

X
1–

U
S

P
7

R
P

L2
2–

R
P

L4

R
P

S
27

–R
P

L4

R
P

L2
2–

R
P

L7

R
P

S
11

–R
P

L4

0.2

0.4

0.6

0.8

R
2

R
P

L5
–R

P
L5

A
N

P
32

B

LMNA

R
P

L2
2

RPL4 RPL5

R
P

L5

R2 = 0.06 R2 = 0.62R2 = 0.34

d

cba

Figure 4 | Correlations between pairs of proteins CD-tagged with two
fluorescent colours (YFP and mCherry) in the same cells. Shown is mean
nuclear fluorescence of each protein normalized to its population average.
a, Two proteins with different biological functions: LMNA (component of
nuclear membrane) and ANP32B (involved in apoptosis). b, Two proteins in
the same biological system (two ribosomal proteins, RPL4 and RPL22).
c, Products of different alleles of the same gene, RPL5. The extrinsic and
intrinsic noise components7 of RPL5 are gext 5 0.28 and gint 5 0.14, and
gtot 5 0.31. d, All protein pairs measured and their correlations. Bars denote
mean R2 6 s.e. from three experiments performed on different days.
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Figure 3 | Mixing time correlates with variability. Mixing time (tm) versus
CV (s.d./mean) for the 20 proteins described in Supplementary Table 1. The
best fit line is shown (R2 5 0.62). Independently derived clones of USP7 and
HMGA2 are in red and green. Bars denote standard errors (bootstrap
method).
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Red-tagged proteins were identified with 39-RACE (for details see Supplementary

Information). About 1,000 double-labelled clones were screened for ribosomal or

nuclear localization patterns, to obtain the clones studied here. Nuclear fluor-

escence levels of both colours were obtained from snapshots of cells, defining

the nucleus by means of Hoechst 33342 (5 ng ml–1) staining of DNA. Spill-over

of emission from Hoechst 33342 into the YFP or mCherry channels and between

tagged proteins in the same cell was negligible (,0.1% of total signal). 39-RACE

with both YFP and mCherry primers revealed that different alleles of RPL5 were

labelled, with both integrations in intron-1. Normalized mCherry and YFP fluor-

escence distributions for RPL5 were not significantly different (Kolmogorov–

Smirnov test, P 5 0.75).
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