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Different proteins have different expression levels. It is unclear to
what extent these expression levels are optimized to their environ-
ment. Evolutionary theories suggest that protein expression levels
maximize fitness1–11, but the fitness as a function of protein level
has seldom been directly measured. To address this, we studied the
lac system of Escherichia coli, which allows the cell to use the sugar
lactose for growth12. We experimentally measured the growth
burden13,14 due to production andmaintenance of the Lac proteins
(cost), as well as the growth advantage (benefit) conferred by the
Lac proteins when lactose is present. The fitness function, given by
the difference between the benefit and the cost, predicts that for
each lactose environment there exists an optimal Lac expression
level that maximizes growth rate. We then performed serial
dilution evolution experiments at different lactose concen-
trations. In a few hundred generations, cells evolved to reach the
predicted optimal expression levels. Thus, protein expression
from the lac operon seems to be a solution of a cost–benefit
optimization problem, and can be rapidly tuned by evolution to
function optimally in new environments.
The expression level of a protein can change over evolutionary

timescales by two main processes15. The first is neutral evolutionary
drift7, and the second is selection of mutations that increase fitness.
The latter is often viewed as an optimization process1–11,16–18. Many

cases of optimization have been demonstrated on the level of the
organism phenotype. For example, bacteria evolve to increase their
growth rates in a wide variety of laboratory conditions1,19,20. Recently,
laboratory evolution experiments showed evolutionary adaptation of
E. coli towards optimal metabolic fluxes3,21.
Here we ask whether evolutionary optimization can predict the

expression level of a protein in a given environment. We use the
lactose operon of E. coli, which encodes LacZ, which cleaves the sugar
lactose for use as an energy and carbon source, and LacY, which
transports lactose into the cell12,22–24. Decades of study have provided
a quantitative characterization of this system, making it an excellent
starting point for a theoretical and experimental study.
The present study had three stages: first, we measured the cost and

benefit of Lac protein expression in wild-type E. coli. Second, we
found that the cost and benefit functions predict that there is an
optimal expression level that maximizes growth in a given lactose
environment. Third, we monitored the evolution of E. coli in
different lactose environments and compared its Lac expression to
the predicted optimum in each environment (Fig. 1).
To form a cost–benefit theory, we began with direct measurement

of the cost and benefit of Lac protein expression in wild-type E. coli.
The cost is defined as the relative reduction in growth rate due to the
burden placed on the cells by production and presence of the Lac
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Figure 1 | The lac operon of E. coli and the experimental design in the
present study. The lac operon encodes the enzyme LacZ, denoted Z, which
uses the sugar lactose, L, to increase growth rate. In the experiments, we
consider environments with constant concentrations of lactose. The
repressor of the lac system LacI, denoted I, was deactivated by the presence
of lactose. To examine evolution at zero lactose under the same conditions,
we added the non-metabolized inducer IPTG, which also deactivates LacI,
and glycerol as an additional carbon source, in all cases. Measurements on

the wild-type strain provided estimates of the reduction in growth due to the
burden of Lac protein production or maintenance (cost h) and the increase
in growth generated by Lac proteins in the presence of lactose (benefit B).
Evolution experiments were performed by serial dilution of cells growing in
tubes for several hundred generations. Cells undergoing evolution in the
absence of lactose were predicted to lose lac expression. Cells undergoing
evolution at low (high) lactose concentrations were predicted to evolve to
optimal low (high) Lac protein levels relative to wild type.
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proteins13,14. To measure the cost of Lac expression, we measured the
growth rate at various concentrations of the inducer isopropyl-b-D-
thiogalactoside (IPTG; Fig. 2a) in the absence of lactose. IPTG
induces the lac system, but no benefit is gained because IPTG is
not metabolized. We found a nonlinear, concave dependence of the
cost on the level of expression (Fig. 2a). The cost per protein seems to
increase with the amount of proteins produced.
The nonlinear cost function may reflect the fact that the cell has

limited resources, so that production of Lac proteins reduces the
capacity to produce other important proteins. For example, rapidly
growing cells are known to devotemost of their ribosomal capacity to
synthesizing ribosomal proteins and other translation factors, and

most of their transcription capacity to produce ribosomal related
RNA25. To describe the cost as a function of protein level we used two
nonlinear functions. The first is a quadratic function

h1ðZÞ ¼ h0Zþ h
0

0Z
2 ð1Þ

where Z is the expression level of the Lac proteins and h0 and h
0

0 are
parameters. The second cost function assumes that there is an
effective maximal capacity M for producing non-essential proteins.
Production of Lac proteins at levels that approach M would inhibit
production of essential systems, so that cell growth would be
significantly slowed down. Perhaps the simplest phenomenological
cost function that increases strongly as an effective limit M is
approached is (see Methods for a derivation of this function):

h2ðZÞ ¼
h0Z

12Z=M
ð2Þ

The parameters of cost function 2 that describe the measured
reduction in growth rate are h0ZWT ¼ 0:02^ 0:003; where ZWT is
the fully induced expression of the wild-type Lac proteins and
M ¼ (1.8 ^ 0.3)ZWT. We note that the parameter M is expected to
depend on the growth rate of the cells: at slower growth rates, more
resources are known to be free for protein expression25 and M is
higher (see Supplementary Information for more details). We also
note that a linear cost function does not fit the direct cost measure-
ment of the wild-type strain (Fig. 2a) and is not able to explain the
results presented below. We find that the cost of fully induced wild-
type expression of the lac system is about 4.5%.
In addition to the cost of Lac proteins, we also directly measured

their benefit. For this purpose, we provided saturating IPTG for full
induction and various concentrations of the sugar lactose. The non-
metabolized inducer IPTG kept the Lac protein levels constant, and
hence the cost constant, allowing measurement of the benefit due to
use of lactose. The growth rate of the cells increased with lactose
concentration, reflecting the benefit gained by the action of the Lac
proteins that transport and use this sugar (Fig. 2b).
We find that the form of the benefit function is well described by

the established transport and catabolism kinetics of this system (see

Figure 2 | Cost and benefit functions of lac expression in wild-type E. coli.
a, Cost, defined as relative reduction in growth of E. coli wild-type cells
grown in defined glycerol mediumwith varying amounts of IPTG relative to
cells grown with no IPTG. The x axis is LacZ protein level relative to LacZ
protein level at saturating IPTG (ZWT). Also shown are the cost of strains
evolved at 0.2mM lactose for 530 generations (data point at the 0.4 point of
the x axis; open triangle) and 5mM lactose for 400 generations (data point at
the 1.12 point of the x axis; open triangle). The green solid line represents
cost function 1 (equation (1) with h0ZWT ¼ 0.09 ^ 0.01 and
h

0

0ZWT
2 ¼ 3 ^ 0.1). The red line represents cost function 2 (equation (2)).

The green dotted line represents a linear cost function. b, Benefit of Lac
proteins as a function of lactose. Cells were grown with saturating levels of
IPTG and varying levels of lactose. The growth rate difference is shown
relative to cells grown with no IPTG or lactose. h(ZWT) is the cost of the lac
system at zero lactose, and dZWT is the benefit of lac induction at saturating
lactose levels. The red line indicates the theoretical growth rate, using g ¼
2hðZWTÞ þ dZWTL=ðKY þ LÞ; with KY ¼ 0.4mM, h(ZWT) ¼ 0.044 and
dZWT ¼ 0.17 (equation (5)). Error bars are the experimental standard
errors.

Figure 3 | 3 Predicted relative growth rate of cells (the fitness function) as a
function of Lac protein expression. The fitness function, given by the
difference of cost and benefit, is shown for different concentrations of
lactose. The x axis is the ratio of protein level to the fully induced wild-type
protein level, Z/ZWT. Shown are relative growth rate differences with respect
to the uninduced wild-type strain for environments with lactose levels
L ¼ 0.1mM (blue line), L ¼ 0.6mM (green line) and L ¼ 5mM (red line),
according to equation (5). The dot on each line is the predicted optimal
expression level that provides maximal growth (equation (6)). Cells grown
in lactose levels above 0.6mM are predicted to evolve to increased Lac
protein expression (arrow a), whereas cells grown at lactose levels lower
than 0.6mM are predicted to evolve to decreased Lac protein expression
(arrow b).
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Methods and Supplementary Information). The increase in growth
rate is proportional to the rate of lactose use, and hence to the
enzymatic rate of LacZ:

BðZÞ ¼ d½ZLin� ð3Þ

where L in is the concentration of lactose in the cell, [ZL in] is the
concentration of LacZ bound to lactose, and d is the relative growth
advantage per LacZ molecule at saturating lactose concentration.
Using the known biochemical kinetic parameters of LacY and LacZ
yields good agreement with our measured growth rates, and provides
an experimental estimate of the benefit parameter d under the
present conditions: d¼ 0:17 Z21

WT: Thus, full induction of the lac
system confers a 17% growth advantage at saturating lactose relative
to cells with no lactose.
These experiments defined the cost and benefit as a function of Lac

protein levels in the wild-type bacterium. The growth rate relative to
the growth rate with no Lac expression is given by the difference
between the cost and benefit functions

g ¼2hðZÞþBðZÞ ð4Þ

We find that the cost and benefit functions are such that at each level
of lactose in the environment there exists a well-defined optimal
protein expression level that maximizes growth. The reason for this
optimum is that benefit increases linearly with expression level,
whereas cost increases nonlinearly and thus high expression levels
become unfavourable. The optimal protein expression level depends
on the concentration of lactose in the environment, L (Fig. 3). To
compute the optimum we calculated the protein level Zopt, which
maximizes growth (see equation (6) in Methods for an analytical
solution); that is, where dg/dZ ¼ 0.
We find that the predicted optimal protein levelZopt increases with

the lactose level in the environment (Fig. 3). In the absence of lactose,
the optimal expression is Zopt ¼ 0, because the Lac proteins bear
only a cost and no benefit. At high lactose levels, Zopt is greater
than the wild-type expression level ZWT, because increased lac
expression brings additional growth benefit to the cells. The cost–
benefit analysis predicts that the wild-type unrepressed expression
level is optimal (Z opt ¼ ZWT) at a lactose concentration of
L0 ¼ 0.6 ^ 0.1mM.
Does E. coli actually evolve to these optimal expression levels if

supplied with a constant lactose environment? To test this, we
performed laboratory evolution experiments using serial dilution
protocols19. Cells were grown in 10-ml cultures in a defined medium
supplemented with a given lactose concentration. Each day, the cells
were diluted 100-fold into a new tube with freshmedium, resulting in
log2100 ¼ 6.6 generations of growth per day. Experiments at seven
lactose concentrations were performed in parallel for over 500
generations.
At different times during the experiment we measured LacZ

activity using an enzymatic assay (ONPG assay; see Supplementary
Information) and LacZ protein level using quantitative gel electro-
phoresis (see Supplementary Information). We found that, in all
cases, the activity per LacZ enzyme did not measurably change
over the course of the evolutionary experiments. Hence, changes in
LacZ activity were proportional to changes in LacZ protein level
(Supplementary Fig. 6).
We found that LacZ activity and protein level of the cells changed

heritably during the course of the experiment, and approached a new
adapted state after 300–500 generations (Fig. 4). Cells grown at low
lactose concentrations (L ¼ 0, 0.1mM and 0.2mM) showed a
decrease in LacZ activity and expression (Fig. 4). Cells grown in
the absence of lactose lost enzyme expression and activity altogether
due to mutations such as a 764-base-pair deletion that included the
entire lac promoter (see Supplementary Information). Cells growing
at L ¼ 0.5mM showed little change in LacZ activity and expression.
Cells growing at lactose concentrations of 1mM, 2mM and 5mM
showed an increase in LacZ activity and expression, although the
increase saturated at about 12% of the wild-type level.
The evolved cells reached LacZ expression levels close to the

predicted optimal levels (Fig. 4). All cost functions give good
predictions at low to intermediate lactose levels (L , 1mM)
(Fig. 4b), predicting, for example, that the wild-type protein levels
are optimal in an environment with L < 0.5mM, as observed. The
cost function that best explains the data at high lactose levels is cost
function 2 (equation (2)). This cost function shows a large cost per
protein at high expression levels, and thus limits the optimal protein
levels in high lactose environments. Hence, the cost and benefit
fitness function measured in the wild-type strain can be used to
evaluate the optimal protein level reached by evolutionary selection
in different environments.
The rate at which the cells converged to their adapted expression

level is shown in Fig. 4a. The adapted expression is reached within

Figure 4 | Experimental evolutionary adaptation of E. coli cells to different
concentrations of lactose. a, LacZ activity, relative towild-type cells, of cells
grown for 530 generations in serial dilution experiments with different
lactose levels is shown as a function of generation number. Cells were grown
in 0, 0.1mM, 0.5mM, 2mM and 5mM lactose in a glycerol minimal
medium supplemented with 0.15mM IPTG. Lines are population genetics
simulations. The only fitting parameter in these simulations is the
probability per generation per cell of a mutation that yields the predicted
optimal LacZ level (see Methods). b, Adapted LacZ activity of cells in serial
dilution experiments as a function of lactose concentration, L, relative to
wild-type cells. Data are for more than 530 generations, except for the data
point at 5mM lactose, which is at generation 400. The red line indicates the
theoretical prediction for optimal expression level using cost function 2
(equation (6)). The green solid line indicates the quadratic cost function.
The green dotted line indicates the linear cost function. Error bars are the
experimental standard errors.
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about 350 generations for high lactose levels and within 400–500
generations at low lactose levels. These rates are well described by a
population genetics model in which cells grow exponentially and
produce, with probability p, mutants that have the predicted protein
level and the measured adapted growth rate. The only free parameter
in the theoretical curves shown in Fig. 4a is the probability per cell per
generation, p, of producing a mutant, which ranged between 1027

and 3 £ 1027. The simulations suggest that the mutation occurred
and was lost during dilution many times during the experiment until
it was fixed in the population, and that the dynamics can be explained
by a single mutation that changed lac expression rather than a
combination of several mutations11. The curves in every run of the
stochastic simulation are nearly identical, showing that the selection
dynamics can be described by a deterministic approximation (see
Supplementary Information). Because the mutation rate in E. coli is
on the order of 1029 per base pair per generation, the observed
mutant probabilities, p < 1027, suggest that there is an effective
‘mutational target’ on the order of 100 different base pairs that can
give rise to each of the optimal phenotypes.
At the highest level of lactose, 5mM, cells first converged to the

predicted optimal expression level, and then, around generation 400,
showed a second jump1 in LacZ expression. This jumpmay represent
mutations in other systems that provide an advantage in the present
growth conditions, or a change in the parameterM in cost function 2.
Indeed, direct measurements of the cost function of this mutant
suggest a threefold increase in the parameter M (Supplementary
Fig. 8). In contrast, direct measurement of the cost functions of
strains that evolved at lower lactose levels shows a cost function that
is the same as that of the wild-type strain (Fig. 2a).
This study provides evidence that cells can rapidly evolve towards

protein expression levels that are optimal solutions of a cost–benefit
problem. The cost and benefit fitness function measured in the wild-
type strain was found to predict optimal protein levels in different
lactose environments, which were then reached in direct evolution-
ary experiments. It would be intriguing to test whether cost–benefit
principles apply tomore complex gene regulation circuits, to attempt
to form and test a theory of optimal gene circuit design6,8,26–28. This
could explain the observed convergence of different organisms to
similar network motifs16,28,29. More generally, this study suggests
that small expression differences between microorganisms can be
due to selected biological functionality rather than random drift.
Optimality principles might contribute to a fundamental description
of the interaction between biological circuitry, evolution and the
environment.

METHODS
Strains and media. E. coli MG1655 (E. coli genetic stock centre) was used. All
experiments were in M9 defined medium consisting of M9 salts, 1mMMgSO4,
0.1mM CaCl2, 0.05% casamino acids, 0.1% glycerol, 0.15mM IPTG and
specified concentrations of D-lactose (Sigma). This concentration of IPTG had
no measurable effect on growth of a strain deleted for the lac operon (data not
shown). Use of glycerol in the medium allowed study of evolution also in the
absence of lactose. The bacteria used lactose and glycerol simultaneously
throughout growth (Supplementary Fig. 1). Previous studies have shown that
cells grown in a chemostat with limiting lactose evolve to greatly increase the
expression of the Lac proteins20. In those experiments lactose was the sole carbon
source and hence the lac system affected growth rate muchmore strongly than in
the present experiments.
Growth rate measurements. The exponential growth rate difference of two
strains was measured by comparing 48 cultures of each strain grown in a
checkerboard pattern on a 96-well plate, yielding an accuracy of about 0.8% (see
Supplementary Information for more details). Multiple assays were averaged in
cases where lower standard errors were required. Exponential growth rate in the
96-well plate is the same as the growth rate in 50-ml tubes (Supplementary Figs 3
and 4).
Serial dilution experiments. Ten-millilitre cultures were grown in 50-ml tubes
shaken at 220 r.p.m. at 37 8C. After a day of growth, cells were diluted 1:100 into a
fresh tube. Samples were frozen (280 8C) every 3 days. Lactose levels in five of
the tubes (5mM, 2mM, 1mM, 0.5mM, 0.2mM) were high enough to cause full

induction of the lac system (Supplementary Fig. 7). Tomake induction equal and
maximal in all tubes, including those with 0mM and 0.1mM lactose, each tube
also contained a saturating level of IPTG.
b-Galactosidase activity and protein level measurements. A substrate of
b-galactosidase (LacZ) that gives optical readout (ONPG) was used in a
multi-well plate reader to obtain high accuracy measurements of activity (see
Supplementary Information for details). LacZ protein levels were quantified
using SDS gel electrophoresis, and relative expression was quantified by
comparison to control lanes with appropriate mixtures of induced and
uninduced wild-type cell lysates (Supplementary Fig. 6).
Derivation of cost function 2.A simple derivation of cost function 2 is based on
a growth rate that is a saturated function30 of an internal resource R, given by
g ¼ bR/(K þ R) where b is the maximal growth rate and K is the resource
level for half maximal growth. Production of a unit of protein Z reduces the
resource R by 1. Hence, gðZÞ ¼ bðR2 1ZÞ=ðK þR2 1ZÞ: This yields a cost
hðZÞ ¼ ðgð0Þ2 gðZÞÞ=gð0Þ ¼ h0Z=ð12Z=MÞ; as in equation (2), where h0 ¼

1K=RðK þRÞ and M ¼ (K þ R)/1. Note that the cost function can not diverge
but rather reaches a maximum value of h(Z) ¼ 1 when 1Z ¼ R, resulting in
g ¼ 0.
Analytical approximation to the optimal expression level.Adetailed transport
model of the lac system22–24 (see Supplementary Information) suggests that, to
a good approximation, the rate of LacZ action is equal to the rate of lactose influx
through the LacY permease at all but the highest lactose concentrations:

Vz½ZLin�< VY½YL�< VY
YL

KY þ L

where V z is the velocity of LacZ, VY is the velocity of LacYand KY ¼ 0.4mM is
the Michaelis constant of LacY24. This yields a cost–benefit fitness function,
using cost function 2 and using Y proportional to Z (so that themeasured benefit
parameter d includes the ratio Y/Z as well as VY and V z):

g¼2
h0Z

12Z=M
þ d

ZL

KY þ L
ð5Þ

The optimum of this, dg/dZ ¼ 0, occurs at an optimal protein level of

Zopt ¼M 12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h0
d

LþKY

L

r !
ð6Þ

Note that Z opt ¼ 0 for lactose levels lower than Lc ¼ KYðd=h0 2 1Þ21 <
0:057mM because cost exceeds benefit. The parameters are M ¼ 1.8 ZWT,
h0/d ¼ 0.02/0.17 ¼ 0.12 and KY ¼ 0.4mM.

Similar results for Zopt were found by numerically solving the detailed
transport model and finding the optimal expression by varying LacY and
LacZ levels (Supplementary Fig. 9). Note that the analytical approximation
(equations (5) and (6)) underestimates the growth advantage of the adapted
strains relative to the wild-type strain in the same environment, except near
L ¼ 0 and L ¼ 0.6mM, where predicted growth advantage matches the
experimental results. The detailed simulation gives better predictions for
the growth advantage of the adapted strains (Supplementary Fig. 9) at all
lactose levels.
Simulations of evolution rate. Population genetics simulations were performed
as follows7 (see Supplementary Information for details): a population of wild-
type cells grew exponentially at growth rate g0, growing each simulated day from
N0 ¼ 108 cells to N f ¼ 1010 cells. Mutants were formed with a probability p per
generation per cell. The mutants grew at rate g0 þ Dg, with relative LacZ
expression DA. The parameter Dg was set equal to the measured growth rates
of the adapted strains (Supplementary Fig. 9), and DA was used from the
optimum of the cost and benefit fitness function (equations (5) and (6)). At the
end of each simulated day, 1/100 of the population was passed to the next
simulated day, of which the fraction of mutants was determined by a random
binomial process. The resulting dynamics show that the mutants eventually take
over the population. The simulations have only one free parameter, p, whichwas
fitted to the data of Fig. 4a, resulting in p¼ 6:5£ 1026 ^ 2£ 1026; 3£ 1027 ^

1£ 1027; 3£ 1027 ^ 1£ 1027 and 3£ 1027 ^ 1£ 1027 for L ¼ 0mM, 0.1mM,
2mM and 5mM, respectively. Simulations suggested that adaptation was due to
a single mutation, except at L ¼ 0, in which two mutations occurred: one
that affected LacZ protein level and the other that increased growth rate in
glycerol3, in agreement with measurements on this adapted strain (Supplemen-
tary Fig. 11).
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