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Abstract

Regulation of proteins across the cell cycle is a basic process in cell biology. It has been difficult to study this globally in
human cells due to lack of methods to accurately follow protein levels and localizations over time. Estimates based on
global mRNA measurements suggest that only a few percent of human genes have cell-cycle dependent mRNA levels. Here,
we used dynamic proteomics to study the cell-cycle dependence of proteins. We used 495 clones of a human cell line, each
with a different protein tagged fluorescently at its endogenous locus. Protein level and localization was quantified in
individual cells over 24h of growth using time-lapse microscopy. Instead of standard chemical or mechanical methods for
cell synchronization, we employed in-silico synchronization to place protein levels and localization on a time axis between
two cell divisions. This non-perturbative synchronization approach, together with the high accuracy of the measurements,
allowed a sensitive assay of cell-cycle dependence. We further developed a computational approach that uses texture
features to evaluate changes in protein localizations. We find that 40% of the proteins showed cell cycle dependence, of
which 11% showed changes in protein level and 35% in localization. This suggests that a broader range of cell-cycle
dependent proteins exists in human cells than was previously appreciated. Most of the cell-cycle dependent proteins exhibit
changes in cellular localization. Such changes can be a useful tool in the regulation of the cell-cycle being fast and efficient.
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Introduction

It is of interest to understand the regulation of proteins across

the cell cycle – a fundamental process in cell physiology in both

health and disease. Proteins can be regulated across the cycle by

means of chemical modification and binding. They can also be

regulated by changes in their level and localization in a cell-cycle

dependent manner.

Previous studies focused on individual proteins, and discovered

mechanisms that change protein levels and localization in a cell-

cycle dependent manner. Global analyses have mostly used

mRNA measurements, due to the availability of high throughput

methods such as microarrays. Fraction of cell-cycle dependent

genes have been found to range from 6% ([1] ) to 10% in budding

yeast (800 genes, [2] ) and 6% in fission yeast (407 genes, [3]).

Surprisingly, in human cells, only about 1–3% of messages are

cell-cycle dependent [4–7].

Studies on the protein level are much more difficult due to

current limitations of technology, especially in human cells. Recent

studies [8–10] used time-lapse fluorescence microscopy to study

the cell-cycle dynamics of yeast proteins.

One method, dynamic proteomics [11–13], is suited to study

cell-cycle dependence of proteins in human cells. Dynamic

proteomics uses a library of cell clones, each with a different

protein tagged fluorescently at its endogenous chromosomal locus,

with endogenous regulation [14]. Proteins in individual cells are

followed at high resolution using time-lapse movies and automated

image analysis. A dynamic proteomics study on 20 nuclear

proteins found that 40% of the proteins showed cell-cycle

dependent changes in level [15]. The study used in-silico

synchronization, a method that places data on a time axis between

two cell divisions based on the fact that cell divisions can be

identified automatically from the movies. Use of in-silico

synchronization avoided the deleterious effects of standard

methods of cell synchronization using chemicals or starvation.

The study of Sigal et al suggests that the prevalence of cell-cycle

dependence of the protein level might be much higher than found

on the mRNA level. It is of interest to test this on more proteins,

especially on non-nuclear proteins, and to study protein localiza-

tion in addition to protein level.
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Here, we extend the dynamic proteomics approach to study the

cell-cycle behavior of 495 proteins with diverse roles and

localizations, and to search for cell-cycle dependent changes in

both protein level and localization. We find that about 40% of

proteins tested show cell cycle dependent changes in level and/or

localization. Localization changes were more prevalent than cell-

cycle changes in level (about 11% of proteins had cell-cycle

dependent changes in level). This suggests that cell-cycle control at

the level of proteins is more widespread than previously known

and proposes new candidates for this specialized control.

Results

Time-lapse Movies of 495 Unique Proteins were Analyzed
and In-silico Synchronized

To study the cell cycle dependence of protein level and

localization, we used the LARC library of human clones with

tagged proteins [11,14,16]. The library is made of clones based on

a parental cell line (H1299 human lung cancer). In each clone, a

protein is fluorescently tagged with YFP as an internal exon

(Fig1A, B). The protein is tagged in its endogenous chromosomal

locus, preserving natural promoter and regulatory sequences.

Previous studies suggest that most (,80%) of the tagged proteins

preserve their wild-type dynamics, localizations and levels [11,16]

(see also Material S1 and Fig S1, S2). Notably, in contrast to

exogenous expression of tagged proteins, the present system does

not lead to protein over-expression. The parental clone also

expresses proteins tagged with red florescence (mCherry). The red

fluorescence is used for image analysis- allowing automated

segmentation of the nucleus and cytoplasm in all clones (Fig 1C)

[11].

A previous study followed about 1000 clones with different

tagged proteins as they responded to an anti-cancer drug using

time-lapse movies [11]. About 100 of the movies also included

24 h before drug addition. Here, we re-analyzed these movies,

together with movies from a recent study on protein half-lives

using the same cells and microscopy system [16] and chose 495

unique proteins with high quality movies for further analysis

(movies chosen had 4 fields of view totaling at least 20 cells at each

time-point, and where protein localization matches literature).

Using dynamic proteomics, we tracked the protein level and

other parameters of individual cells through time (Fig 1D). We also

detected the occurrences of cell divisions. Cell division was

detected by a sharp twofold decline in the protein level and by

detecting a rounding of the cells before the mitosis (Fig 1C), as

described [11] (see also Material S1).

We used in-silico synchronization to place the data on a time-

axis which indicates the fraction of time elapsed between cell

division. A challenge in the present dataset was that the movies

usually do not include, for all cells, a complete cell cycle. The 24 h

movies typically contain one cell division event per cell – since the

average cell cycle duration is 2164 hours (Fig S2). Cells also move

with a mean speed of about 10 mm/h, and thus some of the cells

do not remain in the field of view for the entire movie duration. As

a result, the 24 h movies capture only a part of the cell cycle for

each cell.

To address this challenge, we arranged the data for each cell on

a time axis which measures time from the previous cell division, or

time to the next cell division. Time was normalized to the average

cell cycle duration (21 h; similar conclusions are found using other

values ranging between 18–23 h, see Fig S3). In this way, partial

traces that cover only some of the cell-cycle can be combined to

yield information on the average cell-cycle behavior of each tagged

protein (Fig1E). We tested the validity of profiles generated from

partial traces measured in 24 hours by comparing to profiles

generated from 48 and 60 hours movies and we got very similar

results (See Material S1 and Fig S3). We used this approach to

study cell-cycle dependence of protein level and localization

(Fig 1F), as described next.

11% of Proteins Show Cell-cycle Dependent Changes in
their Level

To study cell-cycle dependence of tagged protein levels, we first

computed for each protein the fluorescence profile averaged over

all cells as a function of the fraction of the cell-cycle, as provided by

in-silico synchronization. This is denoted P(t), where t is the

fraction of the cell cycle, and goes from 0 to 1 indicating the span

between two mitosis events. We divided each profile by the

fluorescent value at mitosis to factor out differences in absolute

fluorescence (Fig 2A).

To determine whether a given protein is cell-cycle dependent,

we compared it to the average profile of all proteins, The average

profile has a sharp decrease to one half of the initial level upon cell

division, followed by gradual, slightly accelerating accumulation

until the next division (Fig 2B). This average profile represents the

drop of cell volume to one half after division, followed by growth

and production of new protein [15,17]. The average profile serves

as a baseline for comparing proteins, since cell cycle dependence is

defined as significant deviation from this average behavior – see

for example [2,15].We therefore divided each protein profile by

the average profile (Fig 2C). This normalization also factors out

systematic errors in the assay, such as effects of cell rounding on

measurements of fluorescence.

We next sought to determine criteria for significant cell-cycle

dependence. A non-cell-cycle protein follows the average curve,

and thus its normalized profile is equal to one at all times. We

computed for each normalized protein a score that indicates its

deviation from 1. We used the 90% percentile of deviations over

time, a score that is tolerant of outlier data (similar results were

found also for other scores such as rms distance). To judge the

significance of the score compared to experimental noise, we used

a bootstrapping approach. We computed the distribution of

experimental noise by using data of four proteins with 48 repeat

movies each, including day to day repeats [11]– as opposed to only

4 movies for most of the proteins. We used bootstrapping to

choose random sets of 4 movies from these 48, and computed the

distribution of deviations between repeat normalized profiles from

the average profile over all 48 movies. We find that a threshold

score of s.0.3 excludes experimental noise at a 99% confidence

level (Fig S4).

We find that 11% of the tested proteins (56/495) show

significant cell-cycle dependence in their protein level according

to our criterion (Fig 2E). These proteins show a wide range of cell-

cycle phases, as evaluated by the broad distribution of the position

of their peak or trough expression over the cell cycle (Fig S5). GO

(Gene Ontology) analysis of the 56 cycling proteins (using the 495

examined proteins as a background) showed that enrichment in

the following GO categories: cell cycle regulation (p-value

= 1022), and regulation of kinase activity (p-value = 1022).

Examples of cell-cycle dependent protein levels are shown in

Fig 2E. Known cell-cycle dependent proteins include PRC1

(protein regulator of cytokinesis 1 isoform 1) and GMNN

(Geminin), which were found in our analysis to have a sharp

drop in level at the beginning of the cell cycle, suggesting active

degradation of these protein after mitosis. Indeed, Geminin is

known to be a substrate for the Anaphase Promoting Complex

(APC), and is degraded by it after mitosis [18]. Several other

proteins show similar profiles that suggest active degradation at

Dynamic Proteomics across the Cell Cycle
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different phase of the cell cycle (Fig 2E). Geminin and PRC1 also

show a peak of expression at G1/S (GMNN) or M/G1 (PRC1)

[4]. The cell cycle protein CDKN3 (cyclin-dependent kinase

inhibitor 3) shows a peak at G1 phase. Previous studies suggest it

shows a peak of mRNA concentration at M/G1- so that a rise in

mRNA may precede the rise in protein. Another kinase, CKS2

(CDC28 protein kinase regulatory subunit 2), shows a decrease in

protein level in the S phase, suggesting again an active

degradation. This gene was found to show cell-cycle dependent

mRNA changes, with an increase in mRNA level at G2/M, which

is later than the peak observed in protein levels. In general, we do

not expect mRNA and protein levels to necessarily correlate, due

to translation and degradation modes of control [19]. In summary,

several known cell-cycle dependent proteins are captured by the

present assay.

We also compared our results to data on global cell-cycle

dependent changes in mRNA expression previously measured

using different synchronization techniques and microarray mea-

surements [4,5,7]. Only a small overlap in mRNA cycling genes

was found between Cho and Whitfield studies (about 12% of the

cycling genes were common to both studies). Comparison of the

present cell cycle dependent proteins list to Whitfield et al. shows a

Figure 1. Schematic overview of dynamic proteomics for exploring cell cycle dependent changes in level and localization. (A) CD
tagging was used to insert YFP as an exon into the introns of genes on the chromosome of a human cell line clone (H1299), resulting in a full length
protein fused to YFP expressed from its endogenous locus. (B) A panel of 6 representative clones with different tagged proteins from the LARC library
(C) Time-lapse microscopy and automated image analysis allow capturing proteins levels and localizations in individual cells over time. Yellow arrow
indicates a cell in mitosis, green arrow indicates cells post mitosis. (D) Fluorescence traces of individual cells over a 40 hours movie (tagged protein is
DDX5). Sharp decreases are at division events (E) In silico synchronization is done by plotting cell dynamics on a time axis which indicates time from
previous or next division. Time is divided by mean cell cycle duration, to provide fraction of cell cycle elapsed. G, S and G2 phases are estimated from
Sigal [15]. Grey lines- cells with two mitosis events in the movie, blue, red lines: cells with one mitotic event. The fluorescence level is normalized to
the maximal level before cell division. (F) In silico synchronized dynamics are used to examine cell-cycle dependence on levels and localizations. On
the top panel, Protein profile (blue) that is significantly different from the average profile (black) is considered cell cycle dependent. On the bottom
panel : nuclear protein shows a nuclear ratio (nuc/total) profile close to 1 most of the cell cycle, while cytoplasmic protein, shows a nuclear ratio close
to 0 most of the cell cycle (besides during the mitosis, where the nucleus and cytoplasm are hard to segment apart). Protein that change its
localization from the cytoplasm to the nucleus in a cell cycle dependent manner, present a nuclear ratio that is variable across the cell cycle.
doi:10.1371/journal.pone.0048722.g001
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small but significant overlap (7 of the 29 cycling proteins that were

measured here and were also investigated in Whitfield et al were

evaluated as cycling on the mRNA level (hypergeometric p-value

= 0.02).

19% of Proteins Show Cell-cycle Dependent Changes in
Nuclear Localization

In addition to protein levels, the present assay provides a means

to examine cell-cycle dependence of protein localization. We begin

with nuclear ratio (NR), defined by the summed fluorescence over

pixels in the nucleus of the cell divided by the summed

Figure 2. Cell cycle dependence of protein levels. (A) Fluorescence averaged over all cells for 495 proteins, as a function of fraction of cell cycle.
Each profile was normalized by the initial level of protein before mitosis to factor out different absolute expression levels. (B) Average profile of over
all proteins. Dashed lines represent the standard deviation. (C) Fluorescence profiles normalized by the average profile were clustered using
hierarchical clustering. (D) Examples for different clusters of proteins are shown. (E) Normalized profiles of the 56 cycling proteins are presented.
doi:10.1371/journal.pone.0048722.g002
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fluorescence in the entire cell (Fig 3A). Here, it does not make

sense to compare a given protein dynamics to the average profile

over all proteins, because proteins localized to the nucleus show a

very different profile from cytoplasmic ones. Nuclear proteins

show a high constant NR, and proteins in the cytoplasm show a

low constant NR. In other words, cell-cycle dependence entails a

variation over time in NR around the specific mean value for each

protein. We therefore used a score which is simply the standard

deviation (std) of NR (see examples in the clusters presented in

Fig 3A). When computing the std, we removed data from the first

and last 10% of the cell cycle, because it is hard to differentiate

between nucleus and cytoplasm in these phases due to cell

rounding (the nucleus dissolves during mitosis).

We next sought a threshold for the std score that would exclude

experimental noise. As above, we used bootstrapping to find a

threshold of s.0.08, to exclude experimental noise with 99%

confidence (Fig S6).

We find that 19% (96/495) of the tested proteins show cell cycle

dependence in nuclear localization (Fig 3B). For example, VCL

(Vinculin), a cytoskeletal protein, exhibit entry to the nucleus in

G2/M phase (Figures 3C,3D). In addition to VCL̀s role in cell-

matrix adhesion, it was found to also be a regulator of apoptosis,

[20,21]. VCL was not reported before to localize to the nucleus

during the cell cycle, but this localization may relate to the latter

functions. Other proteins show more elaborate localization

changes such as PRC1, protein regulator of cytokinesis [22,23].

PRC1 associates with the mitotic spindle during M/G1 and then

localizes to the nucleus during the S phase (Figures 3C,3D).

In this dataset, no significant GO enrichment was found. No

significant overlap with genes with cell-cycle dependent mRNA

was found, which is plausible given that mRNA levels are not

generally indicative of localization.

23% of Proteins Showed Cell-cycled Dependent
Localization Changes, as Measured by Changes in
Texture

Finally, we consider changes in protein localization beyond

nuclear/cytoplasm ratios. For this purpose, we used an image-

analysis approach in which the texture of the cell image is

evaluated [24–26]. Texture, according to the approach of

Haralick [27], is composed of a vector of features that describe

the image, such as contrast, granularity and homogeneity.

To calculate texture, we first evaluated a gray-level (fluorescence

intensity) co-occurrence matrix (GLCM) from each fluorescent

image of the cells [28]. Each element (i,j) in GCLM specifies the

number of times that the pixel with gray-level i occurred

horizontally adjacent to a pixel with gray-level j.

From the matrix one can compute the various texture features.

For example ‘contrast’ is giving a value of 0 for a constant intensity

image and high values when adjacent pixels have different

intensity A distinct feature, called ‘energy’, calculates the sum of

squared elements in the GLCM (), energy is 1 for a constant image

and ranges from 0 to 1. Though contrast and energy are mostly

anti-correlated, different images can have similar energy values

and different contrast, and vice-versa (Fig 4A). We measured four

commonly used features, contrast, energy, homogeneity and

correlation (Fig S7), and tracked them over the cell cycle for each

protein.

Here, again, we normalized the texture profile of each protein

by the average profile and scored deviation from the mean profile

using the percentile score described above (see examples in Fig 4B–

E). We found that 6% (29/495) of the proteins showed a cell-cycle

dependent changes in contrast (threshold = 0.4), and 15% (76/

495) showed a cell-cycle dependent changes in energy (thresh-

old = 0.15). Overall, we find that 23% of the proteins (113/495)

show a cell cycle dependent texture profile. A cell cycle dependent

change in the texture profile of a protein implies that the protein

localizes differently inside the cell in the different phases of the cell

cycle. We couldn’t detect a significant category enriched in GO for

this set of genes. There was also no enrichment for these genes in

the list of cell-cycle dependent mRNAs.

An interesting example is the HDAC2 protein, a histone

deacetylase. Histone acetylation is known to play an important

role in the regulation of gene expression. This protein is evenly

distributed in the cytoplasm during G1, and then enters the

nucleus during S/G2 phase. Right after mitosis, the protein is

again excluded from the nucleus. These changes in protein

localizations would be interesting to explore, since it can indicate

different roles for this protein in the cell cycle. It has been reported

before, that HDAC class 2 family of proteins shuttle between the

nucleus and cytosol, and their subcellular localization is affected by

protein-protein interactions [29,30].

In Total, 40% of the Proteins Show Cell Cycle Dependent
Localization and/or Levels

Out of the 495 proteins in this study, 40% of proteins (40%,

199/495) show cell cycle dependence in levels or localization

(Fig 5). Only about 7% (34/495) show cell-cycle dependence in

both levels and localization. Table S1 includes the full dataset of

protein profiles and scores.

Cell-cycle Dependent Expression of Proteins doesn’t
Correlate with Replication Timing of the Gene

Each gene or locus in the genome replicates its DNA in a typical

time during S phase [31]. Housekeeping genes usually replicate

early, whereas low expressed genes or tissue specific genes tend to

replicate late [32]. Recent genomic studies mapped the replication

timing of all the genome in different cell types[33–35]. We tested

whether the time that the DNA for a given gene replicates during

the cell cycle correlates with the dynamics of its accumulation. We

detected no significant correlation between DNA replication

timing and changes in accumulation of the corresponding proteins

(Fig S8). A recent study (Yunger et al. 2010) that employed high-

resolution transcription measurements showed a drastic reduction

in promoter firing after replication compared to the rate before

replication. This observation may explain why doubling the gene

copy number does not lead to a visible increase in protein level.

Discussion

This study used dynamic proteomics to study the cell-cycle

dependence of protein levels and localization of 495 proteins,

which represent most classes of proteins in the proteome. Our use

of in-silico synchronization rather than perturbative methods for

synchronization, and the high accuracy of the single cell

measurements, allowed a sensitive assay of cell-cycle dependence

of proteins expression and localization.

We find that 40% of the proteins showed cell cycle dependence

in level and/or localization. Most of the cell-cycle dependence was

in localization (89% of the cell-cycle dependent proteins). Of these,

48% in nuclear/cytoplasmic ratios and 57% in texture (16% of the

cell-cycle dependent proteins are combined to these 2 categories).

Even if one considers only protein level, not localization, one

finds that about 11% of the proteins are cell-cycle dependent; This

exceeds by far the estimates based on global mRNA studies which

suggested that 1–3% of mRNAs are cell-cycle dependent [4,5,7].

Moreover, since we chose a stringent threshold in all our analyses

that excludes experimental noise at a 99% confidence level, we

Dynamic Proteomics across the Cell Cycle
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believe that the presented percentage of cycling proteins is an

underestimation.

Localization change is an efficient mode of regulation: it is rapid

since no new protein need be synthesized. Recently, it was shown

that changes in the localization of Cdk1-cyclin B1 during the cell-

cycle include a positive feedback and ensures a rapid, complete,

robust, and irreversible transition from interphase to mitosis [36].

Dynamic proteomics is almost unique amongst proteomic assays in

the ability to assay localization changes of endogenously expressed

human proteins over time at high accuracy. In our system, the

nucleus and cytopslam are labeled by mCherry and can be

segmented. Therefore, we can automatically identify proteins that

move from the nucleus to the cytoplasm in a cell cycle dependent

manner. Other localization changes of proteins are hard to detect

automatically in a large-scale study, since other organelles of the

cell are not labeled and cannot be segmented. In this study, we

used different texture features that describe the cell granularity to

allow the automatic detection of such changes.

Of the nuclear proteins in our study, 6.5% showed cell cycle

dependence in levels. This is lower than the 40% found in a

sample of 20 nuclear proteins by Sigal et al. This difference may

stem from a low number of proteins tested in the former study or

Figure 3. Cell cycle dependence of nuclear localization. (A) The ratio between the fluorescence in the nucleus versus the total fluorescence is
shown for 442 proteins as a function of fraction of cell cycle. Due to difficulties with discrimination between the nucleus and the cytoplasm near
mitosis, we excluded the values in the first and last 2 hours of the cell cycle. (B) Examples for nuclear, cytoplasmic proteins and proteins that changes
localization in a cell cycle specific manner are shown. (B) Profiles of the nuclear ratio of the 97 cycling proteins are shown. (D) Examples of single cells
along the cell cycle are shown for three clones that were found to change their localization during the cell cycle. Blue arrow indicates time of cell
division.
doi:10.1371/journal.pone.0048722.g003
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from a more stringent threshold in our study. The fraction of

cytoplasmic proteins with cell-cycle dependent expression was

higher in our study than the fraction of cell-cycle dependent

nuclear proteins [6.5% (8/124) vs. 17% (71/137) - P,0.0001,

Fisher̀s exact test].

It would be interesting to expand the set of protein tested to see

whether cell cycle dependence is as widespread as suggested by the

present sample. Furthermore, since dynamic proteomics allows

studying individual cells, it would be interesting to assay the cell-

cell variability in cell-cycle profiles. This is unfeasible with the

present dataset due to the length of movies. Finally, it would be

important to understand the mechanisms that lead to cell-cycle

changes in localization and levels, to better understand the

Figure 4. Cell cycle dependence of protein localization using texture features. (A) Illustrations of different cells texture. Note that while the
energy ), doesn’t take into account the absolute differences in intensity, those are taken into account in the contrast calculation (, and so, similar cells
can have same energy, but different contrast (the 2 cells on the left). (B) Normalized profiles of the contrast along the cell cycle are shown for a few
proteins. (C) A series of images from a single cell from a clone that expresses HDAC2 fused to YFP. (D) Normalized profiles of the energy along the cell
cycle are shown for a few proteins. (E) A series of images from a single cell from a clone that expresses ARID1B fused to YFP.
doi:10.1371/journal.pone.0048722.g004
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changes that a human cell undergoes as it transits through the cell

cycle.

Materials and Methods

Time-Lapse Microscopy Movies
More than 4,000 movies from previous studies (A. A. Cohen

et al. 2008; Eran Eden et al. 2011) were used for this analysis. In

the previous studies, 4 movies (fields of view) were taken for each of

the 1,000 clones totaling in about 4,000 movies. In each movie,

10–20 cells were tracked over 24 hours at least, every 20 minutes.

Some of these clones were filmed more than once and some clones

represent the same protein. We averaged the protein profile over 4

fields of view. For the final analysis, we combined all data for the

same protein from all relevant movies. We observed a high

reproducibility of the protein profiles calculated from day to day

repeats for single protein (see Figures 3C, 4B and 4E). Each time

point included transmitted light image (phase contrast) and two

fluorescent channels (red and yellow).

Image Analysis of Time-Lapse Movies
We used the image analysis software described in Cohen et al.

(2008) with minor modifications. The main steps in this software

include background correction (flat field and background subtrac-

tion), segmentation, cell tracking, and automated identification of

cell phenotypes (mitosis and cell death). Cell and nuclei

segmentation was based on the red fluorescent images of the red

tagged protein found in all clones, localized to the cytoplasm and

nucleus, with intensity which is very uniform across cells and

clones. Segmentation used global image threshold and seeded

watershed segmentation. The cell-tracking procedure maps each

cell to the appropriate cells in the preceding and following frames

as described [37]. Automated cell division identification algorithm

utilized the morphological changes correlated with dividing cells

and the sharp two fold drop in total fluorescent level between

consecutive images. Texture parameters (contrast, correlation,

homogeneity and energy) of the proteins were measured for each

cell in each time point based on the YFP image of the tagged

protein.

In-Silico Synchronization and Profile Normalization
All mitotic events in a movie were automatically identified as

described above. We divided the time of each measurement by the

duration of the average cell cycle (21 hours) to get a relative time in

the cell cycle (Fig S10).

We divided each profile by the fluorescent value at mitosis, to

factor out differences in absolute fluorescence. Both these

normalizations result in a typical profile that starts from 1 at time

point 0, decrease after division to about 0.5 and accumulated

during the cell cycle to 1 again at time point 1 (see Fig 2B). A

different approach was used in Ball et al. paper [8], where instead

of the total protein, the median pixel was used as an indicator for

the concentration of protein in a frame. The total protein is not an

indicator for the concentration of protein and is indeed influenced

by the increase in the cell size, nevertheless, it sums the protein

expression in all the cell even if it is expressed non homogenously

Figure 5. Distribution of cell cycle dependent proteins with changes in level and localization. The number of proteins that were found to
be cell cycle dependent in each of the tested categories is shown and so are the number of proteins that were found to be cell cycle dependent in
several categories.
doi:10.1371/journal.pone.0048722.g005
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and is less influenced by local changes or outliers. We repeated our

analysis for the cell-cycle dependency of protein level using the

median pixel of cell. We found the median pixel to be a noisier

measure (Fig S9), and decided on a similar threshold of score = 0.3

for cell-cycle dependent proteins. Although a significant number of

proteins that showed cell cycle dependency using the ‘total protein’

got a high score when using the ‘median pixel’ measure, not all

known cell-cycle proteins got high score. (see Table S1).

Analysis of Cell-Cycle Dependence Changes in Protein
Level

The average profile over all the protein profiles was calculated

by calculating the average normalized value at each time point.

The profiles were then normalized by dividing with this average

profile. A clone that its profile is very similar to the average profile

is not considered a cell-cycle dependent protein and its deviation

from the average profile should be small. However, a cell-cycle

dependent protein would have a profile that is different from the

average profile of all proteins in at least one phase of the cell cycle

and so its deviation from the average profile would be large. To

estimate the extent of deviation of each protein profile form the

average profile, we used 2 measures. The first score, S, was the

90% percentile of the deviation of the normalized profile from a

constant vector of one. The second score was the RMS, were we

calculated the root mean square deviations from the vector of

ones. Cell cycle dependent proteins are expected to give high

scores.

In order to find criteria for significant cell-cycle dependence, we

used a bootstrapping approach. We computed the distribution of

experimental noise by using data on four proteins (DDX5, PRC1,

MSN and RPS24) for which 48 repeat movies, including day-day

repeats, was available [11,16]. We used bootstrapping to choose

100 random sets of 4 movies from these 48, and computed the

distribution of deviations between the 100 repeat normalized

profiles from the average profile over all 48 movies.

Changes in Nuclear Localization
Both the protein in the nucleus and the total protein are

measured in our analysis using the accurate segmentation of the

cytoplasm and the nucleus [11]. The ratio between the protein in

the nucleus and the total protein was calculated for each protein

along the cell cycle similarly to the above.

Here, again, we used the bootstrapping approach, generated

100 random sets for each of the 4 proteins and calculated the ratio

of nuc/total. The width of the histograms of the std was in all cases

smaller than 0.8, and we chose this to be the threshold for cell-

cycle dependent nuclear localization.

Other Localization Changes
Similar approach for studying the protein level changes was

taken for all 4 texture features – contrast, energy, correlation and

homogeneity. The average profile was calculated and the score

was later determined using the bootstrapping approach. 29

proteins (6%) exhibit cell-cycle dependent changes in contrast

(Tcn .0.4) and 76 proteins (15%) exhibit cell-cycle dependent

changes in energy (Te .0.15). Very few proteins were found to

show cell-cycle dependent changes in homegenity (36/495 7%)

and correlation (14/495 2.8%) (Th .0.02 and Tcr .0.05

accordingly).

Other Data Analysis
GO enrichment analysis was done using the WEBGESTALT

[38]. Cell-cycle dependent changes in mRNA were taken from

Whitfield et al. [4], hyper-geometric p-values were calculated in

matlab.

Supporting Information

Figure S1 Cell and nucleus size distribution. Results for

11 more clones are summarized in the table. The cell size ranges

from 1100 to 1600, where the std of the cell size for each clone is

about 500. The nucleus size is between 400–600, where the std is

about 170. Differences between different clones seem to be in the

range of the standard deviation.

(TIF)

Figure S2 Distribution of durations of the cell cycle of
several clones. The cell cycle duration varies from 19 to 24

hours in all the examined clones.

(TIF)

Figure S3 Cell-cycle dependent profiles of PRC1 and
DDX5 using different parameters. Profiles of DDX5 and

PRC1 along the cell cycle are shown. The Tt stands for the cell

cycle duration that was used for cells where only partial tracks exist

and is used for normalization of the relative time in the cell cycle.

different values of Tt were tested (top panel - 18 hours, middle

panel - 21 hours, bottom panel - 23 hours) and exhibit very similar

profiles. In each panel and for each clone, only a fraction of the 60

hours movie was used (18 h–60 h) to estimate differences in profile

that stems from short time frame of observations. Note that

profiles that are generated from 24 hours movie are highly

identical to profiles generated from 48 and 60 hours movie.

(TIF)

Figure S4 Bootstrapping approach was used to deter-
mine the threshold for cycling genes. Data from four

different proteins, each with 48 repeat movies was used to generate

histograms of experimental deviation between profiles. For each

protein, 4 different movies were chosen randomly from the set of

48 and a profile was generated. A score was calculated (90th

percentile of the deviation from the average vector of the 48

movies) between each profile and the average profile and a

histogram of scores was generated. Given these histograms, a

threshold distance of 0.3 was determined to exclude 99% of the

experimental variation.

(TIF)

Figure S5 Histograms of the position of the maximum
or minimum expression of the cell cycle dependent
proteins are depicted.
(TIF)

Figure S6 Bootstrapping approach was used to deter-
mine the threshold for cycling nuclear localizations. (A)

We used similar approach to the described in Figure S1. The ratio

Nuc/total is plotted along the cell cycle for 4 proteins. For each

protein, a profile was calculated based on 4 movies that were

randomly picked from a group of 48 movies, 100 times. (B) The std

of the nuc/total ratio along the time was calculated (after we

removed data from the first and last 10% of the cell cycle) for each

protein and the histograms of the 100 simulations is shown. PRC1

is known to change localization during cell cycle and has std values

ranging from 0.15 to 0.22. We chose as a threshold, std of 0.08

(Tstd), since DDX5, RPS24 and GMNN shows std values lower

than 0.08 in 99% of cases.

(TIF)

Figure S7 Properties of gray-level co-occurrence ma-
trix. (Haralick texture features), see: Haralick R, Dinstein &

Shanmugan K (1973) Textural features for image classification.
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IEEE Transactions on Systems, Man, and Cybernetics SMC-

3:610–621.

(TIF)

Figure S8 Cell-cycle dependent expression of proteins
doesn’t correlate with replication timing of the gene.
Genes were sorted based on their time of replication during the S

phase (taken from : Farkash-Amar S, Lipson D, Polten A, Goren

A, Helmstetter C, Yakhini Z & Simon I (2008) Global

organization of replication time zones of the mouse genome.

Genome Res. 18:1562–1570). Note that there is no evident pattern

indicating that early gens accumulates protein earlier than late

genes.

(TIF)

Figure S9 Analysis of cell-cycle dependency of protein
level using the median pixel. On the left, the median average

profile is shown when using the median pixel. On the right,

Bootstrapping approach was used to determine the threshold for

cycling genes based on median pixel. Similar analysis to the

analysis descibed in Figure S1 was done here for protein profiles

based on the median pixel instead of the total protein. The score of

the 90th deviation from the mean profile was calculated for the

100 sets of 4 FOVs (Fields of View). Given these histograms, a

threshold distance of 0.3 was determined to exclude 95% of the

experimental variation.

(TIF)

Figure 10 Normalization of partial tracks of single cells.
This example illustrates how partial tracks of a single cell that

divided 8 hours after the beginning of the movie to 2 daughter cells

were used. The partial tracks were normalized to the average cell

cycle (21 hours) and overlaid on the cell-cycle profile accordingly.

(TIF)

Table S1 The Supplementary table S1 includes the full dataset

of protein profiles and scores.

(XLSX)

Material S1 The online Supplementary material includes

additional information about the methods and results presented

above.

(DOCX)
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