Solution of Exercise 1:

1.1 A change in production rate. A gene Y with simple regulation is produced at a constant rate β_1. The production rate suddenly shifts to a different rate β_2.

(a) Calculate and plot $Y(t)$.

(b) What is the response time (time to reach halfway between the steady-states)?

Solution:

(a): Lets mark the time when the shift occurs as $t = 0$. Before the shift, Y reaches steady state at a level $Y(t = 0) = Y_{st} = \beta_1 / \alpha$. After the shift,

$$\frac{dY}{dt} = \beta_2 - \alpha Y.$$

The solution of such an equation is generally $Y = \beta_2 / \alpha + C_1 \exp(-\alpha t)$, where the constant C_1 need to be determined so that $Y(t = 0) = \beta_1 / \alpha$. This yields the following solution

$$Y(t) = \frac{\beta_1}{\alpha} \exp(-\alpha t) + \frac{\beta_2}{\alpha} (1 - \exp(-\alpha t))$$

One can see that the initial condition β_1 / α decays exponentially at the same rate as the new steady state β_2 / α increases.

(b) To find the response time we have to solve the equation:

$$\frac{\beta_1}{\alpha} \exp(-\alpha \tau_{1/2}) + \frac{\beta_2}{\alpha} (1 - \exp(-\alpha \tau_{1/2})) = \frac{1}{2} \left(\frac{\beta_1}{\alpha} + \frac{\beta_2}{\alpha} \right)$$

After some algebra the response time is found to be $\log(2) / \alpha$.
1.2 Cascades. Consider a cascade of three activators, $X \rightarrow Y \rightarrow Z$. Protein X is initially present in the cell in its inactive form. The input signal of X, S_x, appears at time $t = 0$. As a result, X rapidly becomes active and binds the promoter of gene Y, so that protein Y starts to be produced at rate β. When Y levels exceed a threshold K_y, gene Z begins to be transcribed. All proteins have the same degradation/dilution rate α. What is the concentration of protein Z as a function of time? What is its response time with respect to the time of addition of S_x? What about a cascade of three repressors? Compare your solution to the experiments shown in Rosenfeld and Alon, 2003.

Solution:

We will assume all proteins have the same α. After induction, Y is produced at rate β_y and degraded/diluted at rate α:

$$\frac{dY}{dt} = \beta_y - \alpha Y$$

yielding the familiar exponential approach to steady-state:

$$Y(t) = \frac{\beta_y}{\alpha} \left(1 - \exp(-\alpha t)\right)$$

Assuming a step function for the activation of gene Z by Y (logic input function), transcription of gene Z starts at time τ_{yz} when $Y(\tau_{yz}) = K_y$:

$$Y(\tau_{yz}) = \frac{\beta_y}{\alpha} \left(1 - \exp(-\alpha \tau_{yz})\right) = K_y \Rightarrow \tau_{yz} = \frac{1}{\alpha} \log \left(\frac{Y_{st}}{Y_{st} - K_y}\right)$$

where $Y_{st} = \beta_y / \alpha$. Just for extra clarity, let’s consider the limits of this equation to see if this makes sense. When $K_y \ll Y_{st}$, $Y_{st} - K_y \rightarrow Y_{st}$ and $\tau_{yz} \rightarrow 0$. In this case the threshold for Z activation is low, and Y levels cross it very fast. Conversely, if the activation threshold K_y is very high, approaching Y_{st}, Z is never activated because $Y_{st} - K_y \rightarrow 0$ and $\tau_{yz} \rightarrow \infty$.

Production of Z starts after time $t = \tau_{yz}$ at a constant rate of β_z:

$$\frac{dZ}{dt} = \begin{cases}
0 & t < \tau_{yz} \\
\beta_z - \alpha Z & t > \tau_{yz}
\end{cases}$$

Solving we get

$$Z(t) = \begin{cases}
0 & t < \tau_{yz} \\
\frac{\beta_z}{\alpha} \left(1 - \exp\left(-\alpha(t - \tau_{yz})\right)\right) & t > \tau_{yz}
\end{cases}$$

Solving for the response time, the time to reach half of the steady state of Z:
\[
\frac{\beta_z}{\alpha} \left(1 - \exp \left(-\alpha (t_{1/2} - \tau_{yz}) \right) \right) = \frac{1}{2} \frac{\beta_z}{\alpha} \Rightarrow t_{1/2} = \tau_{yz} + \log(2) / \alpha
\]

Hence, there is an extra delay of \(\tau_{yz} \) in the response time of gene Z relative to simple regulation with no cascade. If Z activates a third gene W when it crosses a threshold \(K_Z \), this will occur at a time of \(\tau_{ZW} \) found from:

\[
\frac{\beta_z}{\alpha} \left(1 - e^{-a(\tau_{ZW}-\tau_{yz})} \right) = Z_{St} \left(1 - e^{-a(\tau_{ZW}-\tau_{yz})} \right) = K_Z
\]

solving for \(\tau_{ZW} \) we obtain:

\[
\tau_{ZW} = \tau_{yz} + \frac{1}{\alpha} \log \left(\frac{Z_{st}}{Z_{st}-K_Z} \right)
\]

We can generalize this result: each step in a cascade, where a gene X activates a downstream gene after crossing a threshold \(K_X \) adds a delay of:

\[
\tau_{delay} = \frac{1}{\alpha} \log \left(\frac{X_{st}}{X_{st}-K_X} \right)
\]

In the special case in which the activation threshold is half the steady-state level (this can be shown to be in some cases an optimal value), the delay is \(\tau_{delay} = \log(2) / \alpha \). In summary, since \(1/\alpha \) is often on the scale of a cell generation, a transcriptional cascade can be a slow process.
1.3 Fan-out: Transcription factor X regulates two genes Y_1 and Y_2. Draw the resulting network, termed a fan-out with two target genes. The activation thresholds for these genes are K_1 and K_2. The activator X begins to be produced at time $t=0$ at rate β, and is degraded/diluted at rate α, and its signal S_X is present throughout. What are the times at which Y_1 and Y_2 reach halfway to their maximal expression? Design a fan-out with three target genes in which the genes are activated with equal temporal spacing.

Solution:

Based on the previous problem:

\[
\begin{align*}
\tau_1 &= \frac{1}{\alpha} \log \left(\frac{X_{st}}{X_{st} - K_1} \right) \\
\tau_2 &= \frac{1}{\alpha} \log \left(\frac{X_{st}}{X_{st} - K_2} \right)
\end{align*}
\]

After the corresponding delays in gene activation, denoted τ_1 and τ_2, production of Y_1 and Y_2 starts at a constant rate reaching half the steady state after $\log(2)/\alpha$. The time to reach half maximum is therefore: $\tau_{1/2} = t_i + \log(2)/\alpha$ (i=1,2), where i=1,2 for Y_1 and Y_2 respectively.

For three target genes, we require $\tau_2 - \tau_1 = \tau_3 - \tau_2$, or $\tau_2 = \frac{1}{2} (\tau_1 + \tau_3)$. This amounts to the following requirements on the thresholds,

\[
\frac{1}{\alpha} \log \left(\frac{X_{st}}{X_{st} - K_2} \right) = \frac{1}{2} \left(\frac{1}{\alpha} \log \left(\frac{X_{st}}{X_{st} - K_1} \right) + \frac{1}{\alpha} \log \left(\frac{X_{st}}{X_{st} - K_3} \right) \right) \Rightarrow
\]

\[
X_{st} - K_2 = \sqrt{(X_{st} - K_1)(X_{st} - K_3)}
\]

namely that the difference between X_{st} and the thresholds are arranged according to a geometric mean.
1.4. Positive feedback. What is the effect of positive auto-regulation on the response time? Use as a model the following linear equation:

\[\frac{dX}{dt} = \beta + \beta_1 X - \alpha X \]

Explain each term and solve for the response time. When might such a design be biologically useful?

Solution: The basal production rate is \(\beta \), the positive effect of \(X \) on its own production (positive auto-regulation - PAR) is described in this model by the linear term \(\beta_1 X \), and degradation/dilution is represented as usual by \(- \alpha \, X\). Let's group the terms that multiply \(X \) in this linear model:

\[\frac{dX}{dt} = \beta - (\alpha - \beta_1) \, X \]

We see that the degradation/dilution rate is effectively reduced by positive auto-regulation, to an effective rate \(\alpha' = \alpha - \beta_1 \). Assuming that the auto-regulation is not too strong, that is that \(\beta_1 < \alpha \), the term multiplying \(X \) is negative and we get an approach to a stable steady-state:

\[X(t) = X_{st} \left(1 - \exp(-\alpha' \, t) \right) \]

Where \(\alpha' = \alpha - \beta_1 \). The response time is defined as the time to reach half of the steady state: \(T_{1/2} (PAR) = \log(2) / \alpha' \). The response time is longer than that for simple regulation due to the reduced effective degradation/dilution rate

\[T_{1/2}(PAR) = \log(2) / (\alpha - \beta_1) > \log(2) / \alpha = T_{1/2}(simple) \]

Thus positive auto-regulation has an effect that is opposite to that of negative auto-regulation. The former slows response time, whereas the latter speeds response times. Note that strong auto-regulation, in which \(\beta_1 > \alpha \), can lead to instability and unchecked growth of \(X \) in the model. In real systems, this instability will be limited by other factors (such as saturation of the input function), locking \(Y \) in an ON state of high expression even after its activating input \(\beta \) vanishes. Hence, strong positive feedback creates a bistable system, in which \(X \) is either at a low or at a high fixed point. This is useful for commitment-type biological decisions, such as those made in development. Positive feedback characterizes developmental systems that make a switch that is either OFF or is locked ON (e.g., a cell commits to become a muscle cell rather than, say, a blood cell, by means of positive feedback loops on key transcription factors).

A different biological example is found in some regulatory systems that govern the transcription of protein parts of multi-protein structures that are assembled slowly. An example is the bacterial flagellum described in Chapter 6 that can take two cell generations to be completed. Such slow processes can benefit from weak positive auto-regulation to slow down responses and prolong delays (Kalir et al., 2005)