

Exercise set 4 (covering lectures 6,7 and 8)
Due July 5
Adaptive immunity, Autoimmunity, Inflammation and Fibrosis

1. Viral dynamics:

Consider the model for the concentrations of virus, $u(t)$, T-cells, $T(t)$, and T_{regs} , $R(t)$:

$$\begin{aligned}\frac{du}{dt} &= (\alpha_0 - c T)u \\ \frac{dR}{dt} &= u - R \\ \frac{dT}{dt} &= \frac{u}{k + R} - T\end{aligned}$$

- Explain the equations and the parameters k , c and α_0 .
- Calculate the steady-state solution.
- Numerically solve the equations for various values of α_0 . Use $c = 1$, $k = 1$, $R(0) = T(0) = 0$, and $u(0) = 1$. Explain the meaning of these initial conditions.
- Assume that when the virus concentration goes below a minimal dose, $u_0 = 0.01$, it is killed by the innate immune system. What is the maximal value of α_0 for which the virus is killed by the immune system? What happens if α_0 is larger than this value?

2. Theories for autoimmunity:

- Read about the hypothesis of ‘molecular mimicry’ for autoimmune diseases.
- Read about the ‘hygiene hypothesis’ for autoimmune diseases.
- Discuss their pros and cons, and compare to the ‘surveillance of hypersecreting mutant’ theory discussed in the lecture (200 words)

3. Bistability in a simple model for autoimmunity:

Consider this simple model: The immune system attacks a healthy tissue. This releases auto-antigens, making the immune killing stronger, in a cooperative way, with Hill coefficient $n=2$. The variable is the amount of autoantigen $a(t)$. The autoantigen is removed at rate γ .

- Explain the equation:

$$\frac{da}{dt} = c \frac{a^n}{k^n + a^n} - \gamma a$$

- Draw a rate plot showing the fixed points. Consider (graphically) different scenarios (different parameters) with different number of fixed points. When is there bistability?
- Which scenario corresponds to an autoimmune disease? Which corresponds to no autoimmune disease?
- Suppose that individuals vary in their genetics in a way that affects the parameters of the equation. Does an increase in the parameter c increase the risk for autoimmune disease? Repeat for the parameters k and γ .

4. Paradoxical effect of macrophage depletion:

Consider the model for injury repair and fibrosis. Experiments have shown that depleting macrophages (setting M to $M=0$) at different timepoints after an injury can result in improved healing or excessive fibrosis. Explain this ‘paradoxical’ effect using the phase portrait.