Exercise set 2 (covering lectures 2-3)

Due May 26-th

1. Additional biological features of the glucose-insulin circuit and diabetes.

The goal of this exercise is to expand your knowledge of the glucose circuit, and acquaint you with a nice video resource used by medical students.

Watch the 19-minute video from osmosis.com, for medical students, on diabetes.

Diabetes mellitus (type 1, type 2) & diabetic ketoacidosis (DKA)

(a) Choose one element of the glucose system or diabetes that we did not cover in class in detail. Read about it and summarize its role in the glucose control and/or diabetes in 100 words.
(b) Read about the hormone glucagon. Describe its role in 100 words.
(c) Speculate on why the body needs two opposing hormones, insulin and glucose? (100 words)

2. Brain uptakes of glucose

The brain takes up glucose from the blood at an insulin-independent rate. Write a BIG model with a term describing this effect.

(a) Write formula for the steady states of glucose, insulin and beta cells, $G_{st}$, $I_{st}$ and $B_{st}$.
(b) Is the steady-state blood glucose level $G_{st}$ affected by the brain's uptake rate?
(c) What would be the answer to (b) in a minimal model? (a minimal model assumes constant total mass of beta cells, B, that is - no third equation in the BIG model).
3. Type-1 diabetes and the rate plot
This exercise uses the rate plot of beta cell proliferation and removal to understand aspects of type-1 diabetes. Type-1 diabetes is an autoimmune disease in which immune cells kill beta cells. It occurs in about 1% of children and adolescents.
   (a) Explain what effect this killing has on the rate plot.
   (b) Assume that the killing rate of beta cells by the immune cells starts at zero and rises relentlessly and slowly with each passing year. What happens to the stable and unstable fixed points over time?
   (c) What happens when the two fixed points collide? what happens after?
   (d) Use the rate plot to explain the phenomenon of the **honeymoon phase** in type-1 diabetes. When someone receives a diagnosis of type-1 diabetes, it is usually due to symptoms caused by very high blood glucose levels. Soon after starting insulin treatment, blood glucose returns and stays near normal levels, and symptoms vanish. There is sometimes no need for further insulin treatment. Doctors call this the honeymoon phase. Unfortunately, after several weeks to a year or so, blood glucose rises again and beta cells collapse. Insulin treatment is needed for life. Hints: consider the unstable fixed point and the vicious cycle; insulin treatment causes a reduction in blood glucose.

4. The BIG model – numerical simulation
The goal of this exercise is to secure your ability to simulate biological circuits, which you developed in the previous exercise. You can use as a basis the SIR model simulation you did for exercise 1. Write a computer code to numerically solve the BIG model equations in response to a meal. Use parameters s=q=B=γ=1, m₀=1. Use f(G)=G², and beta-cell growth rate μ(G)=0.01 (G-5). Note that due to the “0.01”, the rate of change of B(t) is much slower than the rate of change of G(t) and I(t). This represents the slow rate of beta cell turnover compared to the fast hormone reactions.

(a) Plot G(t), B(t) and I(t) when at time t=100, there is a drop-in insulin sensitivity from s=1 to s=0.2. The plot should show the return of B(t) to a new steady state. Explain in 50 words.
(b) Plot G(t) and I(t) in response to a meal, in the situation of (a). Model a meal by a pulse of glucose input. Thus, m(t) goes from an initial value m₀ =1 to a higher value m₁ =2 for one-time unit then back down to m₀. Let the meal begin at three different times, before, right after and long after the drop-in insulin sensitivity: t_{start}=90, 110 and 300. Compare the response in the three meals in terms of how high and how quickly glucose rises and falls. Interpret in terms of the concept of “dynamical compensation” defined in the lecture notes (100 words).