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By integrating scRNA-seq datasets across 77 studies and 24 cancer types, in Nature, Gavish et al. uncover
recurrent patterns of gene expression that explain a significant proportion of transcriptomic heterogeneity
observed in cancer and explore their functional significance.
Cancer development is an evolutionary

process where malignant cells accumu-

late genetic and non-genetic changes

throughout the disease course.1 These

changes generate diverse cancer cell

phenotypes and intra-tumor heterogene-

ity (ITH), which serves as the substrate

for Darwinian evolution. Certain pheno-

types may confer a selective advantage

to subpopulations of cells.

Research into cancer evolution has

predominantly focused on cancer as a

disease of the genome, uncovering

key driver alterations and mutational

processes that shape the evolving

cancer genome.2 Importantly, however,

selection takes place at the level of the

phenotype, not genotype. More recently,

the advent of single-cell RNA sequencing

(scRNA-seq) has facilitated exploration of

transcriptional ITH with unprecedented

granularity and revealed the functional

significance of phenotypic diversity.

Indeed, non-genetic events are increas-

ingly acknowledged to be key drivers of

tumor evolution, with transcriptional cell

states able to influence disease progres-

sion and the likelihood of metastasis.3,4

A key challenge when investigating tran-

scriptional ITH during cancer evolution is

distinguishing between functional and

non-functional variation (including tran-

scriptional noise). Indeed, not all observed

differences between cancer cells are bio-

logically meaningful. To infer the functional

relevance of a given cell state, recurrent

patterns across multiple tumors are of

particular interest. Recurrent patterns of

expression, found across multiple tumors,

can be considered as potential ‘‘hall-
marks’’ of tumor biology, representing

evolutionarily conserved cell states that

are replicated across diverse tumor envi-

ronments. Identifying bona fide hallmarks

requires large and diverse scRNA-seq cat-

alogs. Writing in Nature, Gavish et al.5

curate an impressive single-cell expres-

sion atlas across diverse cancer types to

thoroughly investigate recurrent patterns

of expression ITH and their functional

importance.

This Curated Cancer Cell Atlas (3CA)

consists of scRNA-seq data from more

than 1.8 million cells compiled from 77

different studies across 24 cancer types

(Figure 1). Distinct cell types were anno-

tated using canonical cell-type marker

expression, and cells were assigned to

either malignant or non-malignant popu-

lations. Commendably, this comprehen-

sively annotated dataset has been made

available to the wider research commu-

nity (weizmann.ac.il/sites/3CA/).

In order to detect recurrent expression

programs, denoted by the authors as

meta-programs, Gavish et al. first cata-

loged expression signatures within in-

dividual tumors. Expression signatures

were inferred using non-negative matrix

factorization (NMF) to identify patterns

and underlying structures within single-

cell expression matrices of tumors.

The >5,000 signatures discovered in indi-

vidual tumors could then be compared

across the cohort. This analysis was per-

formed for both malignant and non-malig-

nant cells, allowing the authors to investi-

gate tumor-specific meta-programs in

the context of the tumormicroenvironment

(TME).
Cancer Cell 41,
Clustering of signatures across the

cohort identified 41 meta-programs, with

83% occurring over several cancer types.

20 of thesemeta-programs had been pre-

viously described6,7, whereas 21 were

novel, highlighting the added sensitivity

provided by this expansive 3CA cohort.

Additionally, 66% of all tumor-specific

expression signatures were represented

within these meta-programs, suggesting

that they encapsulate a significant pro-

portion of the functional expression ITH

observed during tumor evolution. Building

on these findings, the authors refined

these meta-programs into 11 broader

hallmarks, reflecting global biological pro-

cesses or cell states (Figure 1).

Commonpan-cancerhallmarks included

those linked with core cellular functions

such as progression through the cell cy-

cle. Conversely, other featureswere found

at consistently high levels in single cancer

types. These likely reflect differences be-

tween non-genetic factors across tumor

types such as the cellular differentiation

state within the tissue of origin (and thus

were generally part of a broader ‘‘line-

age-related’’ hallmark).

Cancer hallmarks may reflect function-

ally relevant aspects of tumor biology,

and thus provide valuable insights intoma-

lignant cell populations presentwithin indi-

vidual tumors that drive clinical features of

disease. Indeed, Gavish et al. demon-

strated associations between meta-pro-

grams and overall survival, disease grade

and stage, lymph node metastasis, and

therapeutic resistance using average

meta-program abundances derived from

bulk RNA-seq data from the TCGA cohort.
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Figure 1. Uncovering the landscape of transcriptional ITH across cancer
Gavish et al. integrated scRNA-seq data from 77 studies across 24 cancer types. NMFwas performed on individual tumor expressionmatrices to infer patterns of
gene expression within single tumors. These signatures were then clustered across the cohort into 41 meta-programs of expression. Functional annotation of
meta-programs grouped them into the 11 hallmarks of transcriptional ITH, which can be found at variable frequencies across the cohort.
Created with BioRender.com.
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Given their clinical relevance, Gavish

et al. went on to investigate genetic regula-

tion of meta-programs. This is of great in-

terest as heritable determinants of cellular

phenotypes might offer novel therapeutic

targets. Strikingly, only 24% of genomi-

cally defined subclones were associated

with significant up/downregulation of a sin-

gle program, suggesting meta-programs

reflect, in part, the phenotypes available

to a set of related cells and that a focus

solely on genomic clones may miss

considerable functionally relevant tran-

scriptional diversity. Given that phenotypic

plasticity has been associated with treat-

ment resistance and metastasis, identi-

fying tumors or subclones with high

meta-program diversity might be of partic-

ular importance.

Lastly, Gavish et al. extended their

research to non-malignant cell types.

Meta-programs derived from normal

epithelial cells exhibited similarities to

those observed in the malignant popula-
2 Cancer Cell 41, September 11, 2023
tion. This suggests much of the transcrip-

tomic ITH seen within malignant cells is

already present within the healthy tissue

of origin, and that differences observed

in related meta-programs likely reflect

the oncogenic switch from healthy to

malignant states. This transition often

involved aberrant coupling or decoupling

of related biological pathways, which

may highlight specific, non-genetically

encoded dependencies and/or vulnera-

bilities within an evolving tumor.

Another significant form of variation that

sculpts cellular phenotypes is the TME.

Within this complex environment, Gavish

et al. identify significant co-correlations

between meta-programs. Positive correla-

tions suggest the presence of common

responses to shared regulatory or environ-

mental pressures, such as those that con-

trol angiogenesis or influence responses

to interferon alpha. Understanding these

cellular networks is of vital importance.

For example, combination therapies that
target both tumor-specific drivers of angio-

genesis as well as normal cellular re-

sponses within the TME might enhance

treatment efficacy.

In conclusion, Gavish et al. have gener-

ated a vast compendium of scRNA-seq

data and outlined recurrent patterns of

expression that highlight key cellular

pathways active within malignant and

non-malignant cells. However, as the

meta-programs are summarized by 50

representative genes, more granular

expression signatures consisting of fewer

genes are likely to have been overlooked.

Additionally, protein diversity, which ulti-

mately defines cellular phenotypes, may

not be concordant with that observed at

the level of mRNA.8

Thisworkalsoopens upseveral avenues

for future research. First, continuous inte-

gration of published datasets into 3CA

will improve sensitivity to discover rarer

meta-programs, perhaps containing fewer

genes, that might further explain some of

http://BioRender.com


Spotlight
ll

Please cite this article in press as: Jones and McGranahan, Deciphering the landscape of transcriptional heterogeneity across cancer, Cancer Cell
(2023), https://doi.org/10.1016/j.ccell.2023.07.008
the 34% of tumor-specific expression pro-

grams thatwere not attributable to the hall-

marks of transcriptional ITH. Second, the

determinants of expression ITH outlined in

this study could be further refined. Multi-

omic technologies that are able to capture

both genetic and epigenetic alterations

alongside cellular states in single cells

might illuminate key targetable drivers

of these clinically relevant programs.

Third, recent work has revealed patterns

of cell-state transitions and heritable

gene-expression programs utilizing highly

detailed, phenotypically annotated tumor

phylogenies.9 Defining the heritability of

meta-programs and understanding their

transition rates could provide valuable in-

sights for future treatments. Heritable

meta-programs might be potential targets

for therapiesdirectedatspecificcell states,

and combination therapies that utilize

modulation of transition rates toward a

more differentiated and stable cell state

could increase treatment efficacy. Finally,

integration of more scRNA-seq datasets

with well-curated clinical data will likely

reveal the clinical importance of the meta-

programs over the course of tumor

evolution.

Overall, findings from this study inform

our understanding of the extensive tran-

scriptomic heterogeneity present within
primary tumors, and provide insight into

several common, tumor-specific patterns

of transcriptional ITH.
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