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Summary 

Recent data showed promising signs of objective tumor responses in subsets of patients with low 

grade glioma treated with inhibitors of mutant IDH (IDHi) (1). However, the molecular and cellular 

underpinnings of such responses are not known. Here, we profiled 6,039 transcriptomes by 

single-cell or single-nucleus RNA-sequencing isolated from three IDH-mutant oligodendroglioma 

patients with clinical response to IDHi. Importantly, the tissues were sampled on-drug, four weeks 

from treatment initiation and our dataset includes a matched pre- and on-treatment sample pair. 

We integrate our findings with analysis of 8,241 transcriptomes from seven untreated samples, 

134 bulk samples from the TCGA and experimental models.(2,3) We find that IDHi treatment 

induces a robust differentiation towards glial lineages, accompanied by a depletion of stem-like 

cells and a reduction of cell proliferation. Our study provides the first evidence in patients of the 

differentiating potential of IDHi on the cellular hierarchies that drive oligodendrogliomas. 

 

Main text 

Hotspot mutations at IDH1R132 and IDH2R172 have been identified in a diverse spectrum of human 

malignancies, including diffuse gliomas, acute myeloid leukemia (AML), myelodysplastic 

syndrome (MSD), chondrosarcoma and intrahepatic cholangiocarcinoma.(4–8) These mutations 

confer a neomorphic enzymatic activity(9), leading to changes in cellular metabolism(10–13) and 

over-accumulation of the oncometabolite R-2-hydroxyglutarate (2HG).(14) 2HG accumulation has 

been shown to promote tumorigenesis by competitively inhibiting α-ketoglutarate-dependent 

dioxygenases, such as histone lysine demethylases and DNA demethylases(15,16), resulting in 

histone and DNA hypermethylation, thereby altering the cellular epigenetic states.(17–20) 

 

The oncogenicity of mutant IDH, together with its specificity to particular cancer types and 

ubiquitous expression across malignant cells in these tumors, make it an attractive therapeutic 

target.(21) Several small-molecule inhibitors of mutant IDH (IDHi) have been developed and are 

currently undergoing pre-clinical and clinical assessment. While these drugs have shown 

significant efficacy in IDH-mutant AML,(22–26) preliminary results from phase 1 studies in 

patients with progressive high-grade gliomas have shown scant signs of activity, and there is a 

lack of cytotoxic effect in in vitro cell culture models, which are typically representative of high-

grade disease.(13,27–29) However, recent data from phase 1 studies of the IDHi ivosidenib (AG-

120) and vorasidenib (AG-881) (NCT03343197) and BAY1436032 (NCT02746081) showed 

promising signs of objective tumor responses in a small subset of patients with low-grade 
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gliomas.(1,28) A phase 3 study of vorasidenib in patients with residual or recurrent IDH mutant 

grade 2 gliomas is currently underway (INDIGO trial, NCT04164901). Yet, the molecular and 

cellular bases of the response to IDHi in tumors remains uncharacterized. 

 

To examine the cellular and molecular underpinnings of responses to IDHi, we comprehensively 

analyzed four oligodendroglioma samples (with confirmed IDH1R132H mutation and chromosome 

1p/19q co-deletion) isolated from three patients treated at our institutions who had evidence of 

clinical response to IDHi (see Table S1 for clinical information, and Fig. 1A, B for study overview 

and timelines)(1). Patient MGH170 showed partial response as measured by RANO criteria after 

10 months of treatment with IDHi and patient MGH229 showed stable disease without progression 

after 11 months of IDHi treatment. Under existing sampling protocols, tumor tissue was obtained 

from MGH170 and MGH229 on-treatment 4 weeks after initiation of IDHi. These tumor samples 

were profiled by single-cell RNA-sequencing (scRNAseq) using the full-length SMART-Seq2 

protocol.(30) Overall, 1,153 cells passed our stringent quality controls, with 4,333 genes detected 

per cell on average, underscoring the high-quality of our dataset. We further profiled a matched 

pair of frozen samples (pre- and on-treatment) from a third oligodendroglioma patient (BWH445) 

who showed clinical response to IDHi treatment by single-nucleus RNA-sequencing (snRNAseq, 

10x genomics). Patient BWH445 showed stable disease without progression after 30 months from 

initiation of IDHi treatment (Fig. 1B, Table S1). The on-treatment sample from BWH445 was 

obtained 4 weeks after initiation of IDHi, as in the former two patients. Overall, 8,793 nuclei passed 

quality control with 2,816 genes detected on average. 

 

The two IDHi-treated glioma samples profiled using scRNAseq were combined with 4,334 single-

cell transcriptomes that we previously obtained from six treatment-naïve grade 2 

oligodendrogliomas (Fig. 2A)(2,3) whereas the matched pair was analyzed separately from this 

cohort by comparing between the two timepoints (Fig. 2B). As we previously described, malignant 

glioma cells were clearly distinguishable from the non-malignant cells (immune cells and glial 

cells) by inferred copy number aberrations (CNA), including the oligodendroglioma defining co-

deletion of chromosome arms 1p/19q, and by expression of marker genes (Fig. 2C, S1A-B, Table 

S2).(2) 

 

Comparison between IDHi-treated and untreated samples (non-paired samples) using gene-set 

enrichment analysis (GSEA, see Methods) with a strict significance threshold (adjusted p-value < 

0.05) identified 230 enriched gene-sets (Fig. 3A, Table S3). These included gene-sets defining 
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the three central components of the cellular hierarchy that we previously proposed for IDH mutant 

glioma: proliferating cells resembling neural progenitor cells (NPC-like) and cells differentiated 

towards the astrocytic (AC-like) and oligodendrocytic (OC-like) lineages.(2) The most highly 

enriched gene-sets in IDHi-treated samples were those of the AC-like states previously defined 

in glioma as well as gene-sets of normal astrocytic lineage differentiation.(2,3,31–37) Conversely, 

the most highly enriched gene-sets in the untreated samples were of the OC-like state in glioma. 

When examining the differentially expressed genes (DEGs) between treated and untreated 

samples we cannot discern their statistical significance due to the limited sample size (cells from 

the same patient cannot be considered statistically independent and hence we compare 2 treated 

with 6 untreated pseudo-bulk profiles). However, when focusing on genes with the highest fold 

changes, AC-like genes account for a large fraction of the upregulated genes while OC-like and 

NPC-like genes account for a large fraction of the downregulated genes (Fig. 3B). Specifically, 

457 genes defining the AC-like, OC-like and NPC-like states together account for 53% of the 102 

most DEGs (with an average of 4-fold expression difference), compared with the 4.7% expected 

by chance (p=4.92-15 by hypergeometric test). Comparison between the pre- and on-treatment 

samples of BWH445 using GSEA revealed the same pattern of enrichment with astrocytic gene-

sets upon IDH inhibition (Fig. 3C). Moreover, when combining the DEG lists of the unmatched 

and matched cohorts (see Methods) we found that this combined list was enriched (70/152) with 

core genes of the AC-like (AQP4, MT1X, CST3, NTRK2), OC-like (DLL3, SOX8) and NPC-like 

(DCX, ASCL1, HES6, ELAVL4) expression programs (Fig. 3D). This striking enrichment suggests 

that in vivo IDH inhibition in glioma patients primarily affects these neurodevelopmental programs. 

 

Importantly, these DEGs were not uniformly higher (or lower) in IDHi-treated, compared to 

untreated, malignant cells. Instead, these genes were highly expressed in specific subsets of cells 

(AC-like, OC-like and NPC-like) that were all found in both conditions (Fig. 4A-B). This raises the 

possibility that IDHi treatment results in the induction of detectable perturbations in these cellular 

hierarchies. Therefore, we next examined the effect of IDHi treatment on proportions of these 

states, as well as of an intermediate “undifferentiated” state and of cycling cells (Fig. S1C-D). The 

IDHi-treated samples had the largest proportion of AC-like cells (p=0.02, one-sided t-test), the 

smallest proportion of cells classified as either Undifferentiated or NPC-like (p=0.002, one-sided 

t-test) and the smallest proportion of cycling cells (p=0.01, one-sided t-test). This pattern was 

largely evident in any pairwise comparison between an IDHi-treated and untreated samples (Fig. 

S3A). A potential caveat in our comparisons of IDHi-treated to untreated patient samples, is that 

the former patient group has progressed on standard treatment before being treated by IDHi, 
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while the latter patient group was profiled prior to progression. However, we note that progression 

in IDH-mutant glioma is linked to a decrease in glial differentiation, as we demonstrated previously 

(3) and as inferred from analysis of TCGA samples (see Fig. S5A). Thus, IDHi-treated samples 

would be expected to show fewer AC-like cells (than in untreated samples), suggesting that the 

observed increase in AC-like cells is directly linked to their treatment by IDHi. This conclusion is 

further supported by comparison of the matched pre- and on-treatment BWH445 samples, which 

revealed a 2-fold increase in the proportions of both AC-like and OC-like cells and a 4-fold 

decrease in the proportion of cycling cells (Fig. 4C-D, S2B-D).  

 

We confirmed our observations by RNA in situ hybridization with markers of AC-like cells (GFAP, 

ALDOC), NPC-like cells (SOX4) and cell proliferation (Ki-67) in the pre- and on-treatment 

matched samples, in the two IDHi-treated unmatched samples, in a sample taken from patient 

MGH229 long before initiation of IDHi treatment (MGH229pre) and in six untreated 

oligodendroglioma samples (including one additional untreated sample - MGH94) (Fig. 4E-F, S1 

Methods). Furthermore, when comparing cells classified into the same state, we noticed 

differences between IDHi-treated and untreated cells that further supported an induction of 

differentiation by IDHi. Cells classified as AC-like in two IDHi-treated samples (MGH170 and 

MGH229) were enriched with gene-sets reflecting normal astrocytic development, compared to 

AC-like cells in untreated samples (Fig. S3B). Thus, IDHi may promote both an increased 

proportion of AC-like cells and an increased degree of differentiation, such that AC-like 

differentiation in IDHi-treated samples better recapitulates the normal astrocytic state. 

Interestingly, a similar pattern was observed for cells classified as OC-like, which displayed 

enrichment of gene-sets reflecting normal oligodendrocytic development(31–36) in IDHi-treated 

vs. untreated samples (Fig. S3C-D). However, unlike the consistent increase in AC-like 

differentiation, the effect on OC-like differentiation appears to be variable, with increased 

proportion of OC-like cells in BWH445, apparently decreased proportion in MGH170 and 

decreased proportion but increased differentiation in MGH229. Taken together, these results 

suggest that response to IDHi treatment results in the induction of cellular differentiation. While 

there are multiple components to such induction of differentiation, the predominant consequence 

is an increase in the fraction and degree of differentiation of AC-like cells (and more variably of 

OC-like cells), and a decrease in the proportion of undifferentiated and proliferating cells. 

 

A strength of our study is the analysis of human glioma tissue on-treatment, including an analysis 

of a matched pre-and on-treatment sample pair. However, this work has two important limitations 
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- a small sample size and lack of a model system - that we describe below and attempt to 

ameliorate by further analysis.  

 

The limited size of our cohort, along with the unique clinical course of each patient in the cohort 

(Table S1) are inherent limitations of our study. However, profiling of human glioma tissue on-

treatment has been a major limitation in trials due to limited indication for reoperation. Additionally, 

studies of IDHi showed signs of tumor responses only in a small subset of patients, making 

acquisition of on-treatment tissue from patients with clinical response to IDHi treatment even more 

challenging. To partially overcome this limitation and increase the confidence in our results, we 

performed two additional analyses. First, we performed a similar scRNAseq analysis of four 

samples from three IDH-mutant astrocytoma patients that were treated by IDHi but had no clinical 

response. Importantly, this analysis did not show an increase in lineage differentiation as 

observed for the responders (Fig. S4). Second, we extended our analysis by leveraging bulk 

RNA-seq profiles of 134 oligodendrogliomas from the TCGA lower-grade glioma cohort. Using 

the signatures derived from scRNAseq, we could score each bulk tumor for its overall degree of 

AC-like differentiation, and compared this to the AC-like differentiation scores of our scRNAseq 

cohort, when averaging across the cells in each tumor (Fig. S5A; Methods). Consistent with our 

previous observations (with 6 untreated samples), we found that the IDHi-treated samples were 

highly AC-differentiated when compared to 134 untreated TCGA samples (Fig. S5B). Specifically, 

MGH170 (partial clinical response) was the most AC-differentiated among all samples, whereas 

MGH229 (stable disease) was within the top 3% of AC-differentiated samples (4 out of 134). By 

comparison, our untreated samples analyzed by scRNAseq spanned the expected spectrum of 

AC-like differentiation within the TCGA cohort (p=0.54 for difference between groups, Wilcoxon 

rank sum test).  

 

Our second limitation is the lack of a robust cellular model to validate our findings in vitro and to 

further investigate the underlying mechanisms. Cell lines are notoriously difficult to derive from 

IDH-mutant 1p/19q co-deleted tumors. We therefore utilized the closest models that we could 

obtain - gliomasphere cultures derived from three IDH-mutant non-1p/19q co-deleted patients. 

scRNAseq analysis of these models demonstrated that they partially recapitulate the cellular 

states observed in patient IDH-mutant gliomas (Fig. S6A-C, Methods). We then compared the 

expression of IDHi-treated to untreated cells by scRNAseq in each model independently. In all 

three of these models, IDHi treatment was associated with an increase in the fraction of AC-like 

and/or OC-like cells and a decrease in the fractions of undifferentiated, NPC-like and cycling cells 
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(Fig. S6D-F, Table S4). This effect was considerably smaller than observed in the patient 

samples, likely reflecting the limitations of such in vitro models, which lack 1p/19q co-deletion, 

lack important micro-environmental components and are biased towards advanced stages of the 

disease where response to IDHi may be reduced due to additional progressive 

mutations(13,38,39).  

 

Our observation that inhibiting the activity of a driver mutation induces differentiation is consistent 

with a model of oncogenesis through a block of differentiation(18,40). Notably, induction of 

differentiation could provide clinical benefits that may not be properly assessed by measures of 

response that have been designed for cytotoxic drugs, which could potentially explain some of 

the controversy around the efficacy of IDHi.(13,27–29,41) Nonetheless, radiographic response to 

IDHi is limited to a subset of IDH-mutant glioma, highlighting the important need of identifying 

which patients will respond.  

 

Since response to IDHi may require plasticity along AC-like differentiation states, pre-existing 

diversity of such states in untreated samples may predict the capacity for further differentiation 

and hence the response to IDHi. AC differentiation is decreased in gliomas with increased 

grade(3) (Fig. S5A), suggesting that IDHi efficacy might be limited to low-grade gliomas. This is 

consistent with the increased response rate observed in non-enhancing compared to enhancing 

IDH-mutant glioma(1), as well as with the stronger effect that we observed in MGH170 (grade 2) 

compared with MGH229 (grade 3). Given the potential significance of AC differentiation for IDHi 

response, we utilized the TCGA cohort to examine if particular mutations correlate with AC 

differentiation. We found that mutations in NOTCH1 are associated with a low degree of AC 

differentiation in grade 2 lesions (Fig. S7A-C, Table S5), suggesting NOTCH1 mutation and/or 

activation may serve as a potential biomarker for stratifying the response to IDHi. 

 

In summary, our study provides a proof-of-concept for targeted differentiation therapy with mutant 

IDH inhibitors directly in IDH-mutant glioma patients and sheds light upon the underlying 

transcriptional and epigenetic changes. While differentiation of malignant cells in patients treated 

with IDHi has been observed in AML(23), this is to our knowledge the first demonstration of such 

a response in solid tumors in patients. Understanding the cellular response to IDHi treatment will 

help (i) identify those patients more likely to benefit from it, (ii) assess response and resistance to 

differentiation therapy in low-grade gliomas and (iii) aid the identification of potential targets for 

combination strategies.  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 20, 2021. ; https://doi.org/10.1101/2021.11.16.21266364doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.16.21266364
http://creativecommons.org/licenses/by-nc-nd/4.0/


Methods: 

Acquisition and processing of human glioma samples for single cell RNAseq 

Patients at Massachusetts General Hospital (MGH) were consented preoperatively in all cases 

according to Institutional Review Board DF/HCC 10-417. Fresh tumors were collected at the time 

of surgery and presence of glioma was confirmed by frozen section. Tumor specimens were 

mechanically dissociated with a disposable, sterile scalpel and further enzymatically dissociated 

into single cell suspensions using the enzymatic brain dissociation kit (papain-based) from 

Miltenyi Biotec as previously reported(2,3,42,43). Tumor cells were blocked in 1% bovine serum 

albumin in phosphate-buffered saline solution (1% BSA / PBS). Cell suspensions were 

subsequently stained for flow cytometry for 30 min at 4 °C using antibodies specific for CD45 

[REA747]-VioBlue and CD3 [BW264/56]-PE from Miltenyi Biotec. Cells were washed with cold 

PBS, and then incubated for 15 min in 1.5 mL of 1% BSA / PBS containing 1 uM calcein AM (Life 

Technologies) and 0.33 uM TO-PRO-3 iodide (Life Technologies). Sorting was performed with 

the FACS Aria Fusion Special Order System (Becton Dickinson) using 488 nm (calcein AM, 

530/30 filter; CD3-PE, 585/42 filter), 640nm (TO-PRO-3, 670/14 filter), and 405 nm (CD45-

VioBlue, 450/50 filter) lasers. Standard, strict forward scatter height versus area criteria were used 

to discriminate doublets and gate only singleton cells. Viable cells were identified by staining 

positive with calcein AM but negative for TO-PRO-3. We sorted individual, viable, CD45+CD3- 

and CD45+CD3+ immune, and CD45- non-immune single cells into 96-well plates containing cold 

TCL buffer (QIAGEN) with 1% beta-mercaptoethanol. Plates were frozen on dry ice immediately 

after sorting and stored at -80 °C prior to whole transcriptome amplification, library preparation 

and sequencing. 

 

RNA in situ hybridization 

Paraffin-embedded tissue sections from human tumors from Massachusetts General Hospital 

were obtained according to Institutional Review Board-approved protocols. Sections were 

mounted on glass slides and stored at −80°C. Slides were stained using the RNAscope 2.5 HD 

Duplex Detection Kit (Advanced Cell Diagnostics, Cat. No. 322430). Slides were baked for 1 h at 

60°C, deparaffinized and dehydrated with xylene and ethanol. The tissue was pretreated with 

RNAscope Hydrogen Peroxide (Cat. No. 322335) for 10 min at room temperature and RNAscope 

Target Retrieval Reagent (Cat. No. 322000) for 15 min at 98°C. RNAscope Protease Plus (Cat. 

No. 322331) was then applied to the tissue for 30 min at 40°C. Hybridization probes were 

prepared by diluting the C2 probe (red) into the C1 probe (green). The ratio of C2:C1 was 1:50 

for MKI67/SOX4 and 1:60 for GFAP/ALDOC. Advanced Cell Technologies RNAscope Target 
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Probes used included Hs-GFAP-C2 (Cat No. 311801-C2), Hs-ALDOC (Cat No. 407031), Hs-

SOX4 (Cat No. 469911), Hs-MKI67-C2 (Cat No. 591771-C2). Probes were added to the tissue 

and hybridized for 2 h at 40°C. A series of 10 amplification steps were performed using 

instructions and reagents provided in the RNAscope 2.5 HD Duplex Detection Kit. Tissue was 

counterstained with Gill’s hematoxylin for 25 s at room temperature followed by mounting with 

VectaMount mounting media (Vector Laboratories). For RNA in situ hybridization quantification, 

at least 1,000 cells were counted across 10 high power fields in representative areas of the 

tumors. 

 

Single-cell RNAseq data processing of human glioma samples  

Smart-seq2 whole transcriptome amplification, library construction, and sequencing were 

performed as previously published(2,3,42,43). We processed sequencing data from raw reads to 

gene expression matrices as previously described(2). We used bcl2fastq to generate 

demultiplexed FASTQ files, and aligned the resulting paired-end scRNAseq reads to the human 

transcriptome (hg19) using Bowtie (v0.12.7)(44). Statistical analysis was done using R version 

4.0.1. We merged the gene expression levels which were calculated by RSEM(45) for MGH170 

and MGH229 with the ones calculated for the reference samples from Tirosh et al. 2016(2) 

(downloaded from https://singlecell.broadinstitute.org/single_cell). Analysis was done mainly 

using the R package scandal which is freely available at https://github.com/dravishays/scandal. 

Gene expression levels were quantified as 𝐸𝑖,𝑗 = 𝑙𝑜𝑔2(
𝑇𝑃𝑀𝑖,𝑗

10
+ 1) where TPMi,j refers to transcript-

per-million for gene i in sample j. We divided the TPM values by 10 as the size of single-cell 

libraries is estimated to be in the order of 100,000 transcripts and we therefore would like to avoid 

inflating the expression levels by counting each transcript ~10 times. We filtered out cells with 

fewer than 3000 detected genes yielding 1153 IDHi-treated cells and 4334 untreated cells (Table 

S2). Next, we computed the average expression of each gene i as 𝑙𝑜𝑔2[(
1

𝑛
∑ 𝑇𝑃𝑀𝑖,𝑗)𝑛

𝑗=1 + 1] in 

each tumor sample separately and excluded genes with average expression below 4. We then 

merged the gene lists from the 8 tumor samples, leaving a set of 10516 genes for downstream 

analysis. For the cells and genes that passed these quality control procedures we defined relative 

expression levels by centering the expression levels for each gene across all cells in the dataset 

as follows: 𝐸𝑟𝑖,𝑗 = 𝐸𝑖,𝑗 −  
1

𝑁
∑ 𝐸𝑖,𝑘

𝑁
𝑘=1  where N is the number of cells in the dataset. 
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Clustering and identifying presumed normal and malignant cells 

We clustered all cells using graph-based clustering (Louvain’s algorithm) of a 2-dimensional 

UMAP space (R’s UMAP package, distance metric set to “pearson”) computed from the relative 

expression levels. We identified two small clusters containing cells highly expressing markers of 

Oligodendrocytes and Macrophages which were annotated accordingly, whereas the rest of the 

cells were annotated as presumed malignant (Fig. 1C). 

 

CNA analysis 

CNAs were estimated as described elsewhere(2,3,37,42,43). Briefly, the algorithm sorts the 

analyzed genes according to their chromosomal location and applies a moving average with a 

sliding window of 100 genes within each chromosome to the relative expression values. The 

scores computed for the cells classified as non-malignant (Oligodendrocytes and Macrophages 

in this case) define the baseline of normal karyotype and their average CNA values are used to 

center the values of all cells. Classification of cells as malignant/non-malignant was based on two 

metrics: 

1. CNA signal: reflects the extent of CNAs in each cell, and defined for each cell j as 

1

𝑛
∑ 𝐶𝑁𝐴𝑖,𝑗

2𝑛
𝑖=1  where n is the number of genes and. 

2. CNA correlation: defined as the Pearson correlation between the CNA profile of each cell 

and the average CNA profile of all presumed malignant cells from the corresponding tumor 

sample. 

Cells were classified as malignant if CNA signal was above 0.025 and CNA correlation was above 

0.25. Cells that failed to pass the two thresholds were marked as “unresolved” and excluded from 

downstream analysis. 

 

Gene-sets associated with malignant cellular states 

For scoring samples (including TCGA samples) we used gene-sets curated from Tirosh et al. 

2016(2) denoted here as the IDH-O AC-like, OC-like, NPC-like, G1/S and G2/M programs. For 

functional annotation of gene lists such as in Fig. 2A we also included gene-sets curated from 

Venteicher et al. 2017(3) and Neftel et al. 2019(37). See the gene-sets in Table S2. 

 

Gene-sets associated with normal brain cell types  

We scored the tumor samples for gene-sets representing normal cell types which were curated 

from published scRNAseq datasets(31–36). Each dataset was converted to CPM units (if not 

already in TPM units) and log2-transformed. Genes were filtered by Ea with a mean expression 
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cutoff of 4. Gene-sets were then defined by differential expression between the clusters that were 

defined in the respective paper. We selected the top 50 genes by log2 fold-change (FC), with 

log2FC>=1 and Benjamini-Hochberg adjusted p-value<0.05. See the gene-sets in Table S2. 

 

Assignment of cells to states 

Malignant cells were scored for the IDH-O AC-like, OC-like and NPC-like programs using the 

function sigScores from the R package scalop available at https://github.com/jlaffy/scalop. We 

generated 100 shuffled expression matrices by sampling each time 1000 cells and shuffling the 

expression values for each gene. We then scored each shuffled matrix for the AC-like, OC-like 

and NPC-like expression programs, thus yielding 100,000 normally distributed scores for each 

expression program. These were used as null distributions for cell state classification. For each 

original cell, we computed a p-value for each of the expression programs with a Z-test (R’s pnorm 

function) using the statistics of the null distributions that we previously generated. We adjusted all 

p-values for multiple testing using the Benjamini-Hochberg method. Each cell was classified into 

a specific state if the adjusted p-value computed for that state was smaller than 0.05. Cells that 

either did not achieve an adjusted p-value < 0.05 for any of the states or achieved an adjusted p-

value < 0.05 for multiple states (~6% of cells) were assigned an “Undifferentiated” state. See Fig. 

S1D for the statistics of state assignment for each sample. 

 

Cell cycle analysis 

Malignant cells were scored for the IDH-O G1/S and G2/M programs and classified as cycling 

using the same method described above for cell state classification. See Fig. S1C for the statistics 

of cell cycle assignment for each sample. 

 

Gene-set enrichment analysis 

For each sample s we computed a bulk expression profile for each gene i as 

𝑙𝑜𝑔2(
1

𝑛
∑ 𝑇𝑃𝑀𝑖,𝑗 + 1𝑛

𝑗=1 ) where n is the number of cells in sample s. We then computed the average 

log2 expression of each gene across the IDHi-treated and untreated samples and then computed 

the log2-ratio of each gene by subtracting the average log2 expression of the untreated samples 

from that of the treated samples. We then generated the ranked list used for GSEA(46,47) by 

sorting the log2-ratio list. GSEA was computed using the R package fgsea(48). We included in 

this analysis 10264 gene-sets (10185 GO gene-sets, 50 mSigDB hallmark gene-sets, 11 gene-

sets reflecting Glioma cellular hierarchy and 18 gene-sets reflecting normal astrocytic, 
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oligodendrocytic and OPC development) which were downloaded from mSigDB or curated as 

described above. 

 

Ranked list enrichment analysis (pertaining to Fig. 2A, B - lower panel) 

Ranked list genes (see Gene-set enrichment analysis) were annotated according to inclusion in 

AC-like, OC-like and NPC-like gene-sets curated as described above. We computed the fraction 

of genes associated with a particular state in windows of 30 genes at fixed intervals of 0.25 along 

the spectrum of log2-ratio values (ranging from -2.5 to 2.5). See Table S2 that contains the 

computed fractions. 

 

Combined DEG analysis of unmatched and matched cohorts 

As before-mentioned, the unmatched and matched cohorts were analyzed separately, yielding 

two lists of DEGs (for the unmatched cohort by comparing the bulk expression profiles of the IDHi-

treated samples with those of the untreated samples and for the matched cohort by comparing 

the expression profiles of the on- and pre-treatment samples). From each of these lists we 

included in the analysis the 5% most upregulated and 5% most downregulated genes (e.g. 10% 

of genes) and generated the combined DEG list by intersecting the two lists. 

 

Permutation test for OPC-OC differentiation (pertaining to Fig. S2E) 

Malignant cells were scored for normal OC and OPC programs curated from normal brain 

datasets as discussed above. We computed the difference between the two scores for each cell 

and then averaged the score difference per sample. We then computed a sampling distribution of 

the mean OC-OPC score difference by generating 1000 random gene expression matrices as 

described above. We scored each of these shuffled matrices for the normal OC and OPC 

expression programs and then counted how many times the mean score difference of each 

sample was greater than that of the shuffled matrices. For each sample a p-value was computed 

as 1 −
𝑛

𝑁
 whereas n is the number of times the mean score difference of the particular sample was 

higher than that of the shuffled matrices and N is the number of repeats (1,000). The p-values 

were corrected for multiple testing for each program using the Bonferroni method. 

 

Assessment of the relative change in proportions of cell states in IDHi-treated vs. untreated 

samples 

For each state 𝑠 ∈ {𝐴𝐶 − 𝑙𝑖𝑘𝑒, 𝑂𝐶 − 𝑙𝑖𝑘𝑒, 𝑈𝑛𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑡𝑒𝑑/𝑁𝑃𝐶 − 𝑙𝑖𝑘𝑒, 𝐶𝑦𝑐𝑙𝑖𝑛𝑔}and for each 

pair of IDHi-treated and untreated samples, 𝑡 ∈ {𝑀𝐺𝐻170, 𝑀𝐺𝐻229} and 𝑢 ∈
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{𝑀𝐺𝐻36, 𝑀𝐺𝐻53, 𝑀𝐺𝐻54, 𝑀𝐺𝐻60, 𝑀𝐺𝐻93, 𝑀𝐺𝐻97}, we defined 𝐹𝑡, 𝑠 and 𝐹𝑢, 𝑠 as the fraction of 

cells assigned to state s in samples t  and u respectively and computed 𝑅𝑡,𝑢,𝑠 =  𝑙𝑜𝑔2(
𝐹𝑡,𝑠

𝐹𝑢,𝑠
) which 

represents the relative difference in the proportion of cells assigned to state s in the IDHi-treated 

sample t compared with the untreated sample u in log2FC units. Statistical significance of the 

difference was tested with a hypergeometric test (fisher.test function implemented is R’s stats 

package) for each (s, t, u) combination and corrected for multiple testing using the Benjamini-

Hochberg method (p.adjust function implemented in R’s stats package). 

 

Processing of matched pre- and post-treatment samples for single-cell RNAseq 

For each sample, a piece of frozen tumor tissue (approximately 5mm x 5mm x 5mm) was placed 

into a well of a 6-well plate (Corning, Cat. No. CLS3516-50EA) containing 1 ml of CST buffer and 

processed on ice. Tumor tissue was chopped for 10 minutes using Noyes Spring Scissors (Fine 

Science Tools, Cat. No. 15514-12). The sample was then filtered through a 40 um cell strainer 

(Fisher Scientific, Cat. No. 22363547) and the well and filter were washed with an additional 1 ml 

of CST buffer. The total volume was then brought up to 5 ml with 3 ml of ST buffer and the sample 

was centrifuged in a 15 ml conical tube at 4°C for 5 minutes at 500 g. The supernatant was 

removed and the pellet was resuspended in 100 ul ST buffer. The sample was then filtered 

through a 35 um cell strainer (Falcon, Cat. No. 352235). Nuclei suspension was counted using 

disposable C-Chip Hemocytometers (INCYTO, Cat. No. DHCN012). Single nuclei were 

processed through the 10X Chromium 3’ Single Cell Platform using the Chromium Single Cell 3’ 

Library, Gel Bead and Chip Kits, following the manufacturers protocol. Briefly, 8,000 single nuclei 

were loaded into each channel of the chip to be partitioned into Gel Beads in Emulsion (GEMs) 

in the Chromium instrument, followed by nuclei lysis and barcoded reverse transcription of RNA 

in the droplets. This was followed by amplification, fragmentation, and addition of adaptor and 

sample index. Libraries from two 10x channels were pooled together and sequenced on one lane 

of an Illumina Next-Seq 500 sequencer with paired end reads, Read 1: 28 nt, Read 2: 55 nt, Index 

1: 8 nt, Index 2: 0 nt. Buffers for nuclei preparation were prepared as follows. ST buffer: Salt-Tris 

solution containing 146 mM NaCl (Thermo Fisher Scientific, Cat. No. AM9759), 10 mM Tris-HCl 

pH 7.5 (Thermo Fisher Scientific, Cat. No. 15567027), 1 mM CaCl2 (SigmaAldrich, Cat. No, 

21115) and 21 mM MgCl2 (Sigma Aldrich, Cat. No. M1028) in ultrapure water. CST buffer: 10 ml 

of ST buffer, 320 µl of 0.25 M CHAPS (Thermo scientific, Cat. No. 28300) and 10 µl of 10% BSA 

(Sigma Aldrich, Cat. No. A3059). 
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Single-cell RNAseq data processing of matched pre- and post-treatment samples 

Illumina sequencing base calls were converted into FASTQ files using cellranger v4.0.0 pipeline 

(mkfastq command). Gene expression matrices were generated using cellranger (count 

command) by aligning the FASTQ files to a pre-mRNA reference transcriptome (GRCh38 

GENCODE v32/Ensemble 98) which was built according to instructions provided by 10x 

Genomics. Each of the matched pairs was analyzed independently (pre- and post-treatment 

samples from the same pair were analyzed together) and the same analysis steps were applied 

to both of them. Expression data of each matched pair was normalized, clustered and annotated 

(for cell types) using the Seurat package(49). Malignant cells were detected using CNA analysis 

and classified into cell states as described above. 

 

Processing of in-vitro models for single-cell RNAseq 

Patient derived primary IDH mutant glioma cultures (MGG119, MGG152, BT142) were grown in 

Neurobasal Medium (GIBCO 21103-049) supplemented with 1X N2/B27 (GIBCO), 1% 

Penicillin/Streptomycin (GIBCO), 1X Glutamax (GIBCO), 20 ng/mL EGF and 20 ng/mL bFGF 

(FGF2). The details of our cellular models have been published previously(13,29,38). IDHi 

treatment was performed by addition of 5 μM AGI-5198 (Cayman Chemical) to medium for at 

least 5 weeks. Treated and untreated samples were barcoded through TotalSeq™ DNA-tagged 

Cell Hashing antibodies (BioLegend) and multiplexed prior to processing through the 10X 

Chromium 3’ Single Cell Platform, following manufacturer’s instructions. Briefly, ~1,000,000 cells 

per sample were resuspended in cold Cell Staining Buffer (BioLegend) containing 0.035% dextran 

sulfate and blocked for 10 min at 4 °C with TruStain FcX (BioLegend). Cell suspensions were 

subsequently stained with barcoded antibodies (TotalSeq™–B antibodies, BioLegend) for 30 min 

at 4 °C. Cells were washed with cold Cell Staining Buffer (BioLegend), resuspended in PBS 

containing 0.04% BSA and filtered through a 40 μm cell strainer. Four to six samples were pooled 

at equal concentration and processed in parallel through the 10X Chromium 3’ v3.1 Single Cell 

Platform using the Chromium Single Cell 3’ Library, Gel Bead and Chip Kits, following the 

manufacturers protocol. Briefly, ~8,000 single cells were loaded into each channel of the chip to 

be partitioned into Gel Beads in Emulsion (GEMs) in the Chromium instrument, followed by cell 

lysis, barcoded reverse transcription of RNA in the droplets, and cDNA amplification for ten cycles. 

cDNAs derived from cellular mRNA were size separated from antibody-derived tags (ADTs) with 

SPRIselect Beads (Beckman Coulter, USA). Gene expression libraries were constructed by 

fragmentation of cDNAs derived from cellular mRNA and addition of adaptor and sample index. 
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ADTs were amplified for ten additional cycles and ADT libraries were constructed by addition of 

sample index. ADT and cDNA libraries were pooled followed by Illumina sequencing. 

 

Single-cell RNAseq data processing of in-vitro models 

Gene expression matrices were generated from Illumina sequencing base calls using the 

cellranger pipeline (mkfastq and count). Each of the models was analyzed independently of the 

other models (IDHi-treated and untreated cells from the same model were analyzed together) and 

the same analysis steps were applied for each of them. UMI counts for each cell were converted 

to counts per million units by dividing the gene counts of each cell by the “per million” scaling 

factor (total counts per cell divided by 1,000,000) and then log2-transformed. Cells were assigned 

to the respective sample-of-origin and treatment condition by taking the maximal value for that 

cell in the hashing table outputted by cellranger. Cells were considered as unreliably assigned if 

the difference between the maximal entry and the second best entry was less than two folds, in 

which case they were discarded from downstream analysis. Cells were excluded based on two 

additional quality control metrics: minimal complexity cutoff of 1000 genes and expression of 

ribosomal and mitochondrial genes (Table S4). Genes were filtered out based on minimal 

average expression cutoff of 4 as described above for patient samples. Next, cells were scored 

for the three cellular state programs and for the cell cycle programs. Cells were assigned to a 

state if the maximal score was greater than zero and the difference between the maximal score 

and the second best score was at least 0.1. To exclude the possibility that the relative differences 

between IDHi-treated and untreated cells in the fractions of cells assigned to a particular state are 

threshold dependent we conducted a sensitivity analysis (Fig. S3E, Table S4) by computing these 

relative differences for multiple potential threshods in the range [0, 0.3]. The fraction of cells 

defined as differentiated to either the AC-like or OC-like states varies extensively across this 

range, while the increased fraction of differentiated cells, in IDHi-treated vs. untreated samples, 

remained stable across the entire range (Fig. S3F, Table S4). Thresholds for G1/S and G2/M 

classification were determined by computing the sampling distribution of mean G1/S and G2/M 

scores and taking twice the standard error, which converged to ~0.5 for all models. Sampling 

distribution of the mean G1/S and G2/M scores were computed by generating 100 shuffled gene 

expression matrices (by shuffling the value of each gene), and computing the mean G1/S and 

G2/M scores for each shuffled matrix.  

 

TCGA data preprocessing 
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Gene expression data (raw counts), clinical annotation file and mutation annotation file for the 

TCGA-LGG project were downloaded using the R package TCGAbiolinks(50). We filtered out 

genes with low variability, leaving 10,000 genes for analysis. Raw gene counts were transformed 

into counts-per-million (CPM) scale and log2-transformed as log2(CPM+1). We filtered out 

samples that do not have the 1p/19q co-deletion based on the clinical annotation file, leaving us 

with 150 samples. Since tumor grade may impact certain aspects of the analysis we filtered out 

16/150 samples from the dataset for which grade annotation was not available in the clinical 

annotation file. Finally, we defined relative expression levels for each dataset separately by gene-

wise centering of the log2(CPM+1) expression values. 

 

Bulk scoring of TCGA samples 

We scored the TCGA samples using the centered log2(CPM+1) values for the AC-like, OC-like, 

NPC-like and cell-cycle programs (same gene-sets that were used for scoring the single-cell data) 

by computing the mean expression per sample for each program. 

 

TCGA AC differentiation analysis 

We computed for each sample an AC-differentiation score, defined as 𝐴𝐶𝑑𝑖𝑓𝑓 = 𝐴𝐶 −  
𝑂𝐶+𝑁𝑃𝐶+𝐶𝐶

3
 

where AC, OC, NPC and CC represent the sample’s scores for the AC-like, OC-like, NPC-like 

and cell-cycle programs. This enabled deriving an expected AC differentiation score for each 

tumor grade 𝑔 ∈ {𝐺𝑟𝑎𝑑𝑒 2, 𝐺𝑟𝑎𝑑𝑒 3} which is the average AC differentiation score across all 

samples that belong to grade g. Since tumor grade may impact the degree of AC-like 

differentiation, we compared the differentiation score distributions of grade 2 and grade 3 tumors 

and indeed found that grade 2 tumors were, on average, more differentiated than grade 3 tumors 

(p=0.0008, Wilcoxon rank sum test). We defined bulk expression profiles for each of the samples 

analyzed by scRNAseq by averaging across the cells in each tumor and computed AC 

differentiation scores for these samples as well using the bulk expression profiles. These scores 

span the expected spectrum of AC differentiation within the TCGA cohort (Fig. S5A). This 

property enabled using the expected AC differentiation computed from the TCGA to compute 

relative AC differentiation scores and account for differences in tumor grade. These scores were 

defined for each sample i as ACdiffi - E(ACdiff) where E(ACdiff) is the expected AC differentiation 

score corresponding to sample i’s tumor grade (Fig. S5B). 

 

Mutations associated with changes in AC differentiation 
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TCGA data was separated into two datasets according to tumor grade. Each dataset was row-

centered, scored for the AC-like, OC-like and NPC-like programs and the AC differentiation score 

was computed. We included in this analysis only mutations with at least 5 occurrences in a 

particular dataset (according to the mutation annotation file). For each mutation we computed the 

difference between the mean AC differentiation scores of the samples with the mutation and those 

without the mutation (relative AC differentiation score) and the statistical significance of the 

difference between the two groups using Wilcoxon rank sum test (corrected for multiple testing 

using the Benjamini-Hochberg method). 
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Figure 1. Study workflow and clinical timeline  
(A) Scheme describing the workflow of this study. (B) Top panel shows an overview of the clinical 

history of MGH170 and MGH229 after initiation of IDHi treatment as well as brain MRIs of the two 

patients treated with IDHi. Patient MGH170 achieved partial response (PR) as measured by 

RANO criteria after 10 months of treatment with IDHi while patient MGH229 showed stable 

disease without progression after 11 months of treatment with IDHi. Bottom panel shows the 

clinical history of BWH445 before and after initiation of IDHi therapy as well as representative 

brain MRIs of this patient. Patient BWH445 showed stable disease without progression after 30 

months of treatment with IDHi. 
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Figure 2. Profiling of patients with clinical response to IDHi. 
(A) t-distributed stochastic neighbor embedding (t-SNE) plots of the unmatched samples showing 

5,487 single cell expression profiles. Each of the four plots shows the same cells and coordinates, 

but colored in a different way as labeled below the figure, with colors corresponding to (from left 

to right): sample identity, treatment status, cell type and co-deletion of chromosomes 1p/19. (B) 

t-distributed stochastic neighbor embedding (t-SNE) plots showing 8,219 single cell expression 

profiles of the matched on- and pre-treatment samples (BWH445). Each of the two plots shows 

the same cells and coordinates, but colored in a different way as labeled below the figure, with 

colors corresponding to (from left to right) treatment status and cell type. (C) Copy-number 

aberrations inferred from single-cell expression data of cells classified as malignant. Rows 

represent cells and columns represent chromosomal location. The expected co-deletion of 

chromosome arms 1p and 19q is clearly seen in the unmatched samples as well as some other 

aberrations that tend to be subclonal (see Fig. S1A for CNA profile of the non-malignant cells). 

For the matched samples (BWH445) only the 1p deletion could be inferred from the single-cell 

expression data (co-deletion was validated using array comparative genomic hybridization, see 

panel S1F). 
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Figure 3. Gene-set enrichment analysis. 
(A) Comparison of IDHi-treated and untreated samples using GSEA. Each dot represents a gene-

set that passed the statistical significance threshold (adjusted p-value < 0.05), dot size represents 

the extent of statistical significance and dot color indicates whether the gene-set belongs to any 

of the glioma hierarchy/neural development gene-sets. X-axis shows the GSEA Normalized 

Enrichment Score (NES), Y-axis shows the fraction of genes in each gene-set with an absolute 

log2-ratio greater than 1 (e.g. genes in the extreme ends of the ranked list used for GSEA 

computation with more than a twofold change). (B) Enrichment of the ranked list used for GSEA 

(unmatched cohort). Dots represent the percentage of genes, in a sliding window of 30 genes (by 

log2-ratio values), that overlap each of the three expression programs and the cell cycle. Trend 

line was computed using LOESS regression. (C) Comparison of matched on- and pre-treatment 

samples using GSEA (same as panel A). Y-axis shows the fraction of genes in each gene-set 

with an absolute log2-ratio > log2(1.5) (e.g. 1.5 fold up/down-regulation). (D) Common genes of 

the most highly DEGs (computed separately for the unmatched and matched cohorts). Rows 

represent samples, columns represent DEGs, which are annotated according to the expression 

programs with which they are associated. The expression values of the unmatched samples are 

shown relative to the average bulk expression profile of the untreated samples and those of the 

matched on-treatment sample are shown relative to the expression profile of its pre-treatment 

counterpart. 
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Figure 4. IDHi treatment is associated with AC differentiation. 
(A) Scheme depicting a model of cellular hierarchy in which colors represents the relative 

frequency of each cellular state in each tumor sample of the unmatched cohort. (B) Relative 

expression of genes associated with the AC-like, OC-like and NPC-like programs across the 

unmatched samples. Cells are ordered by AC-like score minus OC-like score; genes are ordered 

by expression log2-ratio. For visualization, each tumor was randomly down-sampled to 130 cells. 

(C) Comparison of the fraction of cells assigned to each state between the on- and pre-treatment 

matched samples. Bar values represent the statistical significance of each pairwise comparison, 

defined as -log10 of a p-value calculated by hypergeometric test and corrected for multiple testing 

using the Benjamini-Hochberg method; bar direction (up or down) is defined by an increase or 

decrease, respectively, of the relevant state fraction in the on-treatment sample. Bar colors 

represent the relative change in state fractions (computed as ). (D) Relative 

expression of genes associated with the AC-like, OC-like and NPC-like programs in the matched 

on- and pre-treatment samples (same as panel C, no down-sampling in this case). (E) In situ RNA 

hybridization of tumors BWH445 (pre-treatment and on-treatment), MGH229 (pre-treatment and 

on-treatment), MGH94 (untreated) and MGH170 (on-treatment) for AC-like (GFAP, ALDOC), 

Stem-like (SOX4), and proliferation (Ki67) markers. (F) The fraction of cells staining positive for 

GFAP, ALDOC, SOX4 and Ki67 based on RNA in situ hybridization of tumors BWH445 (pre-

treatment and on-treatment), MGH229 (pre-treatment and on-treatment), MGH94 (untreated) and 

MGH170 (on-treatment). Each dot corresponds to one field of view. 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 20, 2021. ; https://doi.org/10.1101/2021.11.16.21266364doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.16.21266364
http://creativecommons.org/licenses/by-nc-nd/4.0/

	IDHi_Revision_11_09_2021_biorxiv_forEmbedding_textonly.pdf
	Combined3.pdf



