
Bacteriophages (phages) are the most 
abundant viruses on the planet. The majority 
of free-living bacterial species are thought  
to be infected by phages, as evidenced  
by the widespread presence of prophages 
(dormant phages) in bacterial genomes1,2.  
It was estimated that phages evolved shortly 
after the emergence of bacteria billions of 
years ago3, and hence the arms race between 
bacteria and phages is considered almost as 
old as bacteria themselves.

Facing the abundance and diversity of 
phages, bacteria have developed multiple 
lines of defence that can collectively be 
referred to as the ‘prokaryotic immune 
system’. Early research on bacterial defence 
systems mainly focused on restriction- 
modification (R-M) and abortive infection 
(Abi) systems, whereas in the past decade 
the focus shifted to CRISPR–Cas systems. 
In recent years, it has been recognized 
that prokaryotic immunity is much more 
complex than previously perceived, 
with evidence for chemical defence4 and 
intracellular signalling regulating defence 

that the models discussed in this Perspective 
article are expected to be relevant also for 
archaeal defence systems that protect from 
archaeal viruses.

Diversity of defence systems
Anti-phage defence systems can roughly be 
divided into those that target viral nucleic 
acids (for example, R-M and CRISPR–Cas),  
Abi systems that lead the host to commit 
suicide once infected and other types 
of systems (Fig. 1). Of these, the most 
abundant and elaborate systems are those 
that target nucleic acids8,15,16, presumably 
because nucleic acid is usually the first 
viral component to penetrate the cell upon 
infection (Fig. 1a,b).

R-M collectively refers to systems 
that cleave or degrade DNA through 
recognition of specific sequence motifs on 
the viral genome. These sequence motifs 
are modified in the host self-DNA, usually 
by methylation, to prevent the host genome 
from being targeted (with the exception of 
type IV R-M systems, which target modified 
phage DNA while the host genome remains 
unaltered). R-M systems are classified into 
four types17 and are present in more than 
74% of prokaryotic genomes15. On average, 
a bacterial genome encodes two R-M 
systems15. DNA modification as a strategy 
to discriminate between self-DNA and 
non-self-DNA is not limited to methylation. 
For example, the dnd defence system 
modifies the host DNA backbone to  
include a sulfur group18, and the dpd system  
utilizes a multi-enzyme pathway to modify 
guanine residues into 7-deazaguanine 
derivatives in the host DNA19. The BREX 
(bacteriophage exclusion)20 system and 
DISARM (defence islands system associated 
with R-M)21 also function through 
methylation of host DNA, although the 
mechanisms of phage DNA targeting in 
these systems are still unknown. All of these 
defence systems constitute part of the innate 
immunity of bacteria.

A large fraction of bacteria and archaea 
encode CRISPR–Cas16, a family of adaptive 
immune systems that also function through 
recognition and degradation of viral 
nucleic acids. The CRISPR–Cas immune 
memory is formed through acquisition of 
short viral-derived DNA sequences that are 
incorporated as CRISPR ‘spacers’ within the 

outcome5,6, as well as the discovery of a 
large number of new defence systems whose 
mechanisms are still unknown7.

Individual bacterial species can encode 
multiple different defence systems, and it was  
shown that such systems can be horizontally  
acquired and lost on short evolutionary  
time scales8,9. In this Perspective article,  
we discuss the prokaryotic immune system 
from evolutionary and ecological points 
of view. We begin by reviewing the major 
types of known antiviral systems as well 
as evasion strategies employed by phages 
(topics that will be covered only briefly as 
they were recently reviewed elsewhere9–14). 
We then discuss the necessity for encoding 
several lines of defence, on one hand, and the 
burdens of antiviral defence systems, on the 
other, leading to rapid gain and loss of such 
systems in microbial genomes. We present 
the ‘pan-immune system’ model to explain 
why closely related species encode different 
sets of defence systems, and conclude by 
discussing the implications on the evolution 
of anti-defence strategies in phages. We note 
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host genome22. These sequences are then 
transcribed and processed into CRISPR 
RNAs that guide the CRISPR–Cas machinery, 
through sequence complementarity, to 
target the viral nucleic acids16. CRISPR–Cas 
systems are diverse, comprising two classes, 
six types and more than 20 subtypes23,24 that 
differ in the composition of the interference 
machinery, their mechanisms of targeting 
and the nucleic acid targeted (that is, DNA or 
RNA). In most cases, both spacer acquisition 
and interference necessitate the occurrence 
of a short sequence motif named PAM 
(protospacer adjacent motif) next to  
the sequence matched by the spacer in the 
targeted molecule25.

Operons that include prokaryotic 
argonautes have also been hypothesized 
to provide defence. Present in 9% and 
32% of bacterial and archaeal genomes, 
respectively26, their frequent localization 
in defence islands (regions in microbial 
genomes in which defence systems  
are concentrated; see Box 1) as well as  
their protective activity against plasmids27 
suggest that they are involved in antiviral 
defence.

Another common strategy of defence 
against phages is Abi. Abi systems allow 
the bacterial cell, once infected, to kill 
itself or to arrest its metabolism before the 
phage reproductive cycle is completed, 

thus preventing the phage from spreading 
and killing the surrounding bacterial 
community. Abi systems have been detected 
in a wide variety of microorganisms8 but, 
given their high diversity, it is challenging 
to assess their abundance in nature. These 
systems are usually triggered by a specific 
component that could be a phage protein, 
a nucleic acid or a cellular state caused by 
phage infection. For example, the Escherichia 
coli Lit Abi is activated upon sensing a 
unique substrate formed by the Gol peptide 
of phage T4 when bound to the ribosomal 
elongation factor EF-Tu. Once active, the 
Lit protein cleaves EF-Tu, thus inhibiting 
translation and ultimately killing the cell28. 
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Another example is PrrC in E. coli, which 
cleaves bacterial tRNALys molecules when 
it senses that the phage has suppressed 
bacterial R-M systems29. In Lactococcus 
spp., many Abi genes (around 20) have been 
described: for example, AbiZ accelerates lysis 
before phage assembly30 whereas AbiB leads 
to non-specific degradation of mRNAs31.  
In Staphylococcus spp.32, the serine threonine 
kinase STK2 protein is activated when 
exposed to the phage protein PacK, leading 
to phosphorylation of proteins involved 
in multiple cellular pathways and eventual 
cell death32. Toxin–antitoxin systems, 
representing a large family of two-gene 
modules each comprising a toxin and an 
immunity component, were also shown to 
execute Abi in some cases, although their 
general role in defence against phages is  
still disputed10,33.

A newly discovered system called CBASS 
(cyclic oligonucleotide-based anti-phage 
signalling system) employs a specific form 
of Abi34. This system, appearing in more 

than 10% of sequenced bacterial genomes, 
relies on cyclic oligonucleotide signalling to 
provide defence against phages. Sensing  
of phage infection leads to the production of 
a cyclic oligonucleotide, for example cyclic 
GMP–AMP, which activates a downstream 
effector that causes cell death. The CBASS 
system is considered the prokaryotic 
ancestor of the cGAS–STING antiviral 
pathway in animals, which similarly relies  
on cyclic GMP–AMP signalling34.

Recent studies have revealed the existence 
of many additional families of antiviral 
defence systems in bacteria and archaea. 
An effort to map microbial defence islands 
(Box 1) has resulted in the discovery of nine 
new defence systems that are widespread 
in bacterial and archaeal genomes7. These 
systems were named after protective 
deities from world mythologies including 
Hachiman, Thoeris, Zorya, Gabija and 
Shedu, and their molecular mechanisms 
of action are yet to be deciphered. Finally, 
species of Streptomyces produce small 

molecules called doxorubicin and 
daunorubicin that act as DNA intercalants, 
and were recently shown to specifically 
block phage DNA replication but not the 
replication of bacterial DNA4.

A need for multiple defences
Analysis of sequenced prokaryotic genomes 
demonstrates that they can concomitantly 
harbour multiple different defence systems. 
As shown in Fig. 2, a single strain can encode 
diverse defence strategies including Abi, 
R-M and CRISPR–Cas. Many bacteria and 
archaea encode multiple defence systems 
of the same kind: for example, Helicobacter 
pylori F30 encodes three type I R-M systems, 
11 type II R-M systems, one type III R-M 
system and one type IV R-M system15. In total, 
it was estimated that up to 10% of some 
prokaryotic genomes is dedicated to defence 
systems8. These observations raise a basic 
question — what is the benefit for a single 
microorganism to encode so many different 
lines of defence?

Box 1 | Defence islands in microbial genomes

antiviral defence systems tend to cluster on bacterial and archaeal 
chromosomes in regions denoted as defence islands48. Defence islands 
typically comprise diverse defence systems. see the figure for examples of 
defence islands within selected bacterial and archaeal genomes (different 
colours represent different defence systems). Beige represents genes of 
non-defence functions or of unknown function. Defence systems are also 
enriched with genes typical of mobile genetic elements such as 
transposases, recombinases and conjugation genes44,48. some defence 
islands were predicted to encode more than 100 defence genes8.

the origin and the mechanism of formation of defence islands are 
currently unknown but could reflect different effects. First, co-localization 
of defence genes with mobile genes could facilitate horizontal transfer of 
multiple defence systems from one bacterium to another in a single 
transfer event. alternatively, such islands can be hotspots for integration of 
horizontally acquired genes77, with defence systems clustering in defence 

islands through the ‘garbage and pile effect’8, in which high  
rates of acquisition and loss are not strongly deleterious. in addition,  
such co-localization of defence genes could reflect functional links 
between the defence systems, including possible co-regulation or  
positive epistasis.

the phenomenon of defence islands in bacterial genomes allows the 
prediction of novel defence systems through a ‘guilt by association’ 
approach. in this approach, protein families with unknown functions  
that are enriched in defence islands can be predicted to constitute  
new defence systems. this methodology has led to the discovery of 
individual defence systems such as BreX (bacteriophage exclusion) or 
DisarM (defence islands system associated with r-M)20,21, and its 
application in a systematic manner recently revealed nine new antiviral 
systems that are widespread in bacteria and archaea7. For r-M and 
CrisPr–Cas systems, the type is indicated in parentheses.
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One obvious answer is that some defence 
systems can protect only from a specific 
type of virus. For example, the GmrSD type 
IV R-M system only targets phages such as 
T4, whose genomes are modified to include 
glucosylated hydroxymethylcytosine35. Cas9, 
on the other hand, cannot cleave the DNA 
of phage T4 owing to its heavily modified 
cytosine residues36. The Thoeris defence 
system seems to protect only against phages 
from the Myoviridae family7. Therefore, for a 
microorganism to be protected against  
a wide variety of viruses, it should encode a 
broad defence arsenal that can overcome the 
multiple types of viruses that can infect it.

There are benefits for a microorganism 
to encode multiple defence systems, even if 
these systems overlap in the range of viruses 
that they target. This is because phages can 
develop resistance to defence (reviewed 
in refs12–14,17). First, phage genomes can 
evolve to eliminate specific sequences such 
as motifs targeted by restriction enzymes17 
or PAM sequences that are essential for 
CRISPR–Cas defence37. Second, phages 
often encode anti-defence proteins12, 
including anti-CRISPR and anti-restriction 
proteins. These proteins are either injected 

into the cell together with the viral DNA17 
or expressed early upon infection, and 
inhibit the defence systems. Anti-CRISPRs 
are typically short proteins that bind the 
CRISPR–Cas complex and prevent it from 
working properly13,38. Recent discoveries 
report on anti-CRISPRs working as enzymes 
that can cleave the CRISPR RNA or add an 
acetyl group to a PAM-sensing residue in the 
Cas effector39,40. Similarly, anti-restriction 
proteins inhibit restriction enzymes: for 
example, the T4 IPI (internal protein I) 
inhibits type IV R-M systems41, whereas the 
DarA and DarB proteins of phage P1 bind 
the restriction sites on the phage genome 
and mask them from cleavage by the type I  
R-M system of E. coli42. Faced by viruses 
that encode counter-defence mechanisms, 
bacteria and archaea cannot rely on a single 
defence system and thus need to present 
several lines of defence as a bet-hedging 
strategy of survival.

Gain and loss of defence systems
Owing to the selective advantage that 
defence systems provide, they are frequently 
gained by bacteria and archaea through 
horizontal gene transfer (HGT)8,9. Multiple 

studies based on phylogenetic analyses and 
comparative genomics have confirmed 
the high rate of transfer of defence 
systems8,15,23,43,44. For example, only ∼4% of 
R-M systems are found in the core genomes 
of prokaryotic species, suggesting recent 
transfer events15. In another example, 
an analysis of phylogenetic trees of Cas 
proteins and CRISPR repeats showed 
weak consistency with the species tree, 
demonstrating the dominance of horizontal 
transfer for the spread of CRISPR–Cas 
loci23. Both CRISPR–Cas and R-M systems 
have been detected on mobile genetic 
elements, such as plasmids, transposons and 
phages, partially explaining their mode of 
HGT15,45–47. In addition, genomic analyses 
have shown that defence systems tend to be 
concentrated in ‘defence islands’ — regions 
of the host chromosome that are also 
enriched with mobile elements presumably 
responsible for the genetic mobilization of 
the islands48 (Box 1).

Given their selective advantage in the 
arms race against viruses, one might expect 
that defence systems, once acquired (either 
through direct evolution or via HGT), would 
accumulate in prokaryotic genomes and 
be selected for. Surprisingly, this is not the 
case as defence systems are known to be 
frequently lost from microbial genomes over 
short evolutionary time scales, suggesting 
that they can impose selective disadvantages 
in the absence of infection pressure8,9. 
A major drawback of defence systems is 
autoimmunity: CRISPR–Cas, for example, 
can make mistakes in the process of spacer 
acquisition and acquire spacers from the 
chromosome instead of from the invading 
element49,50. This directs the CRISPR–Cas 
interference machinery to attack the 
chromosome, resulting in cell death49,51,52 
or in survival through pseudogenization 
and eventual deletion of the CRISPR–Cas 
locus49,50,52. Similarly, R-M systems can also 
rarely target the chromosome, cleaving 
self-DNA at a low but measurable rate and 
inflicting a fitness cost53. Unwanted activity 
of Abi systems can also lead to dormancy or 
cell death54. In addition to autoimmunity, 
defence systems can impose an energy 
burden on the cell: some R-M systems 
require the hydrolysis of one ATP molecule 
per base pair for translocation of the 
restriction enzyme along the DNA9,55.

As a result of these fitness costs, there 
is a selective pressure for bacteria to get 
rid of defence systems under conditions 
when there is no selection pressure exerted 
by phages. Indeed, competition studies 
between strains encoding defence systems, 
such as CRISPR–Cas or Lit Abi, and cognate 
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defence-lacking strains have demonstrated 
the existence of a fitness cost in the absence 
of phage infection54,56. An experimental 
study in Staphylococcus epidermidis showed 
that the loss of CRISPR–Cas systems 
by large deletions has little or no fitness 
cost57. Another study demonstrated that 
inactivation of CRISPR–Cas systems 
in Streptococcus pneumoniae is even 
advantageous under specific conditions58.

The frequent gain and loss of defence 
systems over short time scales leads to a 
highly variable pattern of presence and 
absence of systems in microbial genomes. 
Even in closely related strains with otherwise 
similar genomes, the composition of defence 
systems can drastically vary, as demonstrated 
in Fig. 2. Defence systems appear to be in a 
state of constant genetic flux, constituting 
the second most dynamic class of genes after 
mobile genetic elements in terms of rates of 
gain and loss in microbial genomes59,60.

Pan-immunity as a shared resource
Given the fitness costs inflicted by antiviral 
systems, it is probable that no single bacterial 
or archaeal strain can encode, in the long 
term, all possible defence systems without 
suffering serious competitive disadvantages. 
On the other hand, the access to a diverse set 
of defence mechanisms is essential in order to 
combat the enormous genetic and functional 

diversity of viruses. We propose that these 
seemingly contradictory requirements can 
be reconciled when considering the available 
arsenal of immune systems as a resource 
shared by a population of bacteria or archaea 
rather than by individual cells.

In the example shown in Fig. 2, none 
of the strains encode all defence systems. 
However, if these strains are mixed as part 
of a population, the pan-genome of this 
population would encode an ‘immune 
potential’ that encompasses all of the 
depicted systems. As these systems can be 
readily available by HGT, given the high  
rate of HGT of defence systems, the 
population in effect harbours an accessible 
reservoir of immune systems that can be 
acquired by population members. When 
the population is subjected to infection, 
this diversity ensures that at least some 
population members would encode the 
appropriate defence system, and these 
members would survive and form the  
basis for the perpetuation of the population 
(Fig. 3). We thus hypothesize that some of 
the selection for defence systems occurs  
at the group level.

In a sense, this pan-immune system model 
aligns well with previous observations and 
mathematical models of distributed immunity 
that specifically focused on CRISPR–Cas 
systems. Studies on CRISPR–Cas have shown 

that spacer diversity in the population is 
essential to overcome phage infections61–63. 
In co-evolution experiments between 
Pseudomonas aeruginosa and Streptococcus 
thermophilus and their respective phages, 
bacterial populations in which different 
strains encoded different sets of spacers 
overcame phage infection and resulted 
in phage extinction, whereas populations 
comprising homogeneous sets of spacers 
allowed phage propagation63. Protection 
of spacer-diverse populations occurred 
because no single phage could accumulate 
enough mutations to overcome the diversity 
of spacers encoded by the population as 
a whole63. In the context of CRISPR–Cas, 
mathematical models that explored the 
parameters leading to the emergence of a 
distributed immunity predicted two key 
parameters61: the cost of generating a new 
allele (in this case, a new spacer) should be 
small; and fitness constraints of evolving 
escape mutations for phages is enhanced by 
the fact that an escape mutant will be resistant 
only to one allele (one spacer in the case of 
the CRISPR model)61. Beyond the specific 
case of CRISPR–Cas, the same conditions 
also fit the broader context of the microbial 
pan-immune system model, which can be 
viewed as satisfying the two parameters 
mentioned above: given the high rate of HGT 
of defence systems (which can be considered 
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the acquisition of alleles of defence), the cost 
of acquiring a new allele via HGT is expected 
to be relatively small; and due to the diversity 
of molecular mechanisms among different 
defence systems, the emergence of one phage 
mutation that allows escape from a specific 
defence system is not expected to abolish 
defence by other systems. As group selection 
occurs within closely related kin, we expect 
the pan-immune system model to be mainly 
relevant among populations of similar, related 
strains that differ in their defence content, 
thus allowing for selection at the group level.

Implications for counter-defence
It is well documented that individual phages 
have well-defined host ranges, such that  
they can infect some, but rarely all, strains 
of the same species64. This is often attributed 
to the diversity of surface molecules among 
the infected microbial strains, as these 
are used by phages as specific receptors65. 
However, given the diversity of defence 
systems observed in different strains of the 
same species, it is clear that the host range of 
any given phage would depend on its ability 
to overcome multiple defence systems. This 
predicts that phages need to encode many 
different counter-defence mechanisms in 
order to have a broad host range.

This prediction may help reconcile 
the puzzle of dispensable genes in phage 
genomes. As phage genomes are under 
strong selection, one might expect that most 
of their genes are essential. However, serial 
mutational analyses showed that as much as 
79% of genes in phage T4 and 63% of genes 
in phage T7 are not essential for successful 
infection of the E. coli laboratory strain66,67. 
We predict that many of these genes will 
turn out to encode anti-defence proteins 
that target defence systems not present 
in the E. coli strain used in these studies. 
We would therefore expect that the set of 
anti-defence genes cumulatively encoded by 
strains of a phage species should mirror the 
set of defence systems encoded by its host 
pan-genome.

Conclusions and outlook
Apart from exploring the existence of 
numerous anti-defence genes in viruses, the 
pan-immune system model raises several 
interesting research avenues. Are there 
limitations to the co-occurrence of defence 
systems within a single genome? Both 
positive and negative epistasis (dependency 
and incompatibility) has been demonstrated 
to occur between DNA repair pathways and 
CRISPR–Cas systems68,69, underlying the 
potential requirements of a specific genetic 
background to allow compatibility of a 

CRISPR–Cas subtype in a given species70. 
Beyond CRISPR–Cas defence, it would 
be interesting to understand the influence 
of the core genome of a species on the 
composition of its pan-immune system. 
Similarly, is this composition influenced by 
environmental conditions, past infections, 
or other events in the life history of the 
microorganism?

If the immune potential of a species 
encompasses many diverse defence systems, 
does epistasis exist between these systems? 
It has been shown that CRISPR–Cas and 
R-M systems can work synergistically71,72. 
Is this true for other defence systems? 
Within CRISPR–Cas systems, other forms 
of epistasis have been observed. One 
example of such epistasis is functional 
redundancy through using the same spacers 
with different interference modules to 
limit emergence of phage escape mutants73. 
Another example is the coupling of ‘nucleic 
acid targeting’ strategies and ‘dormancy or 
death’ in type III CRISPR–Cas systems, in 
which a non-specific nuclease is activated 
upon failure to fully restrict phage DNA5,6,74. 
Given the newly revealed diversity of defence 
systems, the study of interactions between 
defence systems promises to unravel a 
novel understanding of the complexity of 
prokaryotic immune defence.

Beyond addressing fundamental 
questions in microbiology, understanding 
the pan-immune system could have 
implications in the treatment of bacterial 
infections by phages. Given the rise of 
antibiotic resistance, phage therapy  
(the use of phages to kill pathogenic bacteria) 
has re-emerged as a promising therapeutic 
possibility75,76. The main strategy consists 
of using a cocktail of phages to limit the 
emergence of bacterial resistance to phages. 
Such cocktails of phages should be studied 
in light of the pan-immune system of target 
species to ensure that the chosen phages  
will be equipped to overcome the set of 
defence systems potentially encoded by  
the population.
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