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Bacteria use multiple immune mechanisms to defend against 
phage infection1,2. Restriction–modification (RM) and 
CRISPR–Cas systems have long been recognized as major 

lines of defence against phages1. Abortive infection systems, where 
infected cells commit suicide and thus abort phage propagation, have 
also been reported in bacteria since the early days of phage research3.

In recent years, it has become clear that bacteria encode a pleth-
ora of additional immune systems that escaped early detection1,2. 
These include defence systems that produce small molecules which 
block phage replication4,5, systems that rely on secondary-messenger 
signalling molecules that activate immune effectors6–9, and ret-
ron systems that employ reverse-transcribed non-coding RNAs as 
part of their anti-phage activity10,11. Many of these recently identi-
fied bacterial immune systems were shown to be functionally and 
structurally homologous to immune genes that protect eukaryotic 
cells from infection5,7,9,12. Despite this recent progress in identifying 
bacterial defence systems, it has been hypothesized that many such 
systems still await discovery13.

Cytidine deaminases confer phage defence in Escherichia coli
We initiated this study by focusing on a family of homologous genes, 
found in a broad set of bacterial genomes, which contain a predicted 
cytidine-deaminase domain (Fig. 1a and Extended Data Fig. 1a). 
This family of genes caught our attention due to their frequent local-
ization next to known anti-phage defence systems in diverse bacte-
rial genomes, a strong predictor for a role in anti-phage defence14 
(Extended Data Fig. 1b and Supplementary Table 1). We cloned two 
genes from this family, one from Escherichia coli U09 and the other 
from E. coli AW1.7, under the control of their native promoters, 
into a lab strain of E. coli (MG1655) that does not naturally encode 
such genes. Infection assays with a panel of phages showed that both 
genes conferred substantial defence against a diverse set of phages 
(Fig. 1b and Extended Data Fig. 1c). Since it conferred wider defence 

against phages, we further functionally characterized the gene from 
E. coli AW1.7 (Fig. 1b,c). Point mutations in the active site of the 
deaminase domain (C370A and C401A, predicted to disrupt zinc 
binding) abolished defence (Fig. 1c). In addition, point mutations 
in the nucleotide-binding motif of a predicted kinase domain found 
at the N terminus of the protein also resulted in impaired defence 
(Fig. 1c), suggesting that both domains are essential for the defence 
against phages. Expression of the gene without phage infection did 
not impair bacterial growth (Extended Data Fig. 1d). 

Cytosine deaminase enzymatic activities have been reported for 
immune proteins that protect human cells from viral infection by 
inducing deoxycytidine-to-deoxyuridine substitutions in the DNA 
of the viral genome, causing hyper-mutations that destroy the cod-
ing capacity of the virus15. To examine whether the bacterial cytosine 
deaminase has a similar function, we extracted and sequenced total 
DNA and RNA from deaminase-containing and control strains of  
E. coli MG1655 infected with phage T7. We did not observe elevated 
rates of C-to-T mismatches (or the expected corresponding G-to-A 
in the complementary strand) as compared with other mismatches 
in phage DNA or RNA in cells encoding the cytidine deaminase, 
or as compared with control cells lacking the gene (Extended Data  
Fig. 2). In addition, no hyper-editing of cytosines in the DNA or 
RNA molecules of the bacterial host was observed (Extended Data 
Fig. 2). We concluded that the bacterial cytosine deaminase genes 
that protect against phages do so via a mechanism that does not 
involve hyper-editing of the nucleic-acid polymers.

Deamination of dCTP depletes it from the dNTP pool
We next examined whether the bacterial defensive protein modifies 
single nucleotides rather than DNA or RNA polymers. To this end, 
we filtered extracts from cells infected by phage T7 and used liquid 
chromatography followed by mass spectrometry (LC-MS) to moni-
tor the nucleotide content in these extracts (Fig. 1d). Remarkably, 
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deoxycytidine triphosphate (dCTP), which naturally accumulates in 
control cells infected by phage T7, was completely absent in infected 
cells expressing the deaminase gene from E. coli AW1.7 (Fig. 1e). The 
depletion of dCTP was associated with substantial elevation of deoxy-
uridine monophosphate (dUMP), recorded as early as 5 min after ini-
tial infection, suggesting that the observed loss of dCTP was caused 
by its deamination into deoxyuridine compounds (Fig. 1f). Similar 
depletion was observed in deoxycytidine monophosphate (dCMP) 
and deoxycytidine diphosphate (dCDP) but not in the ribonucleo-
tides CTP, CDP and CMP, suggesting that deamination is limited to 
deoxycytidines (Extended Data Fig. 3a–e). Although the deamination 
of dCTP is expected to generate dUTP molecules, it is known that E. 
coli expresses housekeeping deoxyuridine triphosphatase (dUTPase) 
enzymes that rapidly convert dUTP to dUMP molecules16, likely 
explaining the observed accumulation of dUMP and not of dUTP 
(Fig. 1f). Indeed, a recent paper by Severin et al.17 demonstrated the 
in vitro conversion of dCTP to dUTP by a dCTP deaminase enzyme 
of the same family. Depletion of dCTP was not observed in cells 
expressing dCTP deaminase mutants (Extended Data Fig. 4).

These results suggest that during infection by phage T7, the 
defensive deaminase protein converts deoxycytidine nucleotides 
into deoxyuracils, depleting the cell of the dCTP building blocks 
that are essential for phage DNA replication. Indeed, monitoring 
phage DNA during infection showed impaired phage DNA replica-
tion in deaminase-containing cells (Fig. 1g). Moreover, we observed 
that the other three deoxynucleotides (dNTPs), dATP, dGTP and 
dTTP, all accumulated in the cell at 10 and 15 min post-infection 
in cells expressing the dCTP deaminase (Extended Data Fig. 3f–h). 
These results suggest that the depletion of dCTP limits phage DNA 
replication, resulting in a buildup of the other dNTP building blocks 
that would have otherwise been incorporated into the replicating 
the polynucleotide chain of the phage17.

Deoxyguanosine triphosphatases deplete dGTP during 
phage infection
Our discovery of a defence mechanism that uses nucleotide deple-
tion via dCTP deamination prompted us to investigate whether there 
are additional phage resistance mechanisms that defend the cell by 
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Fig. 1 | A family of cytidine deaminases provide defence against phages. a, Domain organization of the cytidine deaminase of E. coli AW1.7. Protein 
accession in the National Centre for Biotechnology Information (NCBI) is indicated above the gene. b, Cytidine deaminases defend against phages. 
Cytidine deaminases from two E. coli strains were cloned, together with their native promoter regions, and transformed into E. coli MG1655. Fold 
defence was measured using serial dilution plaque assays. Data represent an average of three replicates (see detailed data in Extended Data Fig. 1). The 
designation ‘s’ stands for a marked reduction in plaque size. c, Effect of point mutations on the defensive activity of dCTP deaminase from E. coli AW1.7. 
Data represent plaque-forming units per ml (PFU ml−1) of T7 phages infecting control cells, dCTP-deaminase-expressing cells, and two strains mutated 
in the predicted kinase or deaminase domains. Shown is the average of three replicates, with individual data points overlaid. d, Schematic representation 
of the MS experiment. e,f, Concentrations of deoxynucleotides in cell lysates extracted from T7-infected cells, as measured by LC-MS with synthesized 
standards. The x axis represents minutes post-infection, with zero representing non-infected cells. Cells were infected by phage T7 at a multiplicity of 
infection (MOI) of 2 at 37 °C. Each panel shows data acquired for cells expressing the dCTP deaminase from E. coli AW1.7 or for control cells that contain 
an empty vector. Bar graphs represent the average of three biological replicates, with individual data points overlaid. g, Effect of dCTP-deaminase on T7 
DNA replication throughout infection. Cells were infected by phage T7 at an MOI of 2 at 37 °C. A fixed amount of Bacillus subtilis BEST7003 cells was 
spiked into each sample before centrifugation for normalization purposes. Total DNA was extracted from each sample and DNA was Illumina-sequenced. 
Each panel shows data acquired for dCTP-deaminase-expressing cells or for control cells that contain an empty vector. The y axis represents phage DNA 
sequence reads normalized to spike reads. Bar graphs represent the average of three biological replicates, with individual data points overlaid.
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depleting dNTPs. Depletion of the nucleotide pool was reported as 
an antiviral strategy in the human innate immune system, where it 
is manifested by the SAMHD1 antiviral protein that restricts human 
immunodeficiency virus (HIV) infection in non-replicating cells18. 
SAMHD1 was found to remove the triphosphate from dNTPs, 
breaking the nucleotides into phosphate-free deoxynucleosides 
and an inorganic triphosphate (PPPi)18. The massive degradation 
of dNTPs by SAMHD1 depletes the nucleotide pool of the cells and 
inhibits replication of the viral genome19.

Several dNTP triphosphohydrolases (dNTPases), and specifi-
cally deoxyguanosine triphosphatases (dGTPases), have previously 
been described in bacteria20–22. Bacterial dGTPases cleave dGTP 
in vitro, and their structures show substantial homology to the 
active site architecture of SAMHD123,24. Although dGTPase homo-
logues are abundant in bacteria, their physiological roles mainly 
remain unknown23. We hypothesized that bacterial dGTPases might 
have a role in defence against phages through dGTP depletion.

We identified multiple genes with predicted dGTPase domains 
that were localized within operons of type I restriction–modifica-
tion systems or near other known defence systems, suggesting a 
possible role in anti-phage defence14 (Fig. 2a and Extended Data 
Fig. 5a). These genes could not be aligned to human SAMHD1, 
but structural homology modelling using AlphaFold225 revealed 
significant similarity to the structure of SAMHD1 (Extended Data 
Fig. 5b). To evaluate whether these genes confer phage resistance, 
we cloned eight of these dGTPases into E. coli MG1655. Following 
infection with a diverse set of phages, we found that six of the cloned 
genes substantially protected the E. coli host from phage infection, 
with the most prominent defence observed for the dGTPase from 
Shewanella putrefaciens CN-32 (Sp-dGTPase) (Fig. 2a,b, Extended 
Data Figs. 6 and 7 and Supplementary Table 5). A D101A point 
mutation in the histidine/aspartate (HD) motif in the predicted 
active site of Sp-dGTPase abolished defence, suggesting that the 
dGTPase functionality is essential for anti-phage activity (Fig. 2c).  
Overexpression of dGTPases did not impair bacterial growth 
(Extended Data Fig. 6b), and two dGTPases protected against 
phages when cloned under the control of their native promoters, 
suggesting that defence is not an artefact of overexpression (Fig. 2b 
and Extended Data Fig. 7a–c).

We next used LC-MS to analyse the nucleotide content in 
cells expressing Sp-dGTPase. In control cells that do not express 
the defensive gene, the concentration of dGTP was substantially 
elevated after 10 min from the onset of infection by phage T7, as 
expected for this phage26 (Fig. 2d). However, in cells expressing the 
defensive gene, dGTP was present in lower amounts throughout 
the infection time course (Fig. 2d). In parallel to the depletion of 
dGTP, we observed substantial elevation in the concentrations of 
deoxyguanosine, consistent with the hypothesis that the defensive 
protein removes the triphosphate from dGTP (Fig. 2e). Similar 
reduction in dGTP levels was observed for a dGTPase from E. coli 
STEC 2595, which was cloned under the control of its native pro-
moter (Extended Data Fig. 7). In parallel to the reduction of dGTP, 
the other three dNTPs accumulated in dGTP-expressing cells, and 
phage DNA replication was impaired (Fig. 2f and Extended Data 
Figs. 6e–g and 7h–k). These results reveal a family of bacterial anti-
viral enzymes that deplete dGTP in phage-infected cells and limit 
phage replication.

Numerous species encode antiviral nucleotide-depletion 
genes
We found 977 homologues of the defensive dCTP deaminase in 
952 genomes, representing 2.5% of the set of 38,167 genomes that 
we analysed (Supplementary Table 1). These genes were found in 
genomes of a diverse set of species from the Proteobacteria phy-
lum, as well as other phyla including Firmicutes, Actinobacteria and 
Bacteroidetes (Fig. 3a and Supplementary Table 1). In most cases, 

only a small fraction of the sequenced genomes of a given species 
harboured the dCTP deaminase. For example, the gene was found 
in 5%, 10% and 12% of analysed E. coli, Legionella pneumophila, and 
Burkholderia pseudomallei genomes, respectively (Fig. 3b). Such 
a sparse pattern of gene presence/absence is typical of bacterial 
defence systems and is indicative of extensive horizontal gene trans-
fer between genomes2. An exception to this pattern was observed in 
Vibrio cholerae, where we found the defensive dCTP deaminase in 
most of the analysed genomes (200 of 291, 69%) (Fig. 3b).

homologues of the defensive Sp-dGTPase were abundant in the 
set of bacterial genomes that we analysed, appearing in >2,300 of 
the genomes (at least 25% sequence identity to Sp-dGTPase over an 
alignment overlap of ≥90%) (Supplementary Table 2). Among these, 
proteins that we originally tested which showed high similarity to 
Sp-dGTPase were preferentially localized next to known defence 
systems, implying that the main role of these direct homologues 
is to defend against phages (Fig. 4 and Supplementary Table 2).  
However, more distant homologues did not show high propen-
sity to co-localize with defence systems, with only 10% of these 
homologues found next to known defensive genes (Fig. 4b and 
Supplementary Table 2). Experimentally examining 20 such distant 
homologues from across the phylogenetic tree showed that many of 
them (9 of 20) provided defence against phages when cloned into 
E. coli MG1655 (Fig. 4b and Extended Data Fig. 8). These find-
ings suggest that these more distant homologues function in phage 
defence, but may also have housekeeping roles in bacterial physiol-
ogy and are thus not encoded in defence islands. In contrast to the 
sparse distribution observed for dCTP deaminases, dGTPases were 
present in most strains of encoding species, further supporting a 
housekeeping role for these genes (Fig. 3c,d). In this context, it is 
noteworthy that SAMHD1 was found to be involved in housekeep-
ing DNA repair, a role that has also been suggested for bacterial 
dGTPases23,27.

Phages can evolve resistance to nucleotide depletion
To gain more insight into how phage infection triggers nucleotide 
depletion, we attempted to isolate phage mutants that escape this 
mode of defence. We were able to obtain four mutants of phage 
T7 that could partially overcome the defence conferred by the 
dCTP deaminase gene, as well as seven T7 mutants that overcame 
dGTPase defence (Supplementary Table 4). In all four mutants 
that escaped the dCTP deaminase, we found point mutations in 
gene 5.7 of phage T7, leading to amino-acid substitutions (Fig. 5a). 
Surprisingly, three of the T7 mutants that escaped Sp-dGTPase 
defence were also mutated in this gene, with mutations either caus-
ing frameshift in Gp5.7 or amino-acid substitutions (Fig. 5a,b).  
We verified that Gp5.7 is not produced during infection by a 
mutant phage with a frameshift in gene 5.7 using protein MS 
(Extended Data Fig. 9a,b). In an additional three mutants that 
overcame Sp-dGTPase, a frameshift-causing mutation was iden-
tified in gene 5.5, which is directly upstream to gene 5.7 and is 
thought to be co-translated with gene 5.7, forming a 5.5–5.7 
fusion protein28. A single T7 escapee was not mutated in either of 
these genes, but had a point mutation in the endonuclease I gene, 
encoding a protein responsible for Holliday junction resolution29 
(Supplementary Table 4). These results suggest that mutations in 
Gp5.7 allow phage T7 to escape both the dCTP deaminase and the 
dGTPase defence. Indeed, escape mutants isolated on the dCTP 
deaminase strain were able to overcome Sp-dGTPase defence, and 
vice versa (Fig. 5c,d).

We infected dCTP-deaminase-expressing cells with the 
Gp5.7-mutated T7 phages, and measured dCTP concentrations.  
A reduction in dCTP was observed post-infection, but this reduction 
caused only partial, yet not full, depletion of dCTP in the infected 
cells (Fig. 5e). These results suggest that the nucleotide-depleting 
enzyme is only partially active against the mutated phages and that 
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the remaining dCTP in the cell still allows phage DNA replication, 
enabling their escape from the nucleotide-depletion defence.

Gp5.7 of phage T7 is responsible for shutting down σS-dependent 
host RNA polymerase (RNAP) transcription, which would have 
otherwise interfered with phage propagation30. A second T7 pro-
tein, Gp0.7, is also known to modify the host RNAP during the 
early stages of infection31. Phages deleted in genes 0.7 or 5.7 were 
previously reported as viable but propagate sub-optimally on  
E. coli cells32,33. Intriguingly, two of the T7 mutants that escaped the 
Sp-dGTPase defence contained, in addition to the mutation in gene 
5.7, mutations in gene 0.7 (Supplementary Table 4).

Our observation that mutations in phage-RNAP-modifying pro-
teins allow T7 to escape nucleotide depletion supports a hypoth-
esis that both the dCTP deaminase and dGTPase may be sensitive 
to transcription inhibition imposed during T7 phage infection. To 
test this hypothesis, we applied rifampicin, an antibiotic that inhib-
its bacterial DNA-dependent RNA polymerase, on cells expressing 
the dCTP deaminase or Sp-dGTPase. In both cases, the respective 
nucleotide became depleted, while the other DNA nucleotides did 
not (Fig. 5f,g and Extended Data Fig. 9c–h). Together, these results 
suggest that phage-mediated inhibition of host transcription may 
be involved in triggering the activation of bacterial dNTP-depletion 
defence (Fig. 5h).

Discussion
In this study, we describe a previously unknown mechanism of 
phage resistance in which phage infection triggers the activity of 
defensive nucleotide-manipulating enzymes that deplete one of the 
dNTPs from the infected cell. As phage DNA replication requires a 
huge supply of all of the dNTPs, reduction in or elimination of one 
of the dNTP pool members impairs the ability of the phage to rep-
licate its genome. We hypothesize that nucleotide depletion might 
be activated when host bacteria transcription is inhibited. Many 
phages manipulate host transcription34, so a mechanism of defence 
that relies on recognition of infection by modulation of transcrip-
tion could explain the breadth of defence against multiple phage 
families that is conferred by the two defence genes we studied.

It is intriguing that neither of the nucleotide-depletion proteins 
that we studied were toxic when expressed in the host in the absence 
of phage infection. This suggests that while the proteins are present 
in the cell before phage infection, they may only be activated when 
a phage is recognized. Indeed, this is the case for many anti-phage 
defence systems, such as CBASS7, Pycsar35, toxin–antitoxin systems 
and other abortive infection systems3 that respond to phage infec-
tion by applying lethal measures.

The dCTP deaminase analysed in our work includes a predicted 
N-terminal kinase domain. Point mutation in this domain abolished 
defence, suggesting that it is important for the defensive activity, but 
its specific role remains unclear. We hypothesize that this domain 
may participate in sensing phage infection, but its exact function 
remains to be defined. Housekeeping dCTP deaminase (dcd) pro-
teins of bacteria play a role in dTTP synthesis needed for bacterial 
replication. The dCTP deaminase family studied here shares very 
little protein sequence similarity with dcd, but the two proteins 
share structural homology in the dCTP deaminase domain. The 
N-terminal kinase domain is not present in dcd proteins.

Enzymes with cytidine deaminase activity are known to be 
involved in multiple aspects of immunity15. The human APOBEC3G 
protects against viruses by deaminating cytosines in the viral 
genome, thus destroying its coding capacity36,37. In addition, cytosine 
deamination performed by activation-induced cytidine deaminase 
enzymes introduces somatic hyper-mutations which are essential 
for antibody diversification and maturation38. We now report a third 
role for cytidine deaminases in immunity, where the deamination 
is performed on the mononucleotide building blocks to eliminate 
them during viral infection. Antiviral defence by deamination of 
adenines was also recently demonstrated to function in defence sys-
tems that protect bacteria from phage13.

The model E. coli strain MG1655 encodes a dGTPase gene called 
dgt, which shows distant homology (24% identity) to the defensive 
Sp-dGTPase studied here39. The function of dgt was linked to main-
tenance of genome integrity40, although some evidence hints at a 
role in phage defence, as T7 was shown to encode a specific inhibi-
tor of dgt41. It is therefore possible that families of dGTPase enzymes 
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Fig. 4 | Diversity of nucleotide-depleting defence genes in bacterial genomes. a,b, Phylogenetic tree of dCTP deaminase (a) and dGTPase (b) homologues 
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other than the one that we studied here are also involved in phage 
defence.

Multiple proteins in T7 modify the host RNA polymerase 
(RNAP) to allow optimal infection. These include Gp0.7, Gp2 and 
Gp5.7. Gp0.7 is a kinase that phosphorylates σ70-bound host RNAP 
and alters its functionality to suit phage needs30. At later stages of 
infection, Gp2 shuts off the ability of σ70-RNAP to transcribe the 
phage genome30. Finally, Gp5.7 binds and inhibits transcription 

by σS-RNAP, which appears in the host when the cell activates the 
stringent response during phage infection30. It is intriguing that 
mutations in two of these RNAP-modifying proteins allow the 
phage to escape both mechanisms of nucleotide depletion that are 
characterized here (notably, Gp2 is indispensable for T7 growth 
and hence cannot be mutated). This implies that both the dCTP 
deaminase and dGTPase might somehow monitor the integrity of 
the host RNAP or its activity and become activated when tampered 
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Fig. 5 | Phage mutants can overcome nucleotide-depletion defence. a, Positions in the T7 gene 5.7 that are mutated in phages that escape defence by 
dCTP deaminase or Sp-dGTPase. The full list of mutations for each phage in this figure is detailed in Supplementary Table 4. b, A representative phage 
mutant capable of escaping Sp-dGTPase defence. Shown are tenfold serial dilution plaque assays, comparing the plating efficiency of WT and mutant 
phages on bacteria that express the Sp-dGTPase and a control strain that lacks the system and contains a GFP-expressing vector instead. Images are 
representative of three replicates. c,d, Reduction of defence of dCTP deaminase (c) or dGTPase (d) when infected by the isolated phage mutants. 
Bacteria expressing dCTP deaminases and dGTPase, as well as a negative controls, were grown on agar plates at room temperature. Tenfold serial 
dilutions of the phage lysate were dropped on the plates. The y axis represents fold defence, calculated as the ratio between PFU ml−1 on control strains 
and on system-expressing strains. Each bar graph represents average of three replicates, with individual data points overlaid. e, Concentrations of dCTP 
in cell lysates extracted from cells expressing dCTP deaminase infected by WT T7 or T7 mutant n.5, at an MOI of 2. The x axis represents minutes 
post-infection, with zero representing non-infected cells. Bar graphs represent the average of three biological replicates, with individual data points 
overlaid. Data for WT T7 is the same as in Fig. 1e and presented here for comparison with mutant. f, dCTP concentration during rifampicin treatment on 
dCTP-deaminase-expressing cells, as measured by LC-MS with synthesized standards. Early-log cells were supplemented with rifampicin (concentration 
100 μg ml−1) and grown for 60 min. Lysates were then extracted, and dCTP concentration was measured. Bar graphs represent the average of three 
biological replicates, with individual data points overlaid. g, dGTP concentration during rifampicin treatment on dGTPase-expressing cells. Rifampicin 
treatment and measurements are as described in panel f. Bar graphs represent the average of three biological replicates (or two replicates at 60 min), with 
individual data points overlaid. h, A model for the mechanism of action of nucleotide-depleting anti-phage systems. Phage infection may be sensed by 
transcription shut-off, which activates a defensive enzyme to deplete a nucleotide, hence preventing further phage DNA replication and propagation.
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with. Previously identified anti-phage toxin–antitoxin systems like 
ToxIN42 and the hok/sok43 killer locus were suggested to be activated 
by transcriptional inhibition as well. In both cases, the regulation 
over the toxin was achieved through an RNA molecule that, upon 
inhibition of transcription, declined in concentration, allowing the 
activity of the toxin. Indeed, a recent paper by Severin et al.17 shows 
that a vibrio-encoded dCTP deaminase is regulated by a cis-acting 
non-coding RNA.

Our data show that nucleotide-depleting enzymes protect 
against various types of phage. The well-characterized phages 
examined in this study, including T4, T5 and T7, are known to 
degrade host DNA early during infection. Such DNA degradation 
would ultimately result in cell death, even if phage replication was 
prevented by the defensive enzymes. It remains to be seen whether 
a nucleotide-depletion mechanism could be reversible in bacteria, 
allowing them to survive post-phage infection, in cases where the 
infecting phage does not degrade host DNA.

It is plausible that additional nucleotide-depletion mecha-
nisms exist as part of the microbial antiviral arsenal. Enzymes 
that degrade all four dNTPs are known to exist in multiple bac-
teria, including Thermus thermophilus, Enterococcus faecalis and 
Pseudomonas aeruginosa20,22,44. These enzymes, which have in vitro 
activities similar to SAMHD1, may also play a role in anti-phage 
defence. Moreover, nucleotide-depleting antiviral proteins may 
have enzymatic reactions other than nucleotide deamination or 
triphosphohydrolysis. We envision that nucleotide methylases, 
ribosyltransferases, or other nucleotide-modifying enzymes will be 
discovered in the future as having antiviral activities via manipula-
tion of the nucleotide pool.

In recent years, multiple components of the human innate 
immune system have been shown to have evolutionary roots in 
bacterial defence against phages. These include the cGAS-STING 
pathway45, the viperin antiviral protein5, the argonaute protein of 
the RNAi machinery46, TIR (Toll-interleukin receptor) domains9 
and gasdermin proteins12. The defensive dGTPases characterized in 
our study show distant structural homology to the SAMHD1 active 
site, but this homology is too limited to explain whether SAMHD1 
is evolutionarily derived from a bacterial dNTPase. Regardless of 
the evolutionary trajectory, we find it remarkable that depletion of 
the nucleotide pool is a successful antiviral defence strategy shared 
by eukaryotes and prokaryotes alike.

Methods
Detection of nucleotide-depleting systems in defence islands. Protein sequences 
of all genes in 38,167 bacterial and archaeal genomes were downloaded from 
the Integrated Microbial Genomes (IMG) database47 in October 2017. These 
proteins were filtered for redundancy using the ‘clusthash’ option of MMseqs2 
(release 2-1c7a89)48, using the ‘-min-seq-id 0.9’ parameter and then clustered 
using the ‘cluster’ option, with default parameters. Each cluster with over ten genes 
was annotated with the most common pfam (protein family), COG (clusters of 
orthologous groups of proteins) and product annotations in the cluster. Defence 
scores were calculated as previously described14, recording the fraction of genes in 
each cluster that have known defence genes in their genomic environment spanning 
ten genes upstream and downstream of the inspected gene. In addition, each cluster 
was processed using Clustal-Omega (v.1.2.4)49 to produce a multiple-sequence 
alignment. The alignment of each cluster was searched using the ‘hhsearch’ option 
of hhsuite (v.3.0.3)50 against the PDB70 and pfamA_v32 databases, using the ‘-p 
10 -loc -z 1 -b 1 -ssm 2 -sc 1 -seq 1 -dbstrlen 10000 -maxres 32000 -M 60 -cpu 1’ 
parameters. Clusters that had HHsearch hits51 both to an N-terminal kinase and a 
C-terminal dCTP deaminase, sized >350 aa (amino acids), and which had a defence 
score >0.33 were included in the family of the dCTP deaminase genes studied here. 
Clusters sized at least ten genes, whose representative sequence48 aligned to the 
representative sequences of selected dCTP deaminase clusters with an e-value <0.01, 
and whose size was >350aa, were also included in the family, adding 30 genes to 
the list in Supplementary Table 1. To generate the list of dGTPase homologues in 
Supplementary Table 2, we aligned the studied Sp-dGTPase protein to all proteins in 
the database using the ‘search’ option of MMseqs2 (release 12-113e3) using the ‘-s 
7 -threads 20 -max-seqs 100000’ parameters, and retained all hits sized >400aa that 
had ≥25% sequence identity to Sp-dGTPase, with alignment overlap of at least 90% 
on both query and subject sequences.

Bacterial strains and phages. E. coli strain MG1655 (ATCC 47076) was grown 
in MMB (LB (Lysogeny broth) + 0.1 mmol l−1 MnCl2 + 5 mmol l−1 MgCl2, with 
or without 0.5% agar) at 37 °C or room temperature (RT). Whenever applicable, 
media were supplemented with ampicillin (100 μg ml−1), to ensure the maintenance 
of plasmids. Infection was performed in MMB media at 37 °C or RT as detailed in 
each section. Phages used in this study are listed in Supplementary Table 3.

Plasmid and strain construction. dCTP deaminase and dGTPase genes used 
in this study were synthesized by Genscript Biotech Corp. and cloned into the 
p15a-origin-containing pSG1 plasmid14 with their native promoters, or into the 
pBad plasmid (Thermofisher, catalogue no. 43001), respectively, as previously 
described5,14. Mutants of the dCTP deaminase gene of E. coli AW1.7 were also 
synthesized and cloned by Genscript. All synthesized sequences are presented in 
Supplementary Table 5. Mutant of the dGTPase gene of Shewanella putrefaciens 
CN-32 was constructed using Q5 Site directed Mutagenesis kit (NEB, catalogue no. 
E0554S) using primers presented in Supplementary Table 6.

Plaque assays. Phages were propagated by picking a single phage plaque into a 
liquid culture of E. coli MG1655 grown at 37 °C to OD600 (optical density) of 0.3 in 
MMB (LB + 0.1 mmol l−1 MnCl2 + 5 mmol l−1 MgCl2) medium until culture collapse. 
The culture was then centrifuged for 10 min at 15,000g and the supernatant was 
filtered through a 0.2 μm filter to get rid of remaining bacteria and bacterial debris. 
Lysate titre was determined using the small-drop plaque assay method as described 
before52.

Plaque assays were performed as previously descried52. Bacteria (E. coli 
MG1655 with pSG1-dCTP deaminase or pBad-dGTPase) and negative control 
(E. coli MG1655 with empty pSG1 or pBad-GFP) were grown overnight at 37 °C. 
Then, 300 μl of the bacterial culture was mixed with 30 ml melted MMB agar 
(LB + 0.1 mmol l−1 MnCl2 + 5 mmol l−1 MgCl2 + 0.5% agar, with or without 0.02% 
arabinose) and left to dry for 1 h at RT. Tenfold serial dilutions in MMB were 
performed for each of the tested phages and 10 μl drops were put on the bacterial 
layer. Plates were incubated overnight at RT. Plaque-forming units (PFUs) were 
determined by counting the derived plaques after overnight incubation.

Liquid culture growth. Overnight cultures of bacteria harbouring the Sp-dGTPase 
gene or a control strain harbouring a pBAD-GFP plasmid were diluted 1:100 
in MMB medium, supplemented with 0.2% arabinose. Cells were incubated at 
37 °C, while shaking at 200 r.p.m. for 1 h. Then 180 μl of the bacterial culture was 
transferred into each well of a 96-well plate and incubated at 37 °C, with shaking 
in a TECAN Infinite200 plate reader. OD600 was followed with measurement every 
10 min using the TECAN iControl v.3.8.2.0 software.

DNA and RNA editing assays. Overnight cultures of bacteria (E. coli MG1655 
harbouring pSG1-dCTP deaminase plasmid) or negative control (E. coli MG1655 
with the pSG1 plasmid) were diluted 1:100 in 60 ml of MMB medium and 
incubated at 37 °C while shaking at 200 r.p.m. until early-log phase (OD600 of 
0.3). Then 10 ml samples of each bacterial culture were taken and centrifuged at 
15,000g for 5 min at 4 °C. The pellets were flash frozen using dry ice and ethanol. 
The remaining cultures were infected by phage T7 at a final MOI of 2. Samples 
of 10 ml were taken throughout infection at 5, 10 and 15 min post-infection, and 
centrifuged and flash frozen as described above.

DNA of all samples was extracted using the QIAGEN DNeasy blood and tissue 
kit (catalogue no. 69504), using the Gram-negative bacteria protocol. Libraries 
were prepared for Illumina sequencing using a modified Nextera protocol as 
previously described53. Following sequencing on an Illumina NextSeq500, the 
sequence reads were aligned to bacterial and phage reference genomes (GenBank 
accession numbers: NC_000913.3, NC_001604.1, respectively) by using NovoAlign 
(Novocraft) v.3.02.02 with default parameters, and mutations were identified 
and quantified by counting each mismatch across the genome. Frequency of 
mismatches was compared between control and dCTP deaminase samples 
throughout the infection time course.

RNA extraction was performed as described previously54. Briefly, frozen 
pellets were re-suspended in 1 ml of RNA protect solution (FastPrep) and lysed by 
Fastprep homogenizer (MP Biomedicals). RNA was extracted using the FastRNA 
PRO blue kit (MP Biomedicals, 116025050) according to the manufacturer’s 
instructions. DNase treatment was performed using the Turbo DNA-free Kit (Life 
Technologies, AM2238). RNA was subsequently fragmented using fragmentation 
buffer (Ambion-Invitrogen, catalogue no. 10136824) at 72 °C for 1 min and 
45 s. The reactions were cleaned by adding ×2.5 SPRI (solid-phase reversible 
immobilization) beads (Agencourt AMPure XP, Beckman-Coulter, A63881). The 
beads were washed twice with 80% ethanol and air dried for 5 min. The RNA was 
eluted using H2O. Ribosomal RNA was depleted by using the Ribo-Zero rRNA 
Removal Kit (epicentre, MRZB12424). Strand-specific RNA-seq was performed 
using the NEBNext Ultra Directional RNA Library Prep Kit (NEB, E7420) with the 
following adjustments: all cleanup stages were performed using ×1.8 SPRI beads, 
and only one cleanup step was performed after the end repair step. Following 
sequencing on an Illumina NextSeq500, sequenced reads were demultiplexed and 
adaptors were trimmed using ‘fastx clipper’ software with default parameters. 
Reads were mapped to the bacterial and phage genomes by using NovoAlign 
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v.3.02.02 with default parameters, discarding reads that were non-uniquely mapped 
as previously described54. Mutations from reference genomes were identified 
and quantified by counting each mismatch across the transcriptome. Frequency 
of mismatches was compared between control and dCTP deaminase samples 
throughout the infection time course.

Cell lysate preparation. Overnight cultures of E. coli harbouring the defensive 
gene and negative controls were diluted 1:100 in 250 ml MMB medium (with or 
without 0.02% arabinose, as described in Supplementary Table 5) and grown at 
37 °C (250 r.p.m.) until reaching OD600 of 0.3. The cultures were infected by WT 
(wild type) T7 phage or mutants where indicated) at a final MOI of 2. Following 
the addition of phage, at 5, 10 and 15 min post-infection (plus an uninfected 
control sample), 50 ml samples were taken and centrifuged for 5 min at 15,000g. 
Pellets were flash frozen using dry ice and ethanol. The pellets were re-suspended 
in 600 µl of 100 mmol l−1 phosphate buffer at pH = 8 and supplemented with 4 mg 
ml−1 lysozyme. The samples were then transferred to a FastPrep Lysing Matrix B 
2 ml tube (MP Biomedicals, catalogue no. 116911100) and lysed using a FastPrep 
bead beater for 40 s at 6 m s−1 (two cycles). Tubes were then centrifuged at 4 °C for 
15 min at 15,000g. Supernatant was transferred to Amicon Ultra-0.5 Centrifugal 
Filter Unit 3 kDa (Merck Millipore, catalogue no. UFC500396) and centrifuged for 
45 min at 4 °C at 12,000g. Filtrate was taken and used for LC-MS analysis.

Quantification of nucleotides by HPLC-MS. Cell lysates were prepared as 
described above and sent for analysis at the Targeted Metabolomics unit of the 
Weizmann institute. Quantification of nucleotides was carried out using an Acquity 
I-class UPLC system coupled to Xevo TQ-S triple quadrupole mass spectrometer 
(both Waters). The UPLC was performed using a SeQuant ZIC-pHILIC column as 
described previously55, with linear gradient decrease of acetonitrile in 20 mmol l−1 
ammonium carbonate for 10 min. Mass spectrometry analysis was performed using 
electrospray interface in positive ionization mode for all metabolites, except for 
uracil-containing metabolites. Metabolites were detected using multiple-reaction 
monitoring (MRM), using argon as the collision gas. Quantification was made 
using a standard curve in the 0–10 μg ml−1 concentration range. 15N5-AMP and 
13C10-ATP (both Sigma) were added to standards and samples as internal standards 
(0.5 µmol l−1 and 100 µmol l−1, respectively). TargetLynx (Waters) was used for data 
analysis.

Isolation of mutant phages. To isolate mutant phages that escape dCTP 
deaminase and dGTPase defence, phages were plated on bacteria expressing each 
defence system using the double-layer plaque assay56. Bacterial cells expressing 
each defence system were grown in MMB (supplemented with 0.2% arabinose 
for the dGTPase) to an OD600 of 0.3. Then, 100 μl of phage lysate was mixed with 
100 μl bacterial cells expressing each defence gene, and left at RT for 10 min. 
Then, 5 ml of pre-melted 0.5% MMB (supplemented with 0.2% arabinose for 
the dGTPase) was added and the mixture was poured onto a bottom layer of 
1.1% MMB. For the dGTPase, the double-layer plates were incubated overnight 
at 37 °C, and single plaques were picked into 90 ml phage buffer. For the dCTP 
deaminase, double-layer plates were incubated overnight at RT and the entire top 
layer was scraped into 2 ml of phage buffer to enrich for phages that escape the 
defence genes. Phages were left for 1 h at RT during which the phages were mixed 
several times by vortex to release them from the agar into the phage buffer. The 
phages were centrifuged at 3,200g for 10 min to get rid of agar and bacterial cells, 
and the supernatant was transferred to a new tube. For both defence genes, to 
test the phages for the ability to escape from the defence system, the small-drop 
plaque assay was used52. A total of 300 ml bacteria harbouring the defensive gene 
or negative control (E. coli MG1655 with plasmid pSG1 or pBad-GFP lacking the 
system) were mixed with 30 ml melted MMB 0.5% agar and left to dry for 1 h at 
RT. Tenfold serial dilutions in phage buffer were performed for the ancestor phages 
(WT phage used for the original double-layer plaque assay) and the phages formed 
on the strain expressing the defence genes; 10 µl drops were put on the bacterial 
layer. The plates were incubated overnight at RT or 37 °C for dCTP deaminase or 
dGTPase, respectively.

Amplification of mutant phages. Isolated phages for which there was decreased 
defence compared with the ancestor phage were further propagated by picking 
a single plaque formed on the defence gene in the small-drop plaque assay into 
a liquid culture of E. coli harbouring the defensive gene, which was grown at 
37 °C in MMB with shaking at 200 r.p.m. to an OD600 of 0.3. The phages were 
incubated with the bacteria at 37 °C with shaking at 200 r.p.m. for 3 h and then an 
additional 9 ml of bacterial culture grown to OD600 of 0.3 in MMB was added and 
incubated for an additional 3 h in the same conditions. For the dGTPase system, 
the growth media was supplemented with 0.2% arabinose throughout the entire 
amplification process. The lysates were then centrifuged at 15,000g for 10 min, 
and the supernatant was filtered through a 0.2 µm filter to get rid of the remaining 
bacteria. Phage titre was then checked using the small-drop plaque assay on the 
negative-control strain as described above.

Sequencing and genome analysis of phage mutants. High-titre phage lysates 
(>107 PFU ml−1) of the ancestor phage and isolated phage mutants were used for 

DNA extraction. An amount of 0.5 ml of phage lysate was treated with DNase-I 
(Merck catalogue no. 11284932001) added to a final concentration of 20 µg ml−1 
and incubated at 37 °C for 1 h to remove bacterial DNA. DNA was extracted 
using the QIAGEN DNeasy blood and tissue kit (catalogue no. 69504) starting 
from a proteinase-K treatment to degrade the phage capsids. Libraries were 
prepared for Illumina sequencing using a modified Nextera protocol as described 
above. Following sequencing on Illumina NextSeq500, reads were aligned to 
the phage reference genome (GenBank accession number: NC_001604.1) and 
mutations compared with the reference genome were identified using Breseq 
(v.0.29.0 or v.0.34.1 for mutant phages that escape dCTP deaminase and dGTPase, 
respectively) with default parameters57. Only mutations that occurred in the 
isolated mutants, but not in the ancestor phage, were considered. Silent mutations 
within protein-coding regions were disregarded as well.

Protein mass spectrometry. For MS of mutant gp5.7 phage, overnight cultures of 
E. coli MG1655 were diluted 1:100 in 250 ml MMB medium and grown at 37 °C 
(250 r.p.m.) until reaching OD600 of 0.3. The cultures were infected by T7 (WT 
phage or T7 mutant n.5) at a final MOI of 2. Following the addition of phage, 
at 15 min post-infection, 50 ml samples were taken and centrifuged for 5 min 
at 15,000g. For protein MS of cells expressing the dGTPase proteins, overnight 
cultures E. coli MG1655 expressing the Sp-dGTPase (as well as control cells 
expressing GFP) were diluted 1:100 in 100 ml MMB medium supplemented with 
0.02% arabinose, and grown at 37 °C (250 r.p.m.) until reaching OD600 of 0.3. 
Quantities of 50 ml samples were taken and centrifuged for 5 min at 15,000g. Pellets 
were flash frozen using dry ice and ethanol. The cell pellets were subjected to lysis 
and in solution tryptic digestion using the S-Trap method (Protifi). The resulting 
peptides were analysed using nanoflow liquid chromatography (nanoAcquity) 
coupled to high resolution, high mass accuracy mass spectrometry (Q-Exactive 
HF). Each sample was analysed on the instrument separately in a random order 
in discovery mode. Raw data were processed with MaxQuant v.1.6.6.0. The data 
were searched with the Andromeda search engine against a database containing 
protein sequences of the WT and mutant protein sequences provided, the E. coli 
K12 and T7 protein databases as downloaded from Uniprot, and a list of common 
lab contaminants. The following modifications were defined for the search: fixed 
modification was cysteine carbamidomethylation; variable modifications were 
methionine oxidation, asparagine and glutamine deamidation. The quantitative 
comparisons were calculated using Perseus v.1.6.0.7. Decoy hits were filtered out.

Rifampicin assay. Overnight cultures of E. coli harbouring the defensive gene and 
negative controls were diluted 1:100 in MMB medium (with or without 0.02% 
arabinose, as described in Supplementary Table 5) and grown at 37 °C (250 r.p.m.) 
until reaching OD600 of 0.3 (for dCTP deaminase-expressing cells) or OD600 of 0.6 
(for dGTPase-expressing cells). The cultures were supplemented with rifampicin 
to a final concentration of 100 µg ml−1. At 60 min post-addition of rifampicin 
(as well as an untreated control), 50 ml samples were taken and centrifuged for 
5 min at 15,000g. Pellets were flash frozen using dry ice and ethanol. The pellets 
were re-suspended in 600 µl of 100 mmol l−1 phosphate buffer at pH = 8 and 
supplemented with 4 mg ml−1 lysozyme. The samples were then transferred to a 
FastPrep Lysing Matrix B 2 ml tube (MP Biomedicals catalogue no. 116911100) 
and lysed using a FastPrep bead beater for 40 s at 6 m s−1 (two cycles). Tubes were 
then centrifuged at 4 °C for 15 m at 15,000g. Supernatant was transferred to the 
Amicon Ultra-0.5 Centrifugal Filter Unit 3 kDa (Merck Millipore catalogue no. 
UFC500396) and centrifuged for 45 min at 4 °C at 12,000g. Filtrate was taken and 
used for LC-MS analysis as described above.

DNA replication assay. Overnight cultures of E. coli harbouring the defensive gene 
and negative controls were diluted 1:100 in MMB medium (with or without 0.02% 
arabinose, as described in Supplementary Table 5) and incubated at 37 °C while 
shaking at 200 r.p.m. until early-log phase (OD600 of 0.3). For dCTP deaminase, 
Sp-dGTPase-expressing cells and their controls’ 10 ml samples of each bacterial 
culture were taken and spiked with 0.5 ml of B. subtilis BEST7003 (stationary phase, 
diluted 1:10), and centrifuged at 15,000g for 5 min at 4 °C. The pellets were flash 
frozen using dry ice and ethanol. The remaining cultures were infected by phage 
T7 at a final MOI of 2. Quantities of 10 ml samples were taken at 10 and 15 min 
post-infection, and spiked with 0.5 ml B. subtilis BEST7003 before centrifugation. 
Samples were flash frozen as described above. For Ec-S-dGTPase-expressing 
cells and their controls, 10 ml samples of each bacterial culture were taken and 
centrifuged at 15,000 x g for 5 min at 4 °C. The pellets were flash frozen using dry 
ice and ethanol. The remaining cultures were infected by phage T7 at a final MOI 
of 2. Then 10 ml samples were taken at 10 and 15 min post-infection. Samples were 
flash frozen as described above.

DNA of all samples was extracted using the QIAGEN DNeasy blood and 
tissue kit (catalogue no. 69504), using the Gram-negative bacteria protocol. 
Libraries were prepared for Illumina sequencing using a modified Nextera 
protocol as previously described53. For Ec-S-dGTPase-expressing cells and 
their controls, 20 ng of Salinispora pacifica 45547 purified DNA was spiked in, 
following DNA extraction for normalization purposes. Following sequencing 
on an Illumina NextSeq500 the sequence reads were aligned to E. coli MG1655, 
B. subtilis BEST7003 and phage reference genomes (GenBank accession numbers: 
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NC_000913.3, AP012496 and NC_001604.1, respectively) by using NovoAlign 
v.3.02.02 with default parameters. The number of reads mapped to E. coli and T7 
genomes were normalized to the number of spike reads mapped to B. subtilis or  
S. pacifica 45547 genome, as mentioned above.

Phylogenetic analysis. To generate the phylogenetic trees in Fig. 4 the ‘clusthash’ 
option of MMseqs2 (ref. 48; release 6-f5a1c) was used to remove protein 
redundancies (using the ‘–min-seq-id 0.9’ parameter). Sequences of the defensive 
genes were aligned using clustal-omega v.1.2.4 with default parameters58. FastTree 
was used to generate a tree from the multiple-sequence alignment using default 
parameters59. iTOL was used for tree visualization60. For dCTP deaminase, 11 
sequences of dcd housekeeping proteins were added (IMG ID: 2626483291, 
2647195735, 2630603045, 2650338752, 2687266570, 2686871019, 2513211955, 
2506703112, 2659712595, 2687072778, 2671786882) and used as an outgroup. 
For dGTPase, six sequences of dgt housekeeping proteins were added (IMG ID: 
2875679221, 2908557952, 2908562675, 2909293708, 2913142694, 2913158190) and 
used as an outgroup.

Statistics and reproducibility. No statistical method was used to pre-determine 
sample size. Experiments were performed in triplicates unless stated otherwise. 
Randomization was used for sample injection order in MS measurements. No data 
were excluded from the analyses unless stated otherwise in figure legends.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Data that support the findings of this study are available in the Article and its 
Extended Data. Gene accessions appear in the Methods section of the paper. DNA 
and RNA sequencing data used in Extended Data Fig. 2 can be found in the European 
Nucleotide Archive (ENA) ID: ERA11772567. Source data are provided with this 
paper. Additional data are available from the corresponding authors upon request.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | dCTP deaminases protect against phage infection. (A) Superposition of the C-terminal region (residues 351-550) of the 
AlphaFold-predicted structure of E. coli AW1.7 dCTP deaminase (turquoise), aligned with Streptococcus mutans cytosine deaminase (PDB: 2hvw) (grey). 
Zn2+ ions are depicted as blue spheres. Alignment was performed by PDBeFOLD61, with a Q score = 0.33, Z score = 9.0 and RMSD = 2.72 Å between the 
two structures. (B) Representative instances of cytidine deaminase genes (in turquoise) and their genomic neighborhoods. Genes known to be involved in 
defense are shown in yellow. RM, restriction modification; TAs, toxin-antitoxin systems; Septu and Hachiman are recently described defense systems14. 
The bacterial species and the accession of the relevant genomic scaffold in the Integrated Microbial Genomes (IMG) database47 are indicated on the 
left. (C) Bacteria expressing dCTP deaminases from E. coli U09 or E. coli AW1.7, as well as a negative control that contains an empty vector, were grown on 
agar plates in room temperature. Tenfold serial dilutions of the phage lysate were dropped on the plates. Data represent plaque-forming units per milliliter 
for ten phages tested in this study. Each bar graph represents average of three replicates, with individual data points overlaid. (D) Growth curves of cells 
expressing E. coli AW1.7 dCTP deaminase (turquoise), and control cells (grey). Results of three replicates are presented as individual curves.
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Extended Data Fig. 2 | No evidence for editing of genome and transcriptome by the dCTP deaminase. Cells expressing the deaminase from E. coli AW1.7 
were infected by phage T7 at a multiplicity of infection (MOI) of 2 at 37 °C. Total DNA and total RNA were extracted after 15 minutes from the onset of 
infection, and were subjected to DNA-seq and RNA-seq, respectively. Panels A and B show the abundance of DNA reads with specific mismatches for 
reads aligned to the bacterial genome (A) or the phage genome (B). Panels C and D show the abundance of RNA-seq reads with specific mismatches for 
reads aligned to the bacterial genome (C) or the phage genome (D).
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Extended Data Fig. 3 | Cellular nucleotides during phage infection. (A-H) Concentrations of various nucleotides in cell lysates extracted from T7-infected 
cells, as measured by LC-MS with synthesized standards. X axis represents minutes post infection, with zero representing non-infected cells. Cells were 
infected by phage T7 at an MOI of 2. Each panel shows data acquired for dCTP deaminase-expressing cells or for control cells that contain an empty 
vector. Bar graphs represent average of three biological replicates, with individual data points overlaid.
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Extended Data Fig. 4 | Mutated dCTP deaminase does not elicit dCTP depletion. Relative abundance of dCTP in cell lysates extracted from T7-infected 
cells, as measured by LC-MS. X axis represents minutes post infection, with zero representing non-infected cells. Y axis represents the area under the 
peak for dCTP, in arbitrary units (AU). Cells were infected by T7 at an MOI of 2. Presented are data acquired for cells expressing the dCTP deaminase from 
E. coli AW1.7, control cells that contain an empty vector, or cell expressing mutated forms of the dCTP deaminase. Bar graphs represent average of two 
biological replicates, with individual data points overlaid.
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Extended Data Fig. 5 | A family of dGTPases in defense islands. (A) Representative instances of dGTPase genes (in orange) and their genomic 
neighborhoods. Colors and annotations are as in Supplementary Fig. S1A. M, S and R designations within type I RM operon genes represent the methylase, 
specificity, and restriction subunits, respectively. (B) Superposition of the AlphaFold predicted structural model of Sp-dGTPase (orange) aligned with the 
N-terminus of the human SAMHD1 (PDB: 4bzb, chain D) (grey). Mg2+ ion is depicted as a yellow sphere. SAMHD1 catalytic site is depicted with grey 
sticks, and is bound to the dGTP ligand. Alignment was performed by PDBeFOLD, with a Q score = 0.11, Z score = 5.5 and RMSD = 2.89 Å between the 
predicted dGTPase AlfaFold2 model and the human SAMHD1. The presented structural alignment includes residues 23–161 & 248–452 from the dGTPase 
AlphaFold model, aligned to residues 129–275 & 299–439 of the human SAMHD1 structure.
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Extended Data Fig. 6 | dGTPases protect against phage infection. (A) E. coli MG1655 cells expressing dGTPases cloned under an arabinose-inducible 
promoter from several species (Ec, E. coli G177; Ms, Mesorhizobium sp. URHA0056; Pl, Pseudoalteromonas luteoviolacea DSM6061; Sp, Shewanella 
putrefaciens CN-32), as well as a negative control, were grown on agar plates in room temperature in the presence of 0.2% arabinose. Tenfold serial 
dilutions of the phage lysate were dropped on the plates. Data represent plaque-forming units per milliliter for phages tested in this study. Each bar 
graph represents average of three replicates, with individual data points overlaid. (B) Growth curves of cells over-expressing the Sp-dGTPase gene from 
Shewanella putrefaciens CN-32 (orange) and control cells (grey) following 0.2% arabinose induction. Results of four replicates are presented as individual 
curves. Expression of the Sp-dGTPase protein was verified via protein mass spectrometry. (C-G) Concentrations of deoxynucleotides in cell lysates 
extracted from T7-infected cells, as measured by LC-MS with synthesized standards. X axis represents minutes post infection, with zero representing 
non-infected cells. Cells were infected by phage T7 at an MOI of 2. Each panel shows data acquired for dGTPase-expressing cells or for control cells that 
express GFP. Bar graphs represent average of three biological replicates (or two replicates for the dGTPase samples at t = 15 mins), with individual data 
points overlaid.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | dGTPases cloned under native promoters protect against phage infection. (A) E. coli MG1655 cells containing dGTPases cloned, 
together with their native promoters, from two different E. coli strains (Ec S, E. coli STEC 2595; Ec 1303, E. coli 1303), as well as a negative control, were 
grown on agar plates in room temperature. Tenfold serial dilutions of the phage lysate were dropped on the plates. Data represent plaque-forming units 
per milliliter for tested phages. Each bar graph represents average of three replicates, with individual data points overlaid. (B) T7 defense by dGTPases 
expressed from native promoters. Shown are ten-fold serial dilution plaque assays, comparing the plating efficiency of T7 phage on bacteria that express 
the Ec STEC 2529, Ec 1303 or a control strain that lacks the gene. Images are representative of three replicates. (C) Growth curves of cells harboring the Ec 
S - dGTPase gene from E. coli STEC 2595 (orange) and control cells with an empty plasmid (grey). Results of three replicates are presented as individual 
curves. (D-J) Concentrations of deoxynucleotides in cell lysates extracted from T7-infected cells, as measured by LC-MS with synthesized standards. 
X axis represents minutes post infection, with zero representing non-infected cells. Cells were infected by phage T7 at an MOI of 2. Each panel shows 
data acquired for cells expressing the Ec S dGTPase or for control cells containing an empty pSG1 vector. Bar graphs represent average of three biological 
replicates, with individual data points overlaid. (K) Effect of native dGTPase expression on T7 DNA replication throughout infection. Cells were infected by 
phage T7 at an MOI of 2 at 37 °C. Total DNA was extracted from each sample and DNA was Illumina-sequenced. Each panel shows data acquired for Ec-
S-expressing cells or for control cells that contain an empty vector. Y axis represents phage DNA sequence reads normalized to reads from spiked-in DNA. 
Bar graphs represent the average of three biological replicates, with individual data points overlaid.
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Extended Data Fig. 8 | Distant homologs of Sp-dGTPase protect against phage infection. (A) Bacteria expressing dGTPase cloned from multiple 
species (Yersinia enterocolitica YE38/03, Desulfovibrio halophilus DSM 5663, Yersinia enterocolitica E701, Escherichia coli HMLN-1, Glaesserella parasuis 
SC1401, Alteromonas sp. Mac1, Shewanella sp. Sh95, Vibrio cholerae YB2A05, Haemophilus sp. C1), as well as a negative control, were grown on agar 
plates in room temperature in the presence of 0.2% arabinose. Tenfold serial dilutions of the phage lysate were dropped on the plates. Data represent 
plaque-forming units per milliliter for tested phages. Each bar graph represents average of three replicates, with individual data points overlaid. (B) A 
summary of the defense results from the presented bar graphs.
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Extended Data Fig. 9 | Mutation verification of Gp5.7 and rifampicin treatment. (A) Verification of the absence of Gp5.7 in T7 mutant n. 5 using 
mass spectrometry. Peptide fragments of Gp5.7 identified by protein mass spectrometry of cells 15 minutes post infection by WT T7 and T7 mutant 
n.5 (MOI = 2). Multiple peptides of Gp5.7 are observed in the WT T7, but no peptides are detected in the mutant T7, supporting that the mutant does 
not express Gp5.7. Peptide fragments are as follows: peptide 1: GHISCLTTSGR, peptide 2: NGGAWEITASGTR, peptide 3: NNASLVAEAASR, peptide 4: 
TFQSNYVR. Bar graphs represent average of two biological replicates, with individual data points overlaid. (B) As control to the measurements in panel 
A, shown are peptide fragments of the T7 RNA polymerase identified by protein mass spectrometry in cells 15 minutes post infection. The T7 RNA 
polymerase is readily identified in both WT and mutant phages. Peptide 1: EQLALEHESYEMGEAR, peptide 2: MNTINIAK, peptide 3: SVMTLAYGSK, 
peptide 4: VLAVANVITK. Bar graphs represent average of two biological replicates, with individual data points overlaid. (C-H) Concentrations of dNTP 
nucleotides in cell lysates extracted from rifampicin-treated cells, as measured by LC-MS with synthesized standards. X axis represents minutes post 
treatment, with zero representing non-treated cells. (C-E) Each panel shows data acquired for dCTP deaminase-expressing cells or for control cells that 
contain an empty vector. Bar graphs represent average of three biological replicates, with individual data points overlaid. (F-H) Each panel shows data 
acquired for dGTPase-expressing cells or for control cells that express GFP. Bar graphs represent average of three biological replicates, with individual data 
points overlaid. In panels D-F, 60 minute data represent the average of two biological replicates.
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