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Optimality and sub-optimality in a bacterial
growth law
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Organisms adjust their gene expression to improve fitness in diverse environments. But

finding the optimal expression in each environment presents a challenge. We ask how good

cells are at finding such optima by studying the control of carbon catabolism genes in

Escherichia coli. Bacteria show a growth law: growth rate on different carbon sources declines

linearly with the steady-state expression of carbon catabolic genes. We experimentally

modulate gene expression to ask if this growth law always maximizes growth rate, as has

been suggested by theory. We find that the growth law is optimal in many conditions,

including a range of perturbations to lactose uptake, but provides sub-optimal growth on

several other carbon sources. Combining theory and experiment, we genetically re-engineer

E. coli to make sub-optimal conditions into optimal ones and vice versa. We conclude that the

carbon growth law is not always optimal, but represents a practical heuristic that often works

but sometimes fails.
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T
o maximize their fitness, organisms need to make
appropriate choices to best use their limited resources.
But organisms face diverse environments, and in each

environment the optimal resource allocation is different. This
raises the challenge of finding the optimal response in the large
number of possible environments that organisms encounter.
Studies of decision making in humans and animals reveal
that they make heuristic calculations, known as rules of
thumb, that often work but sometimes fail1–3. Cells also face
different environments and need to allocate their resources
appropriately4,5. We ask whether cells also use practical heuri-
stics, or—as is often assumed in analysis of cell circuits4,6,7—
evolve accurate regulatory mechanisms that allow them to be
optimal under all conditions. To explore this question, we use
resource allocation in the bacterium E. coli as a model system.

E. coli partitions its resources according to simple linear rules
as a function of growth rate, called growth laws4,8,9. The
expression of most proteins for biomass synthesis, such as
ribosomes, increases linearly with growth rate8. Conversely, the
expression of most enzymes for nutrient uptake and catabolism
decreases approximately linearly with growth rate4. At least two
explanations are possible for these growth laws. First, the laws can
represent the optimal solutions, as suggested by several elegant
models describing cellular resource allocation4–7,10–12. One
prediction from this picture is that the growth rate is optimal
under all conditions that respect the growth laws and that
sub-optimal resource allocation only occurs, when cells deviate
from these laws. Previous studies identified conditions of
sub-optimal growth in E. coli, but did not address this
sub-optimality in the context of growth laws13–15 or focused
specifically on conditions that do not follow the growth law16, so
that it remains unclear whether growth laws maximize the growth
rate. A second possible explanation for growth laws is that they
are practical heuristics: the growth law line is determined by
cellular regulation and not by optimality constraints. In this
scenario, regulation is expected to maximize the growth rate in
many conditions, but to lead to sub-optimal growth in other
conditions.

Here we experimentally test the optimality of the carbon
growth law—the linear relation between growth rate and resource
allocation to carbon catabolism. We find that the carbon growth
law provides optimal resource allocation under many conditions,
including a wide range of perturbations to lactose uptake.
However, on several other carbon sources the growth rate can
be improved by experimentally forcing cells to break the growth
law. We conclude that linear growth laws are not always optimal
for rapid growth. We suggest that growth laws emerge from a
transcriptional feedback mechanism that encodes optimal gene
control under some conditions, but that is sub-optimal for rapid
growth under other conditions.

Results
Open-loop control tests optimality of the carbon growth law.
To test the optimality of a growth law, we chose the well-studied
carbon catabolism system, controlled by the regulatory molecule
cyclic AMP (cAMP). cAMP activates the transcription factor
CRP, which controls the expression of hundreds of proteins,
including many carbon catabolic enzymes17 and is also involved
in coordinating nitrogen and carbon metabolism4,18. High
internal carbon concentrations negatively affect cAMP concentra-
tions forming a negative feedback circuit4,19 (Fig. 1a). We
determined growth rate and the activity of CRP (denoted CRP*)
using a green fluorescent protein (GFP) reporter at high temporal
resolution (9 min) throughout exponential growth in a robotic
multi-well plate reader20 with day–day errors of 4% for growth

rate and 12% for CRP* (Methods; Supplementary Fig. 1).
Measurements on 12 different carbon sources (using saturating
nitrogen concentration of 18.5 mM NH4Cl) confirmed the growth
law of wild-type E. coli—an approximately linear relation between
allocation to carbon catabolism (CRP*) and growth rate (Fig. 1c;
Supplementary Fig. 2a). This linear growth law is also called the
C-line4, where C stands for carbon, and in the present context
also for closed-loop control.

To evaluate whether the C-line maximizes the growth rate, we
build on previous work employing titration of metabolic gene
expression21–23. We broke the feedback loop that determines the
C-line by adding exogenous cAMP to a strain that cannot
endogenously produce it (a strain deleted for the enzymes cyaA
and cpdA that synthesize and degrade cAMP24). This design
creates an open-loop system, where we modulated CRP* by
externally supplying cAMP and measured the resulting growth
rate in a given carbon source (Fig. 1b). We call this relation the
O-curve, where O stands for open loop. Optimal control means
that the endogenous growth rate matches the maximum of the
O-curve.

The growth law maximizes the growth rate on lactose. We
begin with studying growth on lactose, probably the best
understood carbon system25. The O-curve for growth on lactose
is inverse-U shaped, with a maximum at intermediate CRP*
(Fig. 1d). This inverse-U shape is due to growth limitation by
carbon uptake at low CRP* and due to growth limitation by
lack of ribosomes26–28 and enzyme toxicity29 at high CRP*.
Importantly, the maximum of the O-curve was within 3% of the
endogenous growth rate and close to the endogenous control
point on the C-line (Fig. 1c,d; Supplementary Table 1, O-curve
maximum and s.e. evaluated by parabolic fit to 3 day–day
repeats). We conclude that the growth law is optimal for lactose
within the precision of the measurements.

To see how robust the computation of optimal resource
allocation by the cells is, we perturbed lactose uptake by adding
various amounts of a competitive inhibitor of lactose import—the
lactose permease LacY inhibitor thio-di-glucoside. The inhibitor
reduced the growth rate, and CRP* increased proportionally in
accordance with the C-line (Fig. 1e). Importantly, the O-curves
also shifted so that their maxima corresponded with the C-line
and with the endogenous control (Fig. 1e–g). This correspon-
dence shows that cells responded nearly optimally to the carbon
limitation caused by the LacY inhibitor. Similarly, over-expres-
sion of lactose metabolic genes by deletion of the lac repressor
(lacI) was matched by a shift of the O-curve along the C-line that
yielded nearly optimal growth response (Supplementary Fig. 2b–
d). We conclude that over a large range of lactose uptake rates
and perturbations, E. coli follows the growth law and tunes its
carbon catabolism allocation to achieve the fastest possible
growth rate. Such control makes E. coli much less sensitive to
inhibition of lactose uptake than strains where the control of
CRP* is abolished (as assayed using a cAMP-independent CRP
mutant in Supplementary Fig. 3).

The growth law is not optimal on several carbon sources. To
test whether the growth law always maximizes the growth rate, we
measured the O-curves for seven additional carbon sources, all of
which obeyed the growth law (Fig. 1c; Supplementary Fig. 2a).
The O-curves indicate nearly optimal control for four of these
carbon sources: maltose, arabinose, sorbitol and glucose (O-curve
maximum matches endogenous growth rate to better than 5%;
Fig. 2a; Supplementary Table 1).

However, the O-curves indicated that E. coli shows non-
optimal growth rate on pyruvate, glycerol or galactose (Fig. 2b),
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such that the growth rate could be improved by 20–100% by
reducing CRP* (Fig. 2b; Supplementary Table 1). In the case
of glycerol, our findings are consistent with evolutionary
experiments that show that E. coli can rapidly evolve on glycerol
to reach a faster growth rate with reduced cAMP concen-
trations13,15,30.

We conclude that the C-line is not the union of all resource
distributions maximizing the growth rate. Instead, the C-line
appears to be optimal for growth in many conditions, but
sub-optimal for growth in other conditions.

A mathematical model predicts when the growth law is optimal.
We next sought to understand what makes the growth law fail or
succeed in a given condition. To address this question, we analyse
a simple model for carbon resource allocation. We then experi-
mentally test the model predictions on optimality by engineering
circuits that break or restore optimal control.

We build on detailed modelling of the cAMP system (reviewed
in ref. 31) to arrive at a minimal model that is analytically
solvable. Carbon catabolites are represented by the variable x that
stands for the precursors for biomass synthesis (Fig. 3a;
Supplementary Note 1 for complete model description). The
growth rate m is proportional to the rate of biomass synthesis
carried out by ribosomes R, with Michaelis–Menten dependence
on x: m ¼ gR x

xþ k2
. At steady state ( _x ¼ 0) the import rate of x is

equal to the removal rate of x by biomass production, such that:

bP Cð Þ k1

k1þ x
¼ gR

x
xþ k2

;

with carbon import rate b that depends on the carbon source,
which is reduced by allosteric inhibition of pumps32 with half-
way point k1. The expression of the enzymes for uptake of the
carbon source is a function P(C) of the carbon sector C, where
C is defined as the fraction of the proteome regulated by CRP.
The level of most uptake enzymes is proportional to C
(refs 33–35), such that P(C)¼C. Finally, since total protein
concentration is approximately constant, we can normalize out all
other proteins whose concentration does not change under the
present conditions, and set RþC¼ 1 (Supplementary Note 1)4,27.

The model allows calculation of O-curves as the steady-state
growth rate m as a function of C (Supplementary Note 2). The
modelled O-curves fit the measured O-curves well (R2¼ 0.94;
Fig. 1g; Supplementary Fig. 4a).

Cells determine the size of the C-sector using a feedback loop
in which intracellular carbon x inhibits cAMP4,19. We describe
this by a Michaelis–Menten repression function between 0 and 1,
where C¼ 1 means that all cellular resources go to carbon uptake:

C ¼ f xð Þ ¼ kf

kf þ x

The regulatory constraint given by f(x) defines the modelled
C-line (Fig. 3b; Supplementary Note 4). We find that the
modelled C-line, which resembles a straight line with some
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Figure 1 | Carbon growth law maximizes the growth rate in lactose.

(a) Endogenous control of CRP activity employs a negative feedback loop.

Carbon catabolic enzymes, such as carbon pumps, are controlled by the

transcription factor CRP, which is activated by the signalling molecule

cAMP. cAMP synthesis is repressed by internal carbon. (b) To evaluate

optimality, we employ an open-loop control of CRP activity. A DcyaA DcpdA

mutant is used to break feedback control on cAMP signalling, so that CRP

activity (denoted CRP*) can be modulated by adding different

concentrations of exogenous cAMP to the medium. (c) Growth rate and

CRP activity of wild-type E. coli on 12 different carbon sources decreases

linearly with CRP*, defining the C-line. The red circle marks lactose. Black

dotted line: best fit line, grey line: model (Fig. 3). Ribose deviates from the

line, possibly due to a role of ribose in control of nucleic acid synthesis, and

this point was excluded for fits of the C-line (Supplementary Note 5).

(d) The O-curve is the relation between growth and CRP activity in the

open-loop system. The O-curve on lactose shows a maximum that matches

the values shown by the endogenous circuit. Green square: O-curve

maximum, interpolated from a parabolic fit to the measurement points

flanking the point with maximal growth rate. Red circle: endogenous control

point (the growth rate and CRP activity of the wild-type strain on the C-line,

as in c). (e) Endogenous system on lactose stays on the C-line even when

perturbed by the competitive lactose permease inhibitor thio-di-glucoside

(TDG). TDG concentrations were 0, 0.25, 0.5 and 1 mM. (f) The O-curve

maximum (green square) under TDG perturbation remains close to the

endogenous control (red circles). (g) Model (solid lines) provides good fits

to the O-curves (R2¼0.94, P¼ 10� 19; see Supplementary Fig. 4a). Error

bars are s.e. of the mean from 3 day–day repeats.
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curvature at high C, fits the experimental C-line data well
(R2¼ 0.97; Fig. 1c; Supplementary Fig. 4b).

The model allows us to ask when the growth law (C-line)
maximizes the growth rate. We call CRP control robustly optimal
if for all environmental conditions (represented by b values) the
C-line intersects the O-curve at its maximum (Fig. 3b), as is the
case for lactose (Fig. 1).

It can be shown that control is robustly optimal if P(C)¼C and
k1¼ k2¼ kf (Methods). In other words, robust optimality occurs
when the expression of import enzymes is proportional to CRP
activity, as occurs in the lactose system (Supplementary Fig. 2;
ref. 33) and when the half-way points of ribosome saturation,
allosteric regulation and cAMP inhibition by x are matched.
Best-fit parameters for lactose are close to this matching
(Supplementary Fig. 5). We conclude that cells are able in
principle to achieve optimal growth under all conditions in our
model by measuring internal carbon concentration x and using
an appropriate control function f(x).

Optimal growth requires proportional control of carbon pumps.
The model also suggests ways to abolish optimality. One way is to
change the control function f(x) (Fig. 3c), which can be done by
modulating levels of the phosphodiesterase cpdA that degrades
cAMP. Deletion of cpdA indeed leads to sub-maximal growth rate
(Supplementary Fig. 6).

Another way to abolish optimality is to make the relationship
between a given sugar system expression and CRP* not strictly
proportional, that is P(C)aC. Many sugar systems have
a proportional relationship P(C)¼C (ref. 33), such that without
CRP* (C¼ 0), no growth can be supported. However, some sugar
systems, such as glycerol and pyruvate can support growth
without cAMP (Supplementary Fig. 7a), so that P(0)¼C0. This
occurs when the input function has a non-zero y intercept, for
example P(C)¼CþC0. In the model, such a non-zero y intercept
of P(C) shifts the maximum of the O-curve away from the C-line

towards lower CRP* levels, leading to sub-optimal control
(Fig. 3d; Supplementary Figure 7b), similar to that experimentally
observed (Fig. 2b).

To test experimentally if a y intercept of catabolic gene
expression is sufficient to cause sub-optimal control we employed
the naturally optimal sorbitol system. We expressed the sorbitol-
specific transporter and catabolic enzymes (srlAEBD) under the
inducible Tet promoter, leaving the endogenous srlAEBD genes
intact. CRP* was nearly optimal when the Tet promoter was
repressed, similar to the wild-type strain (Fig. 4a, middle).
However, when we induced the Tet promoter by adding the
inducer aTc the growth rate maximum increased and shifted to
lower CRP* (Fig. 4a, right). This behaviour is quantitatively
consistent with model predictions (Fig. 3d; Supplementary
Fig. 8a; Supplementary Table 2), and turns the optimal sorbitol
system into a sub-optimal design similar to glycerol and pyruvate
(compare Fig. 4a and Fig. 2b).

Sub-optimality for non-monotonically controlled carbon pumps.
According to the model, optimality also breaks down if catabolic
genes are under control of a non-monotonic input function, such
as P(C)¼C/(1þ (C/Cmax)2) (Fig. 3e). Such a non-monotonic
input function was observed for the galactose catabolism operon
galETK and for the galactose transporter galP20. Their expression
peaks at intermediate cAMP concentrations due to regulation
by an incoherent feed-forward loop (I-FFL). To test if the
non-monotonic input function explains sub-optimality, we broke
the I-FFL by deleting the galS repressor, leading to a monotonic
input function for galETK and galP36. As predicted by the model,
the galS mutation made CRP* control optimal in galactose
(Fig. 4b; Supplementary Fig. 8b; Supplementary Table 2), thus
turning a non-optimal system into an optimal one.

Sub-optimality of ppGpp synthesis. We finally asked whether
the control of another regulatory molecule, ppGpp, might also be
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sub-optimal in some conditions and optimal in others. ppGpp is
involved in the bacterial response to environmental change37,
including the linear scaling of the ribosomal proteomic fraction

with the growth rate under different growth conditions8,27,38–40.
To test if endogenous ppGpp concentrations always maximize the
growth rate we mutated one of the ppGpp synthetases, relA, and
tested growth under the eight carbon sources studied above. We
find that deletion of relA increases the growth rate in pyruvate,
galactose and glycerol, indicating that ppGpp concentration is not
always tuned to maximize growth rate. Unlike cAMP, ppGpp
concentration was also sub-optimal on lactose (Supplementary
Fig. 9).

Discussion
To ask if and how cells compute optimal gene expression in
diverse environments, we analysed how E. coli controls CRP
activity on different carbon sources. Regulation of CRP activity
is known to involve feedback inhibition by intracellular
carbon4,19,31. We show here that this feedback mechanism
optimally adjusts CRP activity for growth under many
conditions, including several carbon sources and a wide range
of perturbations to lactose uptake (Fig. 1; Supplementary Fig. 2).
However, on several other carbon sources (that is, galactose,
pyruvate and glycerol) the same feedback leads to sub-maximal
growth rate (Fig. 2b).

Using a simple mathematical model, we show that robust
optimal control of resource allocation requires proportionality
between CRP activity and the expression of carbon catabolic
enzymes (Fig. 3). We verified this prediction experimentally by
genetic re-engineering of carbon gene control circuits. Introduc-
tion of a y intercept in sorbitol gene expression, which abolishes
proportionality, turned an optimal system into a sub-optimal one
(Fig. 4a), and removing the non-monotonicity of galactose genes
turned the sub-optimal control of CRP on galactose to be optimal
(Fig. 4b).

Why did E. coli evolve non-proportional gene control functions
that lead to sub-optimal allocation of bacterial resources (Fig. 2)?
One possibility relates to evolutionary tradeoffs41: non-
proportional control circuits can be beneficial under conditions
other than the ones studied here. The I-FFL in the galactose
system, for example, accelerates the activation of galactose
genes42, which may be beneficial when conditions change
frequently. A y intercept in pyruvate uptake genes allows for
co-consumption of pyruvate together with carbon sources that
cause low CRP activity, such as lactose, thereby increasing growth
rate43. Indeed, we found that addition of pyruvate, but not of
sorbitol, increases the growth rate on lactose and arabinose
(Supplementary Fig. 10)43. More complex circuitry could
presumably make the control of galactose and pyruvate genes
optimal under a wider range of conditions. But such higher
complexity would require additional regulators, which would
incur a fitness cost28,44.

The present approach may be used to search for other cases of
sub-optimal control in biological regulatory circuits that need to
respond to multiple inputs. Understanding such sub-optimality
may reveal new aspects of the control mechanisms and suggest
ways to usefully manipulate the behaviour of cells.

Methods
Strains and plasmids. All experiments were done in MG1655 (CGSC #8003)
background. Sub-optimality in pyruvate, glycerol and galactose was not due
to a deletion around the fnr gene reported for this clone of MG1655 (ref. 45), as
MG1655 (CGSC #6300), which is fnrþ , showed a similar degree of sub-optimality
on these carbon sources (Supplementary Fig. 11). All deletion alleles were
transduced using P1 phage from the Keio knockout collection46, except the lacI
mutation, which was made by homologous recombination47. The kanamycin
resistance gene was removed using pCP20 (ref. 47). The srlAEBD operon was
amplified from genomic DNA using primers oBT166 and oBT168 and cloned into
HindIII/NcoI sites of pZA31 (ref. 48), which was amplified by PCR using primers
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Figure 3 | Model suggests conditions where growth is optimal or sub-

optimal. (a) A schematic representation of the model. Internal carbon x is

imported and catabolized by carbon sector C at maximal rate b. x inhibits

carbon uptake with half-inhibition constant k1. b is high for good carbon

sources and low for poor carbon sources. x is consumed by the biomass

production sector R. Given limited resources R¼ 1�C. The maximal

consumption rate of x is g and R is half-saturated with x at k2. Since x

inhibits cAMP which activates CRP which activates C-sector promoters,

carbon catabolite repression is modelled by repression of C-sector genes by

x with half-inhibition constant kf. The input function of the limiting enzyme

for carbon uptake is given by P(C) with P(C)¼C for most genes, due to

proportional control of CRP targets. (b) Optimal control in the model is

guaranteed when k1¼ k2¼ kf and P(C)¼C (Methods): the maxima of

O-curves lie on the C-line (dotted black line). The maximum of the O-curve

increases with b. (c) Control is sub-optimal when the transcriptional

feedback strength is changed (modelled by kf). This prediction agrees with

experimental tests in Supplementary Fig. 6. (d) Control is sub-optimal for

carbon uptake/catabolism genes that have non-proportional input functions

(P(C)aC), such as genes with non-zero basal, CRP-independent expression

(P Cð Þ ¼ CþC0, inset). Such a y intercept is observed for glycerol and

pyruvate (Fig. 2b) that have sub-optimal control. The model predicts that

the magnitude of sub-optimal control diminishes with increasing b,

explaining why sub-optimal control is not apparent on glucose—which

also has a non-zero intercept—within the experimental error (Fig. 2a).

(e) Control is sub-optimal also for carbon uptake/catabolism genes

with non-monotonic input functions (such as P Cð Þ ¼ C
1þð C

Cmax
Þ2, inset). Sub-

optimal control of CRP* on galactose is due to non-monotonic input

functions of galETK and galP genes (Figs 2b and 4b). Model parameters:

g¼ 1, k1/k2¼ kf/k2¼ 1 (except for (panel c), where kf/k2¼4). b¼ 200, 20,

5, 1; C0¼0.3; Cmax¼0.15.
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oBT202 and oBT203. Strains, plasmids and primers used in this study are listed in
Supplementary Tables 3–5.

Growth conditions. All experiments were done in M9 minimal medium
(42 mM Na2HPO4, 22 mM KH2PO4, 8.5 mM NaCl, 18.5 mM NH4Cl, 2 mM
MgSO4, 0.1 mM CaCl2, no uracil or thiamine) supplemented with appropriate
antibiotics. The concentration of all carbon sources was 0.2% (w/v), except glycerol
which was 0.2% (v/v) and pyruvate in Supplementary Fig. 10a, which was 0.1%
(w/v). The nutrient concentrations ensure saturation of nitrogen and carbon49,
ranging between 4 mM (maltotriose) and 27 mM (glycerol). For O-curve and
C-line measurements wild-type and cyaA cpdA mutant cells were inoculated in
M9þ glucose from frozen glycerol stocks and pre-cultured by incubation overnight
in the absence of cAMP (16–18 hours). This overnight culture was diluted 1:500
into 150 ml M9 medium containing one of the studied carbon sources and the
indicated concentrations of other constituents (for example, cAMP) and the
medium was overlaid with 100ml Mineral oil (Sigma). GFP and optical density
(OD) were recorded every 9 min in a robotic multi-well fluorimeter (Evoware,
Tecan Infinite F200)20. Experiments were carried out in parallel on three different
reporter strains: a CRP reporter, a GFP reporter of a constitutive s70 promoter
and a promoter-less GFP reporter used for background subtraction20. cAMP
concentrations used for O-curves were 10, 5, 2.5, 1.25, 0.625, 0.31, 0.15, 0.078, 0.039
or 0 mM cAMP. Thio-di-glucoside (Santa Cruz sc-285346) concentrations were 1,
0.5 and 0.25 mM. For sorbitol y intercept experiments (Fig. 4a) the medium was
supplemented with 0.25 mM isopropyl-b-D-thiogalactoside to alleviate the effects of
high expression of lacI in this strain (due to transgenic lacIq), which unexpectedly
affected the activity of the CRP reporter. The Tet promoter was induced by
125 ng ml� 1 anhydrotetracycline. The time interval between OD measurements
for the comparison of wild-type and relA mutant (Supplementary Fig. 9) was only
4.5 min because GFP was not measured in this experiment. Cultures for the
comparison of wild type and relA were pre-grown in LB, followed by overnight
incubation in M9þ glucose. This overnight culture was used at a dilution of 1:500
for growth in 96-well plates in M9 supplemented with indicated carbon sources as
described for O-curve and C-line measurements.

Computation of growth rate and CRP activity. For O-curve and C-line
measurements, mid-exponential growth was automatically identified as the time
point with the steadiest growth rate (Supplementary Fig. 1c), as follows: we first
computed the growth rate by the time derivative of the logarithmic OD averaged
over a 2-hour window (15 measurement points). To find the point of steadiest

growth we plotted the growth rate at 30 points equally spaced in log(OD) between
OD¼ 0.001 and OD¼ 0.1. This transformation to OD-space made the algorithm
more robust to experimental variations, such as small differences in the lag phase
between technical repeats. To find the OD at mid-exponential growth (ODmid-exp),
we identified the minimum of the s.d. of the growth rate within a running window
of 13 log(OD) spaced points (results were robust to changes of the window size;
Supplementary Fig. 1d). To minimize experimental noise from points where gfp
signal promoter activity was low, a minimum of OD¼ 0.01 was set. Promoter
activity
(PA¼ dGFP/dt/OD) of each reporter was averaged over a 2-hour window centred
at the point of mid-exponential growth. CRP activity was defined as the PA of the
CRP reporter divided by the PA of the s70 reporter. The PA of the s70 reporter
scales linearly with the growth rate, which is expected for a constitutive promoter at
the growth rates studied here50 (Supplementary Fig. 12). Normalization by the s70
reporter therefore ensures that our measurement of CRP activity represents the
fraction of cellular resources dedicated to carbon catabolism.

Measurement of co-consumption of lactose and pyruvate. MG1655
(CGSC #8003) cells carrying the empty vector pU66 were grown o/n in M9þ
lactose (0.2%)þ kanamycin (50 mg ml� 1) and diluted 1:100 in 40 ml M9þ lactose
(0.2%)þ pyruvate (0.1%)þ kanamycin (50 mg ml� 1). Cultures were grown with
aeration at 37 �C, and samples were collected every hour followed by separation of
bacteria from the medium using a 0.22 mm filter (Millipore). Pyruvate and lactose
concentrations in the medium were measured using an Agilent 1,200 series high-
performance liquid chromatography system (Agilent Technologies, USA) equipped
with an anion exchange Bio-Rad HPX-87H column (Bio-Rad, USA). The column
was eluted with 5 mM sulfuric acid at a flow rate of 0.6 ml min� 1 at 45 �C.51

Criteria for robust optimal control of the C-sector. This section shows
that in the model, given the condition k1¼ k2¼ kf¼ k and P(C)¼C, the control
of C-sector size is optimal for all values of carbon uptake rate b.

The growth rate is proportional to the biomass production rate, such that given
RþC¼ 1

m ¼ gð1�CÞ x
kþ x

: ð1Þ

At steady state, the production rate and removal rate of x are equal:

bC
k

xþ k
¼ gð1�CÞ x

kþ x
: ð2Þ
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Figure 4 | Re-engineering of carbon gene input functions fixes or disrupts optimal CRP control. (a) Introduction of a CRP-independent copy of sorbitol

genes (srlAEBD operon) under pTet control makes the input function have a non-zero basal level, when inducer (aTc) is added. Induction (125 ng ml� 1 aTc)

results in sub-optimal control as predicted in Fig. 3d (Supplementary Fig. 8; Supplementary Table 2), whereas control is nearly optimal without induction. (b)

Disruption of incoherent feed-forward loop (I-FFL) by deleting galS turns galactose input function (galETK, galP operons) from non-monotonic to monotonic,

and turns control from sub-optimal to nearly optimal. This matches model prediction (Fig. 3e). Error bars are s.e. of the mean from 3 day-day repeats.
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Combining equations (1) and (2) gives the steady-state growth rate m as a function
of C (that is, the O-curve).

m Cð Þ ¼ ð1�CÞCbg
Cðb� gÞþ g

; ð3Þ

m(C) has a single maximum m� ¼ bg
ð
ffiffi

b
p
þ ffiffi

g
p Þ2

in the interval for o0oCo1 at C� :

C� ¼
ffiffiffiffiffiffi

b g
p

� g
b� g

: ð4Þ

The regulatory feedback of x on C is given by:

C ¼ f ðxÞ ¼ k
kþ x

ð5Þ

Combining equations (5) and (1) gives the steady-state solution for C.

Cst ¼
ffiffiffiffiffiffi

b g
p

� g
b� g

ð6Þ

Comparing equations (4) and (6) shows that Cst ¼ C� for all values of b, providing
the optimal growth rate.

Code availability. Code used for analysis in Matlab (v2012a) and Wolfram
Mathematica (v9) is available from the corresponding author (U.A.) on request.

Data availability. Data for C-line and O-curves are available in Supplementary
Data sets 1–5. All other data is available from the corresponding author (U.A.) on
request.
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