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Axons as computing devices: Basic insights gained from models
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Abstract — Detailed models of single neurons are typically focused on the dendritic tree and ignore the axonal tree, assuming that the
axon is a simple transmission line. In the last 40 years, however, several theoretical and experimental studies have suggested that axons
could implement information processing tasks by exploiting: 1) the time delay in action potential (AP) propagation along the axon;

2) the differential filtering of APs into the axonal subtrees; and 3) their activity-dependent excitability. Models for axonal trees have
attempted to examine the feasibility of these ideas. However, because the physiological and anatomical data on axons are seriously
limited, realistic models of axons have not been developed. The present paper summarizes the main insights that were gained
from simplified models of axons; it also highlights the stochastic nature of axons, a topic that was largely neglected in classical
models of axons. The advance of new experimental techniques makes it now possible to pay a very close experimental visit to
axons. Theoretical tools and fast computers enable to go beyond the simplified models and to construct realistic models of axons. When
tightly linked, experiments and theory will help to unravel how axons share the information processing tasks that single neurons
implement. © 1999 Hitions scientifiques et médicales Elsevier SAS
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1. Early models of axons

Single axons typically form an elaborate and most
impressive tree. Some axons extend only locally
(= 1 mm long); others may be as long as 1 meter and
more. Axons may be very thin (0.1 pum in diameter)
and they may be 100 times thicker (e.g., the squid
giant axon). Axons typically possess a high density of
voltage-dependent, fast activated ‘Nehannels, as
well as more slowly activated K channels and,
consequently, they carry brief (L ms) sodium action
potentials (APs) along their length. The axon typically

propagate exceeds the minimum) and the ‘dimensional
similarity’ (which provides the conditions for mapping
points from one, say thin, myelinated axon to corre-
sponding points of another, say thicker, myelinated
axon). An extension of this latter concept to unmyeli-
nated axons was provided by Goldstein and Rall [14].
They have shown that the propagation velocity of the
AP is the same for all axons with the same specific
membrane and axial properties, provided the length of
the axon is normalized in units @f the passive space
constant of the axon, = d/2(R,/R))*2, where d is the
axon diameter (cm), Ris the membrane resistivity

bears many (often thousands) of presynaptic boutons (Q2cm?) at the resting potential and; R2cm) is the

(varicosities) where the pre-synaptic vesicles are con-
centrated. When the AP reaches these sites, a cascade

of intracellular events is initiated and the neurotrans-

mitter is released into the synaptic cleft at each of these

output siteqfigure 1)

What kind of electrical transmission line (output
device) is the axon? What are the principles that
govern its input-output function? The most extensive
early modeling studies that established our intuitions
regarding these questions were those of Rushton [36
37] and of Hodgkin and Huxley (H&H) [18]. Rushton
developed important concepts such as the ‘liminal
length’ (the minimal length of the axon which should
be depolarized above threshold for the AP to actively
propagate); the ‘safety factor’ for propagation (the
extent to which the axon’s capability to excite and
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axial resistivity.

The concept of ‘impedance mismatch’ is another
important outcome of the theoretical studies of
Rall [32] and Goldstein and Rall [14]. When the AP
propagates towards regions with a geometrical change
(e.g., a branch point), the propagation of the AP near
this point will continue unperturbed if the impedance
load in front of the AP remains as in a uniform
cylinder; e.g., if the impedance load of the two

'daughter branches together is equal to the impedance

load of a continuous cylinder (i.e., the impedance
match). If, however, the impedance at the geometrical
change is smaller than in the parent (uniform) axon,
then the AP will suffer a larger current sink from the
regions beyond the geometrical change and both its
velocity and amplitude will be reduced as it ap-
proaches the geometrical change. For moderate values
of such an impedance mismatch, the AP will succeed
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Figure 1. The complexity of axonal arborization. An axon  Figure 2. Branch point with GR> 1 contributes an extra
from nucleus isthmi terminating in turtle tectum was labeled delay for AP propagationA. Schematic drawing of a
with horseradish peroxidase and reconstructed from a seriesbranched axon in which &= 8 (large impedance decrease).
of parallel sections. Triangles on thick ((81) parent branch Arrows show recording locations: point 1 i3 Defore the
show the node of Ranvier; the thin branches are unmyleli- bifurcation, point 2 is at the bifurcation and point 3 is 2
nated and they receive about 3600 synaptic connections after the bifurcationB. The AP at the three recording sites
(varicosities, or boutons). Adapted from Sereno and (dashed lines). For comparison, the AP in an axon with GR
Ulinski [41]. =1 (equivalent to an unbranched axon) at the same recording
sites is shown by the continuous line. Note the change in
shape and the reduction in amplitude of the AP at the branch
point itself and the extra delay (of almost 1 ms) at point 3

) (compare dashed line to continuous line). Adapted from
to actively propagate (after some delay) beyond the Manor et al. [27].

branch point and it will regain its original shape and
velocity (the latter corresponds to the local diameter of
each of the daughter branches). For sufficiently large
impedance mismatch, however, the AP will completely the ‘Geometrical Ratio’ (GR) between the diameters of
fail to actively propagate beyond the branch point (i.e., the two daughter branches;(dnd d) and that of the
propagation block). In contrast, if the impedance load parent branch (g. This ratio is defined as:
at the point of change is larger than in a uniform
cylinder, then the velocity (and amplitude) of the AP
will increase when it approaches the geometrical GR = (d¥?* d¥)/g%?
change [14]figure 2) o

Whether the branch point imposes an increase, a Impedance matching at the branch point is obtained
decrease or an unchanged impedance load as comwhen GR = 1; when GR> 1, the AP encounters a
pared to a uniform cylindrical was shown to depend on region with reduced safety factor for propagation,
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whereas a branch point with GR 1 provides a change may be as large as 1 (figure 2) Typically,
favorable condition for AP propagation as it ap- however, GR at branch points is between 1-2 and this
proaches the branch point. Note that the above is valid is expected to add an extra delay of less than 0.1 ms.
only if all geometrical changes occur at one point (the However, in complicated axons there may be a large
branch point) and all the specific (passive and active) number of varicosities and branch points in a given
electrical properties are uniform over the whole axonal path along the axon and these can add up to a
structure. It is also assumed that the branch point is significant propagation delay.
glecr:]trécallyhdlstarr]]t from any bgyndary effedcts (;].e., 4 Note that the local delay introduced at axonal
oth daughters have constant diameter and both endygqiqns with GR> 1 may add non-linearly to the delay

suf'z‘ici(_antly far fr_om Ithe _brarfmh pohint ﬁonsidlereld). d caused by successive geometrical inhomogeneity (e.g.,
. (jnis!clzrljpsosgzn;kljg]\[/)eﬁ:ttlﬁgt rgg1 (ten?jitn e%rﬁtgﬁ: \/S;?ue_ ofsuccessive dense varicosities). This problem was ana-
GR. the AP can either cor’npleaely fa?l 10 propagate lyzed computationally by Manor et al. [27]. They have
beybnd the branch or it will succeed to propagate shown that the geometrical inhomogeneities should be
. sufficiently remote from each other (about Qb for
beyond the branch point to both daughter branches. their local delays to sum linearly with each other. More

Indeed, the geometry of the branch point per se cannot _ : : .
give rise to a propagation failure in only one daughter _adjacent successive geometrical changes (as IS the case
in real axons) will produce a total delay that is more

branch [14, 31]. Thus, in order to explain differential than the linear sum of the separate delays. The general
behavior in the daughter branches as seen in real . . P elays. 1he g
conclusion from this work is that, in principle, the

axonal trees [15, 16], additional asymmetries have to delav | | . ted to be | than th
be assumed (e.g., different excitability of the daughters 9€:@Y 1N real axons 1S expected 1o be largér than the
delay computed just on the basis of diameter and

membrane; differential ion accumulation in the extra- ; ; .
cellular space between the two daughter branches;€ngth (thus ignoring the extra delay introduced by the
local geometrical changes). Only when real axons will

different axial resistivity in the two daughters; different ; =
boundary conditions, e.g., only one daughter bears aP® modeled in full, the actual contribution of local
secondary bifurcation with GR 1, etc.). Additional inhomogeneities (such as varicosities, axonal tapering,

early modeling studies on AP propagation in non-
uniform axons can be found in Khodorov and
Timin [21]; Moore and Westerfield [28]; Berkenblit et

al. [4] and see review in Swadlow et al. [45]; Segev et

branch points, etc.) to the total delay in the axon will
be assesseffigure 3)

Another possible source for local delay in axons is
an axo-axonic (inhibitory) synapse. Indeed, a local

al. [40] and references in Manor et al. [26, 27]. synaptic shunt reduces the safety factor for AP propa-
gation near the region of the inhibitory synapse. For
moderate values of this synaptic shunt, the AP will be
slowed down proximally to the synapse and will regain
its velocity (and shape) at sufficient distance away

from this shunt [39]. A chain of successive synapses of

2. Axons as delay lines: local inhomogeneities
as points of extra delay

Because the velocity of the AP in axons is finite
(0.1 m/s in thin unmyelinated axons and up to 100 m/s
in thick myelinated axons), axons are inherently delay

this sort will then produce a significant delay (and
possibly a total block) for AP propagation (see chapter
by Lamotte D’incamps et al. [49]). It is hoped that,
with the advances of new imaging techniques (and

lines. In addition to the time delay that results from the
length and diameter of the axonal branches, loca
eometrical inhomogeneities produce extra delay for . . .
'?he AP propagation.grhis is exgected to be the caée in delays in real axons will be obtained [13].
regions where GR 1, such as in regions with a local Several theoretical works have argued that axonal
increase in axon diameter (e.g., the axonal varicosity). delays could be used for performing specific compu-
Interestingly, it was shown [27] that the extra delay tations (e.g., [5, 6]) (see also Rushton [37]). These
due to the step increase in the axon diameter at themodels suggest that axons with different propagation
varicosity is always larger than the relative decrease in velocities (delays) can be utilized for detecting tem-
delay (due to the reciprocal step decrease at the axonporal coincidence between different input events. In
diameter at the end of the varicosity). A branch point the auditory system, for example, this mechanism
with GR > 1 is an additional source of delay. Indeed, could serve for detecting input location (e.g., [2, 6]). In
unlike in typical dendrites, the diameter of axonal the visual system, this mechanism could be used to
branches changes relatively little at the branch point. If detect direction of motion [33]. However, there are yet
the diameter of the two daughters is identical to that of only a small number of examples that show directly
the father branch, then GR = 2. In principle, with a that axonal delays are actually implemented to perform
large GR, the delay introduced at a single geometrical specific computations.

| voltage-dependent dyes) combined with detailed ana-
tomical studies, more information about the range of
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only two states at the output, on and off, but with one
= having a large number of possible combinations of
a active and inactive terminals”.
control This is, indeed, an interesting idea and there is
1.5 . experimental evidence that shows that axons can act as
1 multiple ‘switching’ devices (for reviews see [26, 27,
1.0 45, 47]). As discussed above, models show that this
behavior of the axon must result from some internal
0.57 and/or external asymmetry rather than from geometri-
cal asymmetries at the branch points per se. The
0 200 400 600 mechanism underlying the experimental finding of
X (um) differential channeling of APs into the two daughters
of the same axon [15, 16, 30] is not completely clear.
Moreover, whether such differential channeling of
information in subtrees of one axon is actually used by
the nervous system for performing specific computa-
tion remains elusive. It could well be that propagation
failure in one daughter branch, but not in its sibling
daughter, is just a ‘bug’ in the axonal design which
adds an extra noise source (unreliability) to the many
la other sources of unreliability in the neuronal ‘hard-
ISP ware’ (e.g., the probabilistic nature of the synaptic
025 — T I 12 mechanism or the ion channel stochasticity, see be-
0 2 4 6 8 10 low). Clearly, more experimental studies are required
Interbouton distance  (m) to pin down this question (see also chapter by Wang et
al. [50]).
Figure 3. Effect of multiple axonal varicosities on propaga-
tion delay.A. The peak time (f.,) of the AP as a function . .
of distance along three axons. km and b, the axonal 4. AXons as stochastic devices
varicosities start tax = 100 um (dashed vertical line, see . ) )
inset, varicosities not drawn to scale). Each varicosity is ~ Following the theoretical study of Hodgkin and
1.6um long and 1.um wide. The interbouton diameter is  Huxley [18], most of the models of axons have treated
0.4um. In a the interbouton diameter isym whereas irb the generation and propagation of the AP using deter-
it is O pm (in the latter case, a single step in axon diameter ministic partial differential equations. Although we
from 0.4um to 1.6um exists ax = 100um). Note that the ~ now that the underlying mechanism for AP genera-
inset is not drawn to scale: the frequency of the varicosities {5, is the opening” and closing of thousands of

in curvea is much higher than picture®. The effect of the P : o :
interbouton distance on propagation velocity (left ordinate individual ion char]n_el$, each of which is St.OCh.aSt'C
and filled circles) and propagation delay (right ordinate and 'ather than th?rm',n'St'C- The usual assumption is that
empty Squares) is shown. The bouton dimensions and the the |ntr|nS|C noise In eaCh Of the Chanl’le|8 IS averaged
interbouton diameters are asAn Top and bottom arrows in ~ out due to the large number of channels, and so the
the left ordinate indicate the velocity in an axon with a collective behavior is practically deterministic. This
uniform diameter of 1.eum (corresponding to the diameter  implies that presenting of the exact same input repeat-
of the boutons) and 0.4m (corresponding to the diameter of  edly to the axon would yield the exact same spike train
the axon between boutons). The arrow on the right ordinate again and again.

indicates the propagation delay induced by a G0Dlong, However, experimentalists know that there is vari-
0.4um thick uniform axon. Adapted from Manor et al. [27]. ability (jitter') in the spike output even if the same
input is used repeatedly. Lecar and Nossal [23, 24]
have investigated the threshold fluctuations in neurons
from a theoretical viewpoint, quantifying the possible
effects of different noise sources on the probability of
spike generation (see also Guttman et al.[17]).
One of the most compelling ideas regarding axons Fitzhugh [12], Skaugen and Walloe [43], Skau-
was beautifully put forward by Chung et al. [8]. They gen [42], DeFelice [11], Clay and DeFelice [9] and
suggested that “the axonal arborization acts to trans- Strassberg and DeFelice [44] have simulated neuronal
form the temporal pulse patterns of the parent axon models which contained large populations of single
into spatial patterns in its terminals... Thus, at the stochastic ion channels, and compared the behavior of
outset, we are confronted not with a system having the H&H model to the stochastic models (see also [7]).

theak (mS)

Propagation velocity (mm/ms)
Propagation delay (ms)

3. Axons as spatio-temporal filters
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Figure 4. Deterministic versus stochastic Hodgkin-Huxley models of spike generation. The Hodgkin-Huxley (H&H) equation
for the membrane voltage dynamics is presented at top; this equation is for both the deterministic model and the stochastic
model. V is the membrane potential, FE, , Ey,, are the reversal potentials of the leakage,akd N& currents respectively,

and g, Ox., Ouw are the corresponding specific ion conductances(in m3/cth (F/cn?) and | (A/cn?) are the specific
membrane capacitance and the input current injected into the membrane patch, respéctinelye deterministic version of

the H&H equations, the ion conductances are described by deterministic differential equations of activation and inactivation
variables (n, m and h) with corresponding forward and backward rate functifvisgnd (V) respectively)B. In the stochastic

version of the H&H equations, the ionic conductances are described using kinetic models of the corresponding ion channels. For
example, each Kchannel has four independent n ‘gates’ and it may exist in one of five different stgtekngchannel flips
randomly from one state to another according to voltage-dependent rate furgii®sand (V). The channel is open only

when all the gates are open (statg][nThe total conductance of all open‘Khannels is given by the number of channels in

this open state multiplied by the single channel conductancé similar stochastic model can be used to describe the Na
conductance. In this case there are three activation gates (m) and one inactivation gate (h), which make a total of eight states
in the corresponding kinetic model. [im] is the open state of the channel. A detailed description of this model can be found

in Skaugen and Walloe [43] and Strassberg and DeFelice [44].

Na*

K* YNa

1%

A

Their results reflected the difference between the channels. Lass and Abeles[22] and Abeles and
behavior of the two models in terms of the mean firing Lass [1] investigated and analyzed the variability in
rate and the nature of the spike threshold, especially in conduction times (delay) of spikes along axons, and
the case in which the membrane patch consists of athis was later simulated by Horikawa [19, 20] using an
small number of ion channels, or a small density of ion channel based stochastic model. Rubinstein [35]
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has performed similar simulations for the node of
Ranvier, showing that the finite number of channels
may be the source for the threshold fluctuations found
experimentally.

Recently, Mainen and Sejnowski [25] and Nowak et
al. [29] demonstrated that the reliability and accuracy
of spike trains depend on the nature of the input that
neurons receive. Presenting repeatedly a slowly vary-
ing input (or just DC current input) to a cortical
pyramidal neuron in vitro, results with spike trains in
which the timing of each individual spike ‘jitters’ from
trial to trial and only the total number of the spikes
remains reliable between trials. Conversely, when the
same neuron is repeatedly presented with a fluctuating
current input, the resulting spike trains can be ex-
tremely repeatable (reliable). Similar results were
reported in extracellular recordings from intact ani-
mals [3, 10, 34], suggesting that this is a generic
behavior of neurons.

The nature of spike reliability and accuracy sets the
limits on the information that neurons can encode and
transmit. Therefore, quantifying the nature of spike
jitter and its biophysical source is a fundamental
problem in deciphering the neural code. In a recent
study we have also used the ion channel based
stochastic H&H model, this time to investigate the
reliability and accuracy of spike trains in response to
different current inputs [38]. The results show that the
microscopic stochasticity of ion channels may have a
significant macroscopic effect on the reliability and
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Figure 5. Reliability of firing patterns in a model of an
isopotential Hodgkin-Huxley membrane patch in response to

accuracy of spike trains even when the spike initiation hoth DC and fluctuating current inpus. Ten superimposed
zone consists of a large number (tens of thousands) ofresponses to a repeated supra-threshold DC current input (10
excitable channels. The reason is that near thresholduA/cm? 250 ms; top frame) evoked a regular firing in the

for AP firing, only a small percentage of ion channels
are open; this implies a large variability in the number
of open channels near threshold and, consequently,
jitter in spike firing time.Figure 4 depicts schemati-
cally the correspondence between the stochastic
(H&H) model and the deterministic H&H model. For

a very large number of ion channels, the two models
converge.Figure 5 shows the firing response of the
deterministic H&H model and the corresponding sto-
chastic H&H model for a membrane patch consisting
of a total of 12 000 Naand 3600 K channels. As can

be seen, for DC current input, a significant jitter in
spike timing exists in the stochastic H&H model
(lower left frame). In contrast, for a fluctuating input
(right column) the reliability of spike timing is im-
proved in the stochastic model. This is a rather
convincing example that, for certain questions such as
the reliability of the AP mechanism, the microscopic

al

deterministic H&H model (middle frame) and a significant
Yjitter’ in the spike firing times in the stochastic H&H model
bottom frame)B. The same membrane patch was stimula-
ted ten times repeatedly, this time with a fluctuating stimulus
(low pass Gaussian white noise with a mean | sdcm?
and a standard deviation;,,,, = 7 wA/lcm® which was
convolved with an ‘alpha-function’ with a time constant
Tinput = 1 MS, top frame; see Mainen and Sejnowski [25]). As
can be clearly seen, the fitter' in spike timing in the
stochastic model is significantly smallerBhcompared tA
(i.e., the reliability of spike timing increases for the fluctua-
ting current input). Area of membrane patch was pa
with 3600 K" channels and 12 000 Nahannels (compare
to figure 1in Mainen and Sejnowski [25]). Adapted from
Schneidman et al. [38].

mechanism (the opening and closing of ion channels) model that would give a quantitative fit to the noise
cannot be ignored when describing the phenomena (of characteristics of real neurons. Characterizing and
AP firing time) at the macroscopic level. Recent work quantifying the ‘noise’ inherent to spike generation is
by White et al. [48] has used a similar approach to crucial to our understanding of neural encoding and to
estimate the number of channels in a stochastic neuronthe measurement of neuronal information capacity.
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5. Conclusion (7]
Recent development in anatomical methods, includ- [8]
ing labeling of specific ion channels and 3D recon-
struction methods at the electron microscope level, [°]
combined with novel imaging techniques (e.g., confo-
cal microscopy, two-photon microscopy) and new
voltage-dependent dyes, carry an important promise.
Namely, that we will be able to record the activity of
axons albeit their fine dimensions. When combined [11
with anatomical studies, realistic models of these
important devices (which consists of a very large [12]
percentage of the membrane area in the brain) could be
constructed. These models will enable us to better [13]
understand what is the role of axons in the information
processing function of the nervous system. Are axons
faithful delay lines? Are they spatio-temporal filters? [14]
Do they play a computational role or do they mainly
transmit the same input (train of APs) to all output
synapses? In axons that receive presynaptic (axo—[ 5
axonic) connections, it is clear that the information
carried in the axon is modulated in different subtrees
before an output is produced. In other regions (e.g., the [16]
neocortex) where axo-axonic synapses are rare (ex-
cluding the inhibitory synapses that contact the axon
hillock), axons may still behave as complex dynamical [17]
computational devices with memory (e.g. via adapta-
tion, see Toib et al. [46]), refractoriness of different
time scales, differential regulation of the excitable
channels in different parts of the axon, differential
channeling at branch points, etc.). It seems very timely (1,
to pay a more careful (modeling) visit to axons. After
all, axons and dendrites share the work of producing a
meaningful output from a meaningful input. These two [20]
parts of the neuron should have a well-acquainted
collaboration with each other in order to succeed in
this task. We have the duty to succeed in understanding[21]
how they actually do it.
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