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Abstract — Detailed models of single neurons are typically focused on the dendritic tree and ignore the axonal tree, assuming that the
axon is a simple transmission line. In the last 40 years, however, several theoretical and experimental studies have suggested that axons
could implement information processing tasks by exploiting: 1) the time delay in action potential (AP) propagation along the axon;
2) the differential filtering of APs into the axonal subtrees; and 3) their activity-dependent excitability. Models for axonal trees have
attempted to examine the feasibility of these ideas. However, because the physiological and anatomical data on axons are seriously
limited, realistic models of axons have not been developed. The present paper summarizes the main insights that were gained
from simplified models of axons; it also highlights the stochastic nature of axons, a topic that was largely neglected in classical
models of axons. The advance of new experimental techniques makes it now possible to pay a very close experimental visit to
axons. Theoretical tools and fast computers enable to go beyond the simplified models and to construct realistic models of axons. When
tightly linked, experiments and theory will help to unravel how axons share the information processing tasks that single neurons
implement. © 1999 E´ ditions scientifiques et médicales Elsevier SAS
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1. Early models of axons

Single axons typically form an elaborate and most
impressive tree. Some axons extend only locally
(≈ 1 mm long); others may be as long as 1 meter and
more. Axons may be very thin (0.1 µm in diameter)
and they may be 100 times thicker (e.g., the squid
giant axon). Axons typically possess a high density of
voltage-dependent, fast activated Na+ channels, as
well as more slowly activated K+ channels and,
consequently, they carry brief (≈ 1 ms) sodium action
potentials (APs) along their length. The axon typically
bears many (often thousands) of presynaptic boutons
(varicosities) where the pre-synaptic vesicles are con-
centrated. When the AP reaches these sites, a cascade
of intracellular events is initiated and the neurotrans-
mitter is released into the synaptic cleft at each of these
output sites(figure 1).

What kind of electrical transmission line (output
device) is the axon? What are the principles that
govern its input-output function? The most extensive
early modeling studies that established our intuitions
regarding these questions were those of Rushton [36,
37] and of Hodgkin and Huxley (H&H) [18]. Rushton
developed important concepts such as the ‘liminal
length’ (the minimal length of the axon which should
be depolarized above threshold for the AP to actively
propagate); the ‘safety factor’ for propagation (the
extent to which the axon’s capability to excite and

propagate exceeds the minimum) and the ‘dimensional
similarity’ (which provides the conditions for mapping
points from one, say thin, myelinated axon to corre-
sponding points of another, say thicker, myelinated
axon). An extension of this latter concept to unmyeli-
nated axons was provided by Goldstein and Rall [14].
They have shown that the propagation velocity of the
AP is the same for all axons with the same specific
membrane and axial properties, provided the length of
the axon is normalized in units ofλ, the passive space
constant of the axon,λ = d/2(Rm/Ri)

1/2, where d is the
axon diameter (cm), Rm is the membrane resistivity
(Ωcm2) at the resting potential and Ri (Ωcm) is the
axial resistivity.

The concept of ‘impedance mismatch’ is another
important outcome of the theoretical studies of
Rall [32] and Goldstein and Rall [14]. When the AP
propagates towards regions with a geometrical change
(e.g., a branch point), the propagation of the AP near
this point will continue unperturbed if the impedance
load in front of the AP remains as in a uniform
cylinder; e.g., if the impedance load of the two
daughter branches together is equal to the impedance
load of a continuous cylinder (i.e., the impedance
match). If, however, the impedance at the geometrical
change is smaller than in the parent (uniform) axon,
then the AP will suffer a larger current sink from the
regions beyond the geometrical change and both its
velocity and amplitude will be reduced as it ap-
proaches the geometrical change. For moderate values
of such an impedance mismatch, the AP will succeed* Correspondence and reprints
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to actively propagate (after some delay) beyond the
branch point and it will regain its original shape and
velocity (the latter corresponds to the local diameter of
each of the daughter branches). For sufficiently large
impedance mismatch, however, the AP will completely
fail to actively propagate beyond the branch point (i.e.,
propagation block). In contrast, if the impedance load
at the point of change is larger than in a uniform
cylinder, then the velocity (and amplitude) of the AP
will increase when it approaches the geometrical
change [14](figure 2).

Whether the branch point imposes an increase, a
decrease or an unchanged impedance load as com-
pared to a uniform cylindrical was shown to depend on

the ‘Geometrical Ratio’ (GR) between the diameters of
the two daughter branches (d1 and d2) and that of the
parent branch (dp). This ratio is defined as:

GR = ~ d1
3/2 + d1

3/2
!/dp

3/2

Impedance matching at the branch point is obtained
when GR = 1; when GR> 1, the AP encounters a
region with reduced safety factor for propagation,

Figure 1. The complexity of axonal arborization. An axon
from nucleus isthmi terminating in turtle tectum was labeled
with horseradish peroxidase and reconstructed from a series
of parallel sections. Triangles on thick (3µm) parent branch
show the node of Ranvier; the thin branches are unmyleli-
nated and they receive about 3600 synaptic connections
(varicosities, or boutons). Adapted from Sereno and
Ulinski [41].

Figure 2. Branch point with GR> 1 contributes an extra
delay for AP propagation.A. Schematic drawing of a
branched axon in which GR = 8 (large impedance decrease).
Arrows show recording locations: point 1 is 2λ before the
bifurcation, point 2 is at the bifurcation and point 3 is 2λ
after the bifurcation.B. The AP at the three recording sites
(dashed lines). For comparison, the AP in an axon with GR
= 1 (equivalent to an unbranched axon) at the same recording
sites is shown by the continuous line. Note the change in
shape and the reduction in amplitude of the AP at the branch
point itself and the extra delay (of almost 1 ms) at point 3
(compare dashed line to continuous line). Adapted from
Manor et al. [27].
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whereas a branch point with GR< 1 provides a
favorable condition for AP propagation as it ap-
proaches the branch point. Note that the above is valid
only if all geometrical changes occur at one point (the
branch point) and all the specific (passive and active)
electrical properties are uniform over the whole axonal
structure. It is also assumed that the branch point is
electrically distant from any boundary effects (i.e.,
both daughters have constant diameter and both end
sufficiently far from the branch point considered).

An important implication from the theoretical stud-
ies discussed above is that, depending on the value of
GR, the AP can either completely fail to propagate
beyond the branch or it will succeed to propagate
beyond the branch point to both daughter branches.
Indeed, the geometry of the branch point per se cannot
give rise to a propagation failure in only one daughter
branch [14, 31]. Thus, in order to explain differential
behavior in the daughter branches as seen in real
axonal trees [15, 16], additional asymmetries have to
be assumed (e.g., different excitability of the daughters
membrane; differential ion accumulation in the extra-
cellular space between the two daughter branches;
different axial resistivity in the two daughters; different
boundary conditions, e.g., only one daughter bears a
secondary bifurcation with GR> 1, etc.). Additional
early modeling studies on AP propagation in non-
uniform axons can be found in Khodorov and
Timin [21]; Moore and Westerfield [28]; Berkenblit et
al. [4] and see review in Swadlow et al. [45]; Segev et
al. [40] and references in Manor et al. [26, 27].

2. Axons as delay lines: local inhomogeneities
as points of extra delay

Because the velocity of the AP in axons is finite
(0.1 m/s in thin unmyelinated axons and up to 100 m/s
in thick myelinated axons), axons are inherently delay
lines. In addition to the time delay that results from the
length and diameter of the axonal branches, local
geometrical inhomogeneities produce extra delay for
the AP propagation. This is expected to be the case in
regions where GR> 1, such as in regions with a local
increase in axon diameter (e.g., the axonal varicosity).
Interestingly, it was shown [27] that the extra delay
due to the step increase in the axon diameter at the
varicosity is always larger than the relative decrease in
delay (due to the reciprocal step decrease at the axon
diameter at the end of the varicosity). A branch point
with GR > 1 is an additional source of delay. Indeed,
unlike in typical dendrites, the diameter of axonal
branches changes relatively little at the branch point. If
the diameter of the two daughters is identical to that of
the father branch, then GR = 2. In principle, with a
large GR, the delay introduced at a single geometrical

change may be as large as 1 ms(figure 2). Typically,
however, GR at branch points is between 1–2 and this
is expected to add an extra delay of less than 0.1 ms.
However, in complicated axons there may be a large
number of varicosities and branch points in a given
path along the axon and these can add up to a
significant propagation delay.

Note that the local delay introduced at axonal
regions with GR> 1 may add non-linearly to the delay
caused by successive geometrical inhomogeneity (e.g.,
successive dense varicosities). This problem was ana-
lyzed computationally by Manor et al. [27]. They have
shown that the geometrical inhomogeneities should be
sufficiently remote from each other (about 0.5λ) for
their local delays to sum linearly with each other. More
adjacent successive geometrical changes (as is the case
in real axons) will produce a total delay that is more
than the linear sum of the separate delays. The general
conclusion from this work is that, in principle, the
delay in real axons is expected to be larger than the
delay computed just on the basis of diameter and
length (thus ignoring the extra delay introduced by the
local geometrical changes). Only when real axons will
be modeled in full, the actual contribution of local
inhomogeneities (such as varicosities, axonal tapering,
branch points, etc.) to the total delay in the axon will
be assessed(figure 3).

Another possible source for local delay in axons is
an axo-axonic (inhibitory) synapse. Indeed, a local
synaptic shunt reduces the safety factor for AP propa-
gation near the region of the inhibitory synapse. For
moderate values of this synaptic shunt, the AP will be
slowed down proximally to the synapse and will regain
its velocity (and shape) at sufficient distance away
from this shunt [39]. A chain of successive synapses of
this sort will then produce a significant delay (and
possibly a total block) for AP propagation (see chapter
by Lamotte D’incamps et al. [49]). It is hoped that,
with the advances of new imaging techniques (and
voltage-dependent dyes) combined with detailed ana-
tomical studies, more information about the range of
delays in real axons will be obtained [13].

Several theoretical works have argued that axonal
delays could be used for performing specific compu-
tations (e.g., [5, 6]) (see also Rushton [37]). These
models suggest that axons with different propagation
velocities (delays) can be utilized for detecting tem-
poral coincidence between different input events. In
the auditory system, for example, this mechanism
could serve for detecting input location (e.g., [2, 6]). In
the visual system, this mechanism could be used to
detect direction of motion [33]. However, there are yet
only a small number of examples that show directly
that axonal delays are actually implemented to perform
specific computations.
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3. Axons as spatio-temporal filters

One of the most compelling ideas regarding axons
was beautifully put forward by Chung et al. [8]. They
suggested that “the axonal arborization acts to trans-
form the temporal pulse patterns of the parent axon
into spatial patterns in its terminals... Thus, at the
outset, we are confronted not with a system having

only two states at the output, on and off, but with one
having a large number of possible combinations of
active and inactive terminals”.

This is, indeed, an interesting idea and there is
experimental evidence that shows that axons can act as
multiple ‘switching’ devices (for reviews see [26, 27,
45, 47]). As discussed above, models show that this
behavior of the axon must result from some internal
and/or external asymmetry rather than from geometri-
cal asymmetries at the branch points per se. The
mechanism underlying the experimental finding of
differential channeling of APs into the two daughters
of the same axon [15, 16, 30] is not completely clear.
Moreover, whether such differential channeling of
information in subtrees of one axon is actually used by
the nervous system for performing specific computa-
tion remains elusive. It could well be that propagation
failure in one daughter branch, but not in its sibling
daughter, is just a ‘bug’ in the axonal design which
adds an extra noise source (unreliability) to the many
other sources of unreliability in the neuronal ‘hard-
ware’ (e.g., the probabilistic nature of the synaptic
mechanism or the ion channel stochasticity, see be-
low). Clearly, more experimental studies are required
to pin down this question (see also chapter by Wang et
al. [50]).

4. Axons as stochastic devices

Following the theoretical study of Hodgkin and
Huxley [18], most of the models of axons have treated
the generation and propagation of the AP using deter-
ministic partial differential equations. Although we
know that the underlying mechanism for AP genera-
tion is the opening and closing of thousands of
individual ion channels, each of which is stochastic
rather than deterministic. The usual assumption is that
the intrinsic ‘noise’ in each of the channels is averaged
out due to the large number of channels, and so the
collective behavior is practically deterministic. This
implies that presenting of the exact same input repeat-
edly to the axon would yield the exact same spike train
again and again.

However, experimentalists know that there is vari-
ability (‘jitter’) in the spike output even if the same
input is used repeatedly. Lecar and Nossal [23, 24]
have investigated the threshold fluctuations in neurons
from a theoretical viewpoint, quantifying the possible
effects of different noise sources on the probability of
spike generation (see also Guttman et al. [17]).
Fitzhugh [12], Skaugen and Walloe [43], Skau-
gen [42], DeFelice [11], Clay and DeFelice [9] and
Strassberg and DeFelice [44] have simulated neuronal
models which contained large populations of single
stochastic ion channels, and compared the behavior of
the H&H model to the stochastic models (see also [7]).

Figure 3. Effect of multiple axonal varicosities on propaga-
tion delay.A. The peak time (tpeak) of the AP as a function
of distance along three axons. Ina and b, the axonal
varicosities start at x = 100 µm (dashed vertical line, see
inset, varicosities not drawn to scale). Each varicosity is
1.6µm long and 1.6µm wide. The interbouton diameter is
0.4µm. In a the interbouton diameter is 4µm whereas inb
it is 0 µm (in the latter case, a single step in axon diameter
from 0.4µm to 1.6µm exists at x = 100µm). Note that the
inset is not drawn to scale: the frequency of the varicosities
in curvea is much higher than pictured. B. The effect of the
interbouton distance on propagation velocity (left ordinate
and filled circles) and propagation delay (right ordinate and
empty squares) is shown. The bouton dimensions and the
interbouton diameters are as inA. Top and bottom arrows in
the left ordinate indicate the velocity in an axon with a
uniform diameter of 1.6µm (corresponding to the diameter
of the boutons) and 0.4µm (corresponding to the diameter of
the axon between boutons). The arrow on the right ordinate
indicates the propagation delay induced by a 600µm long,
0.4µm thick uniform axon. Adapted from Manor et al. [27].
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Their results reflected the difference between the
behavior of the two models in terms of the mean firing
rate and the nature of the spike threshold, especially in
the case in which the membrane patch consists of a
small number of ion channels, or a small density of

channels. Lass and Abeles [22] and Abeles and
Lass [1] investigated and analyzed the variability in
conduction times (delay) of spikes along axons, and
this was later simulated by Horikawa [19, 20] using an
ion channel based stochastic model. Rubinstein [35]

Figure 4. Deterministic versus stochastic Hodgkin-Huxley models of spike generation. The Hodgkin-Huxley (H&H) equation
for the membrane voltage dynamics is presented at top; this equation is for both the deterministic model and the stochastic
model. V is the membrane potential, EL, EK,, ENa, are the reversal potentials of the leakage, K+ and Na+ currents respectively,
and gL, gK,, gNa, are the corresponding specific ion conductances(in mS/cm2); C (F/cm2) and I (A/cm2) are the specific
membrane capacitance and the input current injected into the membrane patch, respectively.A. In the deterministic version of
the H&H equations, the ion conductances are described by deterministic differential equations of activation and inactivation
variables (n, m and h) with corresponding forward and backward rate functions (α(V) andâ(V) respectively).B. In the stochastic
version of the H&H equations, the ionic conductances are described using kinetic models of the corresponding ion channels. For
example, each K+ channel has four independent n ‘gates’ and it may exist in one of five different states [ni]. The channel flips
randomly from one state to another according to voltage-dependent rate functionsαn(V) and ân(V). The channel is open only
when all the gates are open (state [n4]). The total conductance of all open K+ channels is given by the number of channels in
this open state multiplied by the single channel conductanceγk. A similar stochastic model can be used to describe the Na+

conductance. In this case there are three activation gates (m) and one inactivation gate (h), which make a total of eight states
in the corresponding kinetic model. [m3h1] is the open state of the channel. A detailed description of this model can be found
in Skaugen and Walloe [43] and Strassberg and DeFelice [44].
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has performed similar simulations for the node of
Ranvier, showing that the finite number of channels
may be the source for the threshold fluctuations found
experimentally.

Recently, Mainen and Sejnowski [25] and Nowak et
al. [29] demonstrated that the reliability and accuracy
of spike trains depend on the nature of the input that
neurons receive. Presenting repeatedly a slowly vary-
ing input (or just DC current input) to a cortical
pyramidal neuron in vitro, results with spike trains in
which the timing of each individual spike ‘jitters’ from
trial to trial and only the total number of the spikes
remains reliable between trials. Conversely, when the
same neuron is repeatedly presented with a fluctuating
current input, the resulting spike trains can be ex-
tremely repeatable (reliable). Similar results were
reported in extracellular recordings from intact ani-
mals [3, 10, 34], suggesting that this is a generic
behavior of neurons.

The nature of spike reliability and accuracy sets the
limits on the information that neurons can encode and
transmit. Therefore, quantifying the nature of spike
jitter and its biophysical source is a fundamental
problem in deciphering the neural code. In a recent
study we have also used the ion channel based
stochastic H&H model, this time to investigate the
reliability and accuracy of spike trains in response to
different current inputs [38]. The results show that the
microscopic stochasticity of ion channels may have a
significant macroscopic effect on the reliability and
accuracy of spike trains even when the spike initiation
zone consists of a large number (tens of thousands) of
excitable channels. The reason is that near threshold
for AP firing, only a small percentage of ion channels
are open; this implies a large variability in the number
of open channels near threshold and, consequently, a
jitter in spike firing time.Figure 4 depicts schemati-
cally the correspondence between the stochastic
(H&H) model and the deterministic H&H model. For
a very large number of ion channels, the two models
converge.Figure 5 shows the firing response of the
deterministic H&H model and the corresponding sto-
chastic H&H model for a membrane patch consisting
of a total of 12 000 Na+ and 3600 K+ channels. As can
be seen, for DC current input, a significant jitter in
spike timing exists in the stochastic H&H model
(lower left frame). In contrast, for a fluctuating input
(right column) the reliability of spike timing is im-
proved in the stochastic model. This is a rather
convincing example that, for certain questions such as
the reliability of the AP mechanism, the microscopic
mechanism (the opening and closing of ion channels)
cannot be ignored when describing the phenomena (of
AP firing time) at the macroscopic level. Recent work
by White et al. [48] has used a similar approach to
estimate the number of channels in a stochastic neuron

model that would give a quantitative fit to the noise
characteristics of real neurons. Characterizing and
quantifying the ‘noise’ inherent to spike generation is
crucial to our understanding of neural encoding and to
the measurement of neuronal information capacity.

Figure 5. Reliability of firing patterns in a model of an
isopotential Hodgkin-Huxley membrane patch in response to
both DC and fluctuating current input.A. Ten superimposed
responses to a repeated supra-threshold DC current input (10
µA/cm2, 250 ms; top frame) evoked a regular firing in the
deterministic H&H model (middle frame) and a significant
‘jitter’ in the spike firing times in the stochastic H&H model
(bottom frame).B. The same membrane patch was stimula-
ted ten times repeatedly, this time with a fluctuating stimulus
(low pass Gaussian white noise with a mean I =10µA/cm2

and a standard deviationσinput = 7 µA/cm2 which was
convolved with an ‘alpha-function’ with a time constant
τinput = 1 ms, top frame; see Mainen and Sejnowski [25]). As
can be clearly seen, the ‘jitter’ in spike timing in the
stochastic model is significantly smaller inB compared toA
(i.e., the reliability of spike timing increases for the fluctua-
ting current input). Area of membrane patch was 200µm2

with 3600 K+ channels and 12 000 Na+ channels (compare
to figure 1 in Mainen and Sejnowski [25]). Adapted from
Schneidman et al. [38].
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5. Conclusion

Recent development in anatomical methods, includ-
ing labeling of specific ion channels and 3D recon-
struction methods at the electron microscope level,
combined with novel imaging techniques (e.g., confo-
cal microscopy, two-photon microscopy) and new
voltage-dependent dyes, carry an important promise.
Namely, that we will be able to record the activity of
axons albeit their fine dimensions. When combined
with anatomical studies, realistic models of these
important devices (which consists of a very large
percentage of the membrane area in the brain) could be
constructed. These models will enable us to better
understand what is the role of axons in the information
processing function of the nervous system. Are axons
faithful delay lines? Are they spatio-temporal filters?
Do they play a computational role or do they mainly
transmit the same input (train of APs) to all output
synapses? In axons that receive presynaptic (axo-
axonic) connections, it is clear that the information
carried in the axon is modulated in different subtrees
before an output is produced. In other regions (e.g., the
neocortex) where axo-axonic synapses are rare (ex-
cluding the inhibitory synapses that contact the axon
hillock), axons may still behave as complex dynamical
computational devices with memory (e.g. via adapta-
tion, see Toib et al. [46]), refractoriness of different
time scales, differential regulation of the excitable
channels in different parts of the axon, differential
channeling at branch points, etc.). It seems very timely
to pay a more careful (modeling) visit to axons. After
all, axons and dendrites share the work of producing a
meaningful output from a meaningful input. These two
parts of the neuron should have a well-acquainted
collaboration with each other in order to succeed in
this task. We have the duty to succeed in understanding
how they actually do it.
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