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Three-dimensional (3D) movement of neuroprosthetic devices can be con-
trolled by the activity of cortical neurons when appropriate algorithms are used
to decode intended movement in real time. Previous studies assumed that
neurons maintain fixed tuning properties, and the studies used subjects who
were unaware of the movements predicted by their recorded units. In this study,
subjects had real-time visual feedback of their brain-controlled trajectories. Cell
tuning properties changed when used for brain-controlled movements. By using
control algorithms that track these changes, subjects made long sequences of
3D movements using far fewer cortical units than expected. Daily practice
improved movement accuracy and the directional tuning of these units.

Ever since cortical neurons were shown to
modulate their activity before movement, re-
searchers have anticipated using these signals
to control various prosthetic devices (1, 2).
Recent advances in chronic recording elec-
trodes and signal-processing technology now
open the possibility of using these cortical
signals efficiently in real time (3, 4 ).

However, many neurons may be needed
to predict intended movement accurately
enough to make this technology practical.
Estimates range from 150 to 600 cells or
more being necessary (4, 5), based on open-
loop experiments that recreate three-dimen-
sional (3D) arm trajectories from cortical data
offline (6 ). Here, we compare this approach
to a closed-loop paradigm in which subjects
have visual feedback of the brain-controlled
movement. We then incorporate a movement
prediction algorithm that tracks learning-in-
duced changes in neural activity patterns.

Rhesus macaques made real and virtual
arm movements in a computer-generated, 3D
virtual environment by moving a cursor from
a central-start position to one of eight targets
located radially at the corners of an imaginary
cube. The monkeys could not see their actual
arm movements, but rather saw two spheres
(the stationary “target” and a mobile “cur-
sor”) with motion controlled either by the
subject’s hand position (“hand-control”) or
by recorded neural activity (“brain-control”)
(see supplementary material).

We examined the effect of visual feed-
back on movements derived from cortical
signals by comparing “open-loop” trajecto-
ries, created offline from cortical signals re-
corded during hand-controlled cursor move-
ments, with “closed-loop” trajectories made

by the cursor under real-time brain control. In
the closed-loop case, subjects saw the cursor
movements created from their cortical signals
in real time. In the open-loop case, the tra-
jectories were created offline, after the exper-
iment, from the cortical activity recorded dur-
ing the movement blocks where the cursor
was under hand control (7 ). Therefore, the
subject had no knowledge of these offline
brain-predicted trajectories. In both the open-
and closed-loop cases, the same cortical de-
coding algorithm was used to generate trajec-
tories. This decoding algorithm assumed that
the cells’ tuning functions remained constant
under both conditions.

This experiment was conducted with
monkeys “L” and “M” for 32 and 40 days,
respectively. In both subjects, about 18 cells
were used to create open- and closed-loop
trajectories. As expected, with so few cells,
the open-loop trajectories were not very ac-
curate. Although these trajectories went to-
ward the correct targets more often than they
would have by chance, they usually had at
least one of the X, Y, or Z components
pointing in the wrong direction.

Closed-loop trajectories ended in the tar-
get more often than did open-loop trajectories
(Table 1). Both animals improved their
closed-loop target hit rate over the course of
the experiment, which suggests that the sub-
jects learned to modulate their brain signals
more effectively with visual feedback (8).

Many of the cortical units we recorded
were stable from day to day. Some were
stable for more than 2 years. Other units
showed significant changes in their wave-
forms and movement properties between
days (9). The brain-control algorithm was
adjusted daily to make use of the current
properties of the recorded units. Therefore,
subjects had to learn a slightly different
brain-to-cursor-movement relation each day.
We looked for trends within days that would
indicate learning of each new relation. Paired
t tests showed that subjects initially improved
their target hit rate by about 7% from the first
to the third block of eight closed-loop move-
ments each day (P , 0.002).

Subjects had 10 to 15 s to move the cursor
to each target—enough time to use visual
feedback to make online error corrections in
the closed-loop case. We tested a subject’s
ability to make more ballistic brain-con-
trolled movements by continuing the experi-
ment in monkey M for an additional 20 days
with an increased brain-controlled cursor
gain and the movement time constrained to
800 ms. As in the slow-movement case, the
closed-loop trajectories still hit the targets
more often than did the open-loop trajectories
(42 6 5% versus 12 6 5% of targets hit; P ,
0.0001). Again, there was significant im-
provement with daily practice (0.9%/day;
P , 0.009) as well as an initial improvement
of about 7% within each day (first to third
block; P , 0.05) (10). Despite the shorter
movement time, visual feedback still allowed
the subject to learn from consistent errors in
the brain-controlled trajectories.

In these experiments, the movement-pre-
diction algorithms were based on fixed tuning

1Department of Bioengineering, Arizona State Univer-
sity, Tempe, AZ 85287–6006, USA. 2The Neuro-
sciences Institute, San Diego, CA 92121, USA.

*To whom correspondence should be addressed. E-
mail: aschwartz@nsi.edu

Table 1. Mean 6 standard deviation of daily statistics from the open- versus closed-loop experiment.
Percent time in the correct octant was calculated per movement as the % time the trajectory’s X,Y, and
Z components had the same signs as the target [based on coordinate system with (0, 0, 0) at the center
start position and each target located equal distance in the 6 X, Y, and Z directions]. Differences between
the open- and closed-loop values were significant in all six categories (P , 0.0001).

Monkey

L M Both

Closed-loop brain-controlled trajectories
% Targets hit 52 6 14 46 6 18 49 6 17
% Time in correct octant 36 6 9 34 6 11 35 6 11

Open-loop brain-predicted trajectories
% Targets hit 32 6 11 23 6 5 27 6 9
% Time in correct octant 23 6 9 23 6 9 23 6 9

Miscellaneous
Cells used 18 6 4 18 6 3 18 6 4
Mean R2 0.63 6 0.07 0.64 6 0.09 0.64 6 0.08
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properties obtained from neural activity re-
corded each day during a baseline set of
hand-controlled cursor movements. This type
of calibration cannot be carried out in move-
ment-impaired patients. We have developed a
“coadaptive” movement prediction algorithm
that does not require physical limb move-
ments or any a priori knowledge of cell tun-
ing properties. By iteratively refining esti-
mates of cell tuning properties as the subject
attempted 3D brain-controlled cursor move-
ments, we were able to track learning-in-
duced changes in cell tuning properties.

We tested this coadaptive method in two
healthy macaques by restraining both arms
during a brain-control task after first record-
ing each day’s baseline hand-controlled
movements and calculating each cell’s tuning
properties. At the end of each day’s experi-
ment, tuning functions were also calculated
directly from the cortical activity collected
during the brain-controlled movements. Fig-
ure 1A shows a unit whose directional tuning
differed significantly between the brain-con-
trolled movements and the hand-controlled
movements made earlier that day. Both well-
isolated individual cells and inseparable
multi-cell groups showed substantial changes
in their preferred directions between the two
tasks. On average, the magnitude of these
changes increased over the course of the ex-
periment (Fig. 1B), and the direction of these
changes varied from cell to cell (Fig. 1C). By
the last 2 weeks of the experiment, these
individual shifts in preferred direction be-
came consistent from day to day (Fig. 1D).

Across days, the directional tuning of
most units improved in the brain-control task
versus the hand-control task (Fig. 2, A and B)
(11). This increase in tuning quality was due,
in part, to an improved fit of the units’ firing
rates to a cosine tuning equation under brain
control (12). Although the control algorithm
was designed to accommodate the most com-
mon deviations from cosine tuning (i.e., larg-
er increases in rate with movements in the
preferred direction than decreases in rate with
movements opposite the preferred direction,
as can be seen in Fig. 2C), the units still
showed changes in their average tuning prop-
erties that were closer to a true linear function
of the cosine of the angle between movement
and preferred direction (Fig. 2D). These
changes may have provided more uniform
control and stability over the workspace (13).
The daily improvement in cosine tuning was
mirrored by a steady increase in the accuracy
of the brain-controlled movements (Fig. 2E).

This technique shows how we could train
immobile patients to make 3D cursor move-
ments by coadapting a prediction algorithm
to their changing cell tuning properties. How-
ever, for patients to control useful prosthetic
devices, they would need to use this predic-
tion algorithm without continued adaptation

of its parameters, and they would want to
make a wider variety of movements than the
ones practiced during the coadaptive training.

We tested these issues by following sev-
eral days’ coadaptation training with an ad-
ditional movement task, the constant-param-
eter prediction algorithm (CPPA) task, which
used fixed tuning parameters, added novel
target positions, and required 180° changes in
movement directions (Fig. 3).

There was no significant difference be-
tween the novel and trained target hit rates in
either animal, and both monkeys improved
their performance with daily practice (Table
2) (14 ). Movies of these brain-controlled
movements are included in the supplementa-
ry material.

Our work shows that visual feedback
combined with an algorithm that tracks
changes in cortical tuning parameters im-
proves the efficacy of cortical activity as a
control signal for both fast and slow brain-
controlled movements. Switching from the
hand-controlled to the brain-controlled task
caused global changes in the tuning param-
eters of the recorded neuronal population.

How the rest of the population shaped and
supported these changes is still an open
question. The increased consistency of
these changes across days combined with
the improvement in performance suggests
that the learning process settled on an ef-
fective set of parameters for the imposed
control scheme.

During the first several days of the co-
adaptive experiment, our monkeys pushed
methodically against the arm restraints in
the direction they needed the cursor to
move. However, this behavior quickly sub-
sided as performance improved. Spot
checks of electromyographic (EMG) activ-
ity on the well-adapted days showed sup-
pression of EMG activity throughout the
brain-control task. This indicates that it is
possible to develop effective brain-control
modulation patterns in the absence of phys-
ical limb movements or normal muscle ac-
tivation patterns.

Although the healthy, arms-restrained an-
imal model may not address all the issues
related to retraining cortex altered from dis-
use after an injury or illness, recent magnetic

Fig. 1. Changes in cortical activity between hand-control and brain-control tasks in subject M. (A)
Cell with a 107° change in tuning direction between the hand-control (HC) and brain-control (BC)
tasks (the unit waveform is shown in black). Each dot is the mean firing rate during one movement.
HC rates are in the right column and BC rates are in the left column of each square. The eight
squares correspond to the eight target directions (center four 5 distal; outer four 5 proximal). (B)
Daily mean angles (thick lines) between hand- and brain-controlled preferred directions for all cells
significantly tuned during both tasks (black 5 contralateral and gray 5 ipsilateral units to the arm
moved during the hand-control task). The thin diagonal lines are linear fits with slopes significant
at P , 0.006 (contra) and P , 0.0001 (ipsi). (C) Lines connecting hand-controlled preferred
directions with brain-controlled preferred directions (circle ends) projected onto a unit sphere (day
28, only cells significantly tuned in both tasks; black 5 contra.; dotted 5 ipsi.). (D) Change in the
X, Y, and Z components of the preferred direction unit vectors between the hand- and brain-
controlled tasks plotted day-against-day for eight random pairs of days (days 27 or later, only units
that were significantly tuned in both tasks on both days; 35 6 3 units per pair of days) (see
supplementary material).
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resonance imaging research indicates that the
underlying motor maps are maintained, even
after years of paralysis (15). Additionally,
there are a few cases where completely im-
mobile or “locked-in” patients have had cor-
tical electrodes implanted and have been

taught to communicate by scrolling through a
sequence of letters using the activity of a few
motor cortex cells. These human case studies
suggest that cortical cells can regain and
maintain the level of activity needed to per-
form prosthetic control tasks—even after

long periods of complete immobility (16 ).
Our results show that neural activity can be
reorganized within minutes and, with the
proper algorithm, used to achieve brain-con-
trolled virtual movements with nearly the
same accuracy, robustness, and speed as nor-
mal arm movements.
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R2 values. The black line shows brain-control R2 values. The closed circles indicate days when brain-
and hand-control R2 values were significantly different (paired t test, P , 0.05). (B) Difference in
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Daily minimum (solid line) and mean (dotted line) target radii used to maintain a 70% target hit
rate. The diagonal dotted line is the linear fit of the daily mean (P , 0.0001). The bottom horizontal
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Fig. 3. Monkey M’s
brain-controlled trajec-
tories in the CPPA task.
Trajectories start from
the exact center, go to
an outer target (colored
circles), and return to
the center target (gray
circle). Trajectories are
color-coded to match
their intended targets.
The black dots indicate
when the intended outer
or center target was hit.
The three letters by each
target indicate Left (L)/
Right (R), Upper (U)/
Lower (L), and Proximal
(P)/Distal (D) target lo-
cations. The dashes indi-
cate a middle position.
(A and B) are to the
eight “trained” targets
used in the coadaptive
task. (C and D) are to
the six “novel” targets.

Table 2. Mean 6 standard deviation of daily
performance statistics during the coadaptive and
CPPA tasks. “# Units recorded” includes “noise”
units that were removed during coadaptation. Co-
adaptive target hit rates were recalculated with
targets at various radii based on movements made
after the algorithm had converged.

Monkey

M O

CPPA task
% Targets hit

Novel 80 6 26 73 6 29
Trained 77 6 24 62 6 30
Center after novel 80 6 22 72 6 25
Center after trained 82 6 19 70 6 21

Average movement time (s)
Novel 1.5 6 0.5 2.0 6 0.6
Trained 1.5 6 0.6 2.6 6 0.7
Center after novel 1.3 6 0.7 2.0 6 1.1
Center after trained 1.6 6 0.8 2.0 6 0.9

# Days in calculations 12 5
# Units recorded 64 6 2 31 6 2
# Units used 38 6 2 17 6 2

Coadaptive task
% Targets that would have

been hit at the
following target radii

1.2 cm 76 6 12 20 6 22
2.0 cm 86 6 8 47 6 21
3.0 cm 94 6 4 69 6 9
4.0 cm 98 6 3 81 6 8

# Days in calculations 13 14
# Units recorded 64 6 2 35 6 6
# Units used 39 6 2 21 6 4
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Recent advances in statistical mechanical theory can be used to solve a fun-
damental problem in experimental thermodynamics. In 1997, Jarzynski proved
an equality relating the irreversible work to the equilibrium free energy dif-
ference, DG. This remarkable theoretical result states that it is possible to obtain
equilibrium thermodynamic parameters from processes carried out arbitrarily
far from equilibrium. We test Jarzynski’s equality by mechanically stretching a
single molecule of RNA reversibly and irreversibly between two conformations.
Application of this equality to the irreversible work trajectories recovers the DG
profile of the stretching process to within kBT/2 (half the thermal energy) of
its best independent estimate, the mean work of reversible stretching. The
implementation and test of Jarzynski’s equality provides the first example
of its use as a bridge between the statistical mechanics of equilibrium and
nonequilibrium systems. This work also extends the thermodynamic analysis
of single molecule manipulation data beyond the context of equilibrium
experiments.

Irreversible processes as diverse as mechan-
ically induced protein unfolding, the fracture
of stressed materials, and the sudden forma-
tion of crystallization nuclei all involve the
time evolution of states far removed from
equilibrium. To characterize these nonequi-
librium states, it is generally necessary to
specify numerous details of the system and its
surroundings. By contrast, reversible process-
es are idealizations in which a system passes
only through a succession of equilibrium

states, which can be described completely
with only a few variables such as pressure
and temperature. Reversible processes are
powerful tools in thermodynamics because
they make it possible to relate the measured
heat and work to the thermodynamic state
variables. Yet many processes in nature relax
to equilibrium only very slowly, precluding
quasi-reversible experiments and thus pre-
venting measurement of the thermodynamic
state variables. Solving the problem of recov-
ering thermodynamic variables from irrevers-
ible experiments remains one of the unfin-
ished tasks in thermodynamics.

It follows from the laws of thermodynam-
ics, first formulated in the early 19th century,
that the increase in Gibbs free energy DG and
the mean work ^w& needed to bring about that
increase are related by DG # ^w&. The equal-

ity holds when a process is carried out revers-
ibly, and the inequality holds otherwise. In
1951, Callen and Welton realized that for any
system that remains near equilibrium, the
energy dissipated is proportional to the sys-
tem’s fluctuations (1). With this fluctuation-
dissipation relation, researchers acquired a
better estimate of DG for irreversible process-
es: DG ' ^w& – bs2/2, where s is the stan-
dard deviation of the work distribution and
b21 § kBT (where T is absolute temperature
and kB is Boltzmann’s constant) (2–4). Un-
fortunately, this DG estimate is valid only in
the near-equilibrium regime, and so it was
thought that free energies could only be
obtained for processes remaining close to
equilibrium.

This state of affairs changed in 1997,
when Jarzynski derived an equality (5–8) that
relates the free energy difference separating
states of a system at positions 0 and z along a
reaction coordinate, DG(z), to the work done
to irreversibly switch the system between two
states,

exp[2bDG(z)]5limN3`^exp[2bwi(z,r)]&N

(1)

where ^ &N denotes averaging over N work
trajectories, wi(z,r) represents the work of the
ith of N trajectories, and r is the switching
rate (9). The mechanical work wi(z,r) re-
quired to switch the system between positions
0 and z under the action of a force F is

wi~ z,r! < E
0

z

Fi~ z9,r!dz9 (2)

where Fi(z9,r) is the external force applied to the
system at position z9 with switching rate r (10).
Equations 1 and 2 state that the free energy
change for a reaction can be determined by
averaging Boltzmann-weighted work values
obtained from repeated irreversible switching
of the system (11, 12). Unlike most expressions
relating equilibrium and nonequilibrium statis-
tical mechanics, Jarzynski’s equality holds for
systems driven arbitrarily far from equilibrium
[for other relations that are valid in the far-
from-equilibrium regime, see, e.g. (13–20)].
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