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Using dispersion relations and the convergence properties of ¢-channel isospin ampli-
tudes, we show that (a) AI=2 electromagnetic mass differences should be correctly ob-
tained by summing the self-energy contributions of a few low-lying states; (b) AI=1 mass
differences cannot be obtained in this way, and a subtraction term is always necessary;
(c) the subtraction term has the correct sign for explaining the proton-neutron mass dif-

ference.

The problem of computing the electromag-
netic mass differences between particles in
a given isomultiplet has always been one of
the greatest puzzles of elementary-particle
physics. It is well known that the simple, na-
ive calculations which include only the contri-
butions of a few low-lying states to the self-
energy diagram lead in most cases to totally
wrong results (including the notorious wrong
signs for the proton-neutron and K*-K° mass
differences). On the other hand, the same sim-
ple approach gives the correct sign and mag-
nitude in a few other cases (such as the mt-7°
difference). In this paper we propose simple,
reasonable assumptions on the energy depen-
dence of £-channel isospin amplitudes for for-
ward Compton scattering and, using these as-
sumptions, we reach the following conclusions:

(a) All AT=2 mass differences should be cor-
rectly obtained when we approximate the self-
energy diagram by the contributions of a few
low-lying states.

(b) There is no reason to expect that the same
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simple approximation will give the correct or-
der of magnitude or even the correct sign for
the AI=1 mass differences.

(c) A consistent calculation of the AI=1 terms
must include an additional “subtraction” term.
We show that this term has the correct sign
and, roughly, the correct order of magnitude
required by the experimental masses.

We also demonstrate that the statements (a)-
(c) are correct for all six electromagnetic had-
ron mass differences which are experimental-
ly known, and we propose further experimen-
tal tests of our assumptions.

In perturbation theory, the electromagnetic
self-energy of a hadron is given by!
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where e#eVTW(qz, v) is the forward amplitude
for Compton scattering of a virtual photon with
mass ¢%, energy ¢°=v, and polarization €M from
a hadron with momentum p and mass M (Mv
=—pq). We write T EE
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Cottingham® has shown that by rotating the integration contour in (1) from the real to the imaginary
axis in the complex v plane, one can express AM in terms of scattering amplitudes for spacelike
photons, allowing us, in principle, to use experimental electron scattering data in order to compute
the integral. Substituting v—¢v and integrating over the angular variables in (1), we find
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We can now write, for £, and #,, fixed-¢® dis-
persion relations in v and compute the #;’s in
terms of their absorptive parts. The main
obstacle at this point is, of course, the ques-
tion of possible subtractions in the dispersion
relations, since only in the case of no subtrac-
tions can we hope that the contribution of the

,iV)= (g% + 2VP)t,(q%, iv)]. 3)

l first few low-lying states will dominate the

expressions for ¢,, 7, and hence for AM. The

convergence properties of the dispersion in-

tegrals are determined by the asymptotic be-

havior of the absorptive parts of the amplitudes.
To lowest order in a, the electromagnetic
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mass differences transform according to AJ of Regge pole theory.? We assume that a for-
=1 or AI=2. For any given isomultiplet we ward spin-nonflip amplitude with a given set
can separate AMY and AM®, and using Eq. of #-channel quantum numbers will be propor-
(3) we can express each one of them in terms tional at high energies to ,,a(O)’ where «(0)

of Compton scattering amplitudes with ¢-chan- is the £=0 intercept of the leading Regge tra-
nel isospins /=1 and /=2, respectively. We jectory with the appropriate quantum numbers.3
now face the following question: What is the Following de Alfaro, Fubini, Rosetti, and Fur-
asymptotic energy dependence of the forward lan,* we further assume that, in view of the
spin-nonflip 7=1 and /=2 f-channel amplitudes absence of low-lying /=2 mesons, all /=2 tra-
for Compton scattering of photons with mass jectories have aj = 9(0) <0.

q%? At this point we propose to use the most An unsubtracted dispersion relation for
successful and least controversial prediction l t; I)(qz, v) (i=1,2; I=1,2) would have the form
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where ti(I)(qz, V) =ti(1)(q2, -v) and vy is the inelastic threshold;
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GE, M°(@?) is the appropriate linear combina- 1
tion of the squared form factors |e.g., for the ly reasonable to assume that the integral over
nucleon, GMz(qz)I= 1= GMz(qz)p—GMz(qz)n]. the absorptive part is dominated by a few low-
Assuming that the total cross section is bound- lying states and that AM @ can be determined

ed by a constant, Eq. (2) gives by this approximation.

For I'=1, the energy dependence of £, is de-

2 (), 2 termined by the intercept of the leading trajec-.
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9 (q, V)‘v- o Sconst. xv. (7 tory with quantum numbers I=1, C=1, G=-1,
P=(-1). This is the trajectory of the A, me-
tz(I) will therefore satisfy Eq. (4) for I=1,2. son which has® a4 (0)~0.4>0. We therefore
The amplitude tl(z) satisfies predict ?
It. P(q2, v)l o4, 9)
ltl(z’(qz, v)lV_Oooc Vafzz(o), 8) 1 v
The integrand in (4) will fall off like »~%® and
If a;_9(0) <0, then ¢, obeys the unsubtract- the dispersion integral will not converge. We
ed dispersion relation (4). It is then perfect- must introduce a subtraction and we find (we

] subtract at v=0)

(10)
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We can now safely assume that the contribution of the low-mass states dominates the integral in (10).
However, we have an additional, unknown term #,‘?(¢%,0) which essentially results from the presence
of high-energy contributions and which must be included in our final expression for AM . We con-
clude that for all AI=1 mass differences there is absolutely no reason for the simple approximation
of “a few low-mass states” to give the correct magnitude or sign. What one really computes in this
approximation is a combination of AM ® and an unknown term, and it is always possible that this ex-

1304



VoLUME 17, NUMBER 26

PHYSICAL REVIEW LETTERS

26 DECEMBER 1966

pression will have the opposite sign to that of AM ®,

The correct expression for AM? is

MY _an S am F v amF v an?, (11)
where
sub ©
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AM! is the inelastic contribution obtained by
substituting the integrals of Eq. (4) (for £,‘) therefore find (for the nucleon case'?)
and Eq. (10) (for #,) in (3). . 2 (a2 Y . (/.2
If we now consider the present status of the B_{noq L% @, 0) =M llflof‘ @)
calculations of AM for mesons and baryons 1 ’ o 1
we find the following picture: =W(upz— unz—l). (15)
(1) There are two experimentally known AJ
=2 mass differences: m (7t)—m(m°)=4.61 MeV; Equation (12) can now be rewritten as
mE)+m(E7)-2m (Z°)=1.76+0.23 MeV. It sub 3aM
AM = - 2-1
has been known for a long time®s” that the sim- ! Hn )f glndr,  (16)
N . +_ 70
gil:fitr:fci}ulzggr;fz‘éits zgfcﬁ?:égﬁt;::s f7oTr rz;js(sz) ) where 7=¢%/4M? and g(T) is a dimensionless
’ unknown function of 7 satisfying g(0)=1. Although

indicate that, again, the correct sign and mag-
nitude are obtained. The actual numbers de-
pend on the details of the assumed ¢® dependence
of the form factors and on the number of inter-
mediate states included in the calculation. Typ-
ical numbers are’ AM® (m)~5+1 MeV; AM ¥ (Z)
~1.5+ 0.5 MeV.

(2) There are four known Al =1 mass differ-
ences: m(n)-M(p)=1.3; m(E7)-m(Z*)=1.9
+0.1; m(Z™)=-m(=Z°) =6, 5:1:1 0; and m (K°)-m(K")
—3.90:&0.25 (in MeV). In all these cases we
find indeed that the simple approximation fails
completely,” and at least for N and K even the
sign is wrong. This was recognized a few years
ago by Coleman and Glashow® who proposed
that an arbitrary AI=1 “tadpole” term should
be added to all these calculations. We inter-
pret this “tadpole” contribution as our subtrac-
tion term [Eq. (12)] and we believe that our
approach explains why “tadpoles” are always
needed for AI=1 and are not required for A7
= 2.10

What can we say about the sign and magnitude
of the subtraction term (12)? We multiply Eq.
(10) by g2 and take the limit ¢*~0. For v=+0,
t,%(¢?, v) does not have a pole'! at g?=0. We

we do not know the explicit form of g(7), we
can safely assume that the integrand in (16)
converges very rapidly [possibly as fast as
q~%, since #,(¢%,0) is probably proportional
to the product of two ordinary form factors,
each presumably falling like ¢~*]. The sign
of AMSUD will then be determined by Eq. (15)
and will be negative for m(p)-m(n)! Neglec-
ting AMZ in (11) and using the experimental
nucleon form factors and mass difference we
find that f g(T)dTt 1s required in this case to
be of the order of 4. In order to see whether

this is reasonable we parametrize g(7)=e~@7
and find a~ 4, leading to
_2 /12
0, 0=e "M 1)

This has a reasonable slope'® at ¢2=0. A more
detailed numerical analysis for the various
terms in (11) will be given elsewhere.

There are two “families” of additional exper-
imental tests for our general approach. Mea-
suring some more Al =2 differences such as
pt=p—, Y ¥4+ Y *-2Y,* and N*** 4+ N¥-2N*,
is one possible set of tests. However, even
the simplest calculation of these differences
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requires some information on the magnetic
moments of these particles and, therefore,
suffers from very large ambiguities. A sec-
ond test which will be much more crucial and
will be performed in the next few years at the
Stanford Linear Accelerator Center is to mea-
sure the total yp and yn cross sections.® We
predict that at high energies,

!ct(yp)—ct(yn)loc p—0.8, (18)

In conclusion let us summarize our results:
We have explained both the success (for AI=2)
and the failure (for AI=1) of the simple approx-
imation of including only a few low-lying states
in the expression for the electromagnetic self-
energies of hadrons. We have presented an
explicit formula for AM (I =1) which includes
a ‘“natural” subtraction term, and we have dem-
onstrated that this term has the correct sign
and, roughly, the correct order of magnitude.
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with S. M. Berman, S. D. Drell, A. C. Finn,
and J. D. Sullivan.
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’We assume nothing about the ¢ dependence of the
residue functions; our results will not be modified by
cuts; we use only the sign of @(0), and not its numeri-
cal value.

3Throughout this paper, when we write “Compton am-
plitude” or “total yN cross section,” we refer to the
contribution to lowest order in @. For ¢%# 0 photons,
this is practically equivalent to the observed ampli-
tude or cross section. For real photons there is a
large contribution of electron pair production in which
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0we can extend our superconvergence assumptions
to SU(3) and assume that since there are no known 10
and 27 meson multiplets, they all have a(0)<0. This
immediately gives the octet transformation properties
for the tadpoles.

HRor v+ 0, ¢*Imt,(¢% v) is a longitudinal inelastic
cross section and it vanishes at q2= 0. This implies
that

lim g% Ret, (42, v)
q2.—-— 0

is independent of v (for v # 0), since the limit ¢g>—0
of the Born term in Eq. (10) is v independent. For
large v the ratio between Ref; and Im¢; approaches a
constant and since Imf; has no =0 pole Ret, will al-
so be finite. We conclude that the ¢%=0 pole of the
Born term must be compensated by a ¢%=0 pole of
Imt,(q?, 0).

2We do not know the magnetic moments of £ and =.
However, if we use their SU(3) values, we find that
(15) has the right sign for these cases as well.

BBThe function (17) decreases at small g%, more slow-
ly than ¢°G%(¢% where G(¢?) is any electromagnetic
form factor of the nucleon. We have to know much
more about the detailed ¢* dependence before we can
draw any final conclusions.



