
MBE Growth Control Program

Enrico Segre, enrico.segre@weizmann.ac.il

version 1.0.2, commit 408547, May 5, 2020

https://gitlab.weizmann.ac.il/Segre/gongo/commit/4085479c9e326ee2a2ab2cc3e0d5264de5bd4493


2



Contents

I User manual 5

1 Scope and purpose of the program 7

2 Installation 9
2.1 Executable Build Installer and Runtime Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Updating previous distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Note about Windows �le permissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Multiple installations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Operation 13
3.1 Program overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Hardware con�guration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.1 Cell Con�guration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.1.1 Single Filament e�usion cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.1.2 Double Filament e�usion cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.1.3 Cracker e�usion cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.2 Main and timing con�guration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.3 Con�guration �les . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Growth recipe panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3.1 The Recipe: Layer notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3.1.1 Layer materials and associated input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3.1.2 Material Picker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.1.3 Substrate rotation and temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.1.4 Looping (periodic structures, superlattices) . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.1.5 Keyboard shortcuts in the Growth Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3.2 Auxiliary recipe information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.3 Load, save, print recipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.4 Process compilation and veri�cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 Graphs and process details panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4.1 Cumulative thickness tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4.2 Setpoints and rates graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4.3 Cells use graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4.4 Rate table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.5 Plant control panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.5.1 Manual control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5.1.1 Keyboard shortcuts in the execution panel . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.5.2 Process execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5.2.1 Starting the growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.5.2.2 Process running . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.5.2.3 Automatic/manual status of a control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.5.2.4 Pause . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.5.2.5 Skipping steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.5.2.6 Process termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3



CONTENTS CONTENTS

3.5.3 Simulated hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.5.3.1 stretching (actually, accelerating) process time . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.6 Logger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.6.1 Automatic process log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.6.2 Raw events log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.7 Session parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

II Design philosophy and implementation choices 31

4 Data�ow and internal representations 35
4.1 From cell con�guration to picker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1.1 Format of the plant con�guration �le . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2 From growth table to ProcessSteps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2.1 numeric representation of the growth table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2.2 the class ProcessSteps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3 From ProcessSteps to schedules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 Execution engines 39
5.1 Realtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6 Adding further hardware and functionality 41
6.1 Issue: Double (triple) a�liation for devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.2 Case study: adding a new valve controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7 Multiple con�gurations 43
7.1 Con�guration and session �les . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.2 Multiple plants on a single computer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

8 Source control and build 45
8.1 Git repository . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
8.2 Issue tracker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
8.3 Building and distributing the application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

9 Alternative ideas 47

4



Part I

User manual

5





Chapter 1

Scope and purpose of the program

This is a program for controlling molecular beam epitaxial plants, developed for the Submicron Center at the Weizmann
Institute, and therefore geared in primis for the present hardware and working practices. As such, this program allows to
de�ne the plant con�guration, monitors and controls the immediate state of e�usion cells and shutters; it is then devised
for writing recipes for layered growth processes, and to execute them in automatic or supervised mode.

The program is designed to run also in absence of connected hardware, to allow editing and reviewing of growth
sequences.

In which order to read this document: Part I is more intended as an user manual: common everyday use of the program
involves designing growth recipes, as described in 3.3; validating and graphically reviewing growth recipes (3.3.4); and
monitoring the plant hardware during idle, preparation and growth phases, as described in 3.5. The general con�guration
of the plant, described in 3.2, needs to be created once from scratch for a new plant, and would seldom be revised when
hardware is recalibrated or changed. The installation of the program on a computer and its requirements are explained
in 2.

Part II discusses a number of program design issues, and rambles about choices done in the development of this
program.
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Chapter 2

Installation

Windows installers for the compiled program are provided (executables for linux and Mac could also be generated on
request). The installers are generally named according to the short git SHA1 signature of the snapshot built (see 8.1).

The default application directory proposed by the installer is C:\Program Files\GrowthScheduler.

2.1 Executable Build Installer and Runtime Engine

The program is coded in LabVIEW, hence even the compiled package requires the preliminary installation of a LabVIEW
runtime engine. As of the core development in 2015, the program has been developed using LabVIEW 2014sp1, so the
runtime engine needed is the corresponding one, which can be downloaded from ni.com site or installed from LabVIEW
media. Sporadically I provide packaged installers including the engine too (size ~350MB), but otherwise, for minor and
continuing updates, I just generate a smaller (~14MB) installer for the compiled code alone.

The Runtime engine needs to be installed only once on the target machine. It can be installed running once the full
installer of an older version; the application can be subsequently updated by a later smaller installer. The runtime engine
is also present whenever the LabVIEW IDE has been installed.

2.2 Updating previous distributions

The same installer can be used to create an istallation ex novo, as well as to upgrade the a previous version. According
to Windows procedures, downgrading is only possible �rst uninstalling (Control Panel/Programs and Features) the more
recent version and subsequently reinstalling the older1.

Each installer includes, for de�niteness, a given version of the plant con�gura-
tion �le plantconf.cfg (3.2), and copies it into the default installation directory.
Any change to the system con�guration done before the upgrade could be over-
written, so care has to be taken for the previous con�guration to be backed up and
reinstated. To prevent inadvertent overwrite of an existing con�guration �le, if a
�le plantconf.cfg is found in the installation directory, a popup dialog appears
allowing to choose the course of action.

The current installer also writes a �le GrowthPaths.ini in the application di-
rectory (see 3.7; this is also changed back and forth between versions, preferring
alternatively the User Application Data directory). This �le is overwritten at every
installation.

2.3 Note about Windows �le permissions

Depending on the machine and on the user account performing the installation, the �les in the Application Directory may
result as write protected or not for the ordinary user. This is a hindrance, because plantconf.cfg and GrowthPaths.ini

1Occasionally, due to some automatic Labview builder numbering of versions, and when I have used di�erent development machines to build

di�erent installers, the operating system may misjudge the order of versions. In such case too, uninstallation �rst is needed.
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need to be rewritten by the program, the former from time to time, and the second at the end of every session. In case
the program is found to be not able to rewrite them, these are a couple of points to check:

� the application directory (or perhaps just the relevant �les) should be writable

� There should be writing privileges for a group �Authenticated Users�:

If a rule for this group is not listed, it has to be created.

10
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2.4 Multiple installations

It could be convenient to have more than a single copy of the program installed on a computer. This has to be done
manually, duplicating the Application Folder, and thus is not tracked by the OS.

One case use for multiple installations is convenience of reviewing independently (o�ine) recipes and simulate the
execution of di�erent plans in di�erent copies of the program. There could be other strategies for that and we're not yet
�xed on a de�nite scheme, see discussion in 7.
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Chapter 3

Operation

3.1 Program overview

At startup, two main windows open: the Growth Recipe and the Plant control panels. Both are described in detail
in the following.

The Growth recipe panel opens with empty entries. The Plant control panel is shaped according to the previously
saved hardware con�guration. That is, it may have a di�erent appearance than in �gure the �rst time, and adapt once
the system is con�gured as described in the following (3.2). The Plant control panel monitors, live from the moment

13
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it opens, readouts from the con�gured hardware, if present, or fake data, for simulation purposes. It can even be closed,

and retrieved again with the button �Execution� in the Growth recipe panel, without interruption of its full
running state. Closing the Growth recipe panel instead quits the program.

The casual user of an already con�gured plant, not interested in the details of the con�guration process, would probably
skip from this point to 3.3.

3.2 Hardware con�guration

In the intended work�ow, the hardware con�guration panel is seldom accessed, as it needs to be set up only once for
each plant, and changed only when cells are exchanged or recommissioned; periodically the e�usion performance may be
measured and the rate con�guration may need to be corrected, but, all together, not as part of the everyday procedure.

The con�guration panel is modal, to prevent any other program action while the con�guration may be
changed. It is opened with the dedicated button on the Growth recipe panel.

The con�guration panel has two tabs, one for de�ning everything related to the e�usion cells (3.2.1), and
the other for con�guring about everything else, that is properties of hardware in the main growth chamber, and general
readout intervals and timings (3.2.2).

3.2.1 Cell Con�guration

The left stack (refer to the �gures shown in the following paragraphs) de�nes general properties of each e�usion cell. New
entries are created by typing into the �elds of the next-to last element of the array, or using the right-click contextual
menu �Insert element� at any point of it.1

Each cell has the following global properties:

� a short identi�er (yellow �eld), which is used throughout the Material formulas (3.3.1.1); commonly, chemical element
symbols are used;

� a long, free text description (light blue)

� an elemental type property, which can be III base, III solute, (IV) dopant, V (the roman number being the chemical
valence group in the periodic table). The correct type rules how the element can be used in growth formulas.

� a cell kind, currently Single Filament, Double Filament or Cracker. Di�erent cell kinds have di�erent hardware
components and need a speci�c di�erent con�guration subpanel.2

Pressing the con�gure button, the speci�c con�guration panel opens on the right. The button of the cell currently
con�gured is highlighted in red.

In all systems we thought of, all cell shutters are driven by a single multishutter controller, which may or may not be
responsible for further controls like main cell shutters and actuators. The controls for setting the communication resource
and the device type of the shutter controller are placed above the cell list, the individual channel for each cell is set in its
particular con�guration subpanel.

1Currently, Insert element resets all the detailed con�guration of the following cells, see related ticket
2Currently, changing the cell kind resets all the detailed con�guration of the cell, see related ticket
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3.2.1.1 Single Filament e�usion cells

A single �lament cell has a bulk heater, whose
temperature is controlled according to the e�u-
sion rate (and hence the epitaxial growth rate)
desired. The cells are periodically calibrated to
assess the R(T ) dependence, which is usually
assumed to be in the form R = a e−b/T . The
inverse formula T (R) is input. For generality,
it is not limited to the form T = A/(B−logR);
other expressions can be input. The syntax is
that of the LabVIEW formula parser.

It is customary to write growth formulas as
described in 3.3.1.1, where the element name
is postpended with a su�x indicating a prede-
�ned rate. This su�x is free text, usually one
�gure numbers are used. A table of prede�ned
labels and rates is �lled, where the resulting
bulk temperature is automatically computed.

The prede�ned rates are binding if the cell
is used for a base III element or for a dopant,
but are only informative for a solute III, because in practice the rate of a solute III is computed and not a primary input.

The Look Forward Time is used during process scheduling to allow preheating and stabilization of cells before their
use in the process. The logic is that a cell setpoint must be commanded at least LFT seconds before the cell is �rst used;
and if the growth process is programmed with intermittent uses of a cell, the cell is brought to a standby state if the pause
is longer than 2LFT . (If a process is programmed with changes of the setpoint within a time shorter that LFT between
intermittent uses, the setpoint is changed as soon as possible, and it is the responsibility of the writer of growth recipes
to run judiciously into such case).

For the heater itself, the communication address has to be de�ned; moreover, the range temperatures and the temper-
ature at which the cell is to be held at idle time (idle T ) and while standing between discontinuous uses in the course of a
process (standby T ). At the moment the choice of two di�erent Eurotherm controllers for the heaters is o�ered; however,
the communication to them is identical and coded as a single case. The controller list might be expanded in future if the
need arises.
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3.2. HARDWARE CONFIGURATION CHAPTER 3. OPERATION

3.2.1.2 Double Filament e�usion cells

Double �lament cells are analogous to single �l-
ament cells, with the presence of an additional
heater for the lip, having the same con�gura-
tion parameters of the bulk heater. During
growths the lip temperature is set as a func-
tion of the bulk temperature, as expressed by
the lip formula.

3.2.1.3 Cracker e�usion cells

The e�usion rate of a cracker is determined by
a valve position, and not by the temperatures
of the heaters. The prede�ned rates are the
breakpoints for linear interpolation, when an
arbitrary rate is used.

The valve driver and communication ad-
dress is chosen in the apposite subpanel. Im-
plemented drivers at the present time are for
the older Veeco SMC (bisync serial), for the

newer Veeco SMC-III Flexcomm (modbus serial, as we haven't been able to use bisync serial, theoretically identical to
the former), and Riber AVP (modbus serial). A further option �manual� is provided out of no other choice. When that is
chosen, the communication resource chosen is irrelevant.

The look forward time is taken into account
to change anticipatedly the valve setpoint, but
enters otherwise there is no setting of valves in
standby or idle positions.

Crackers have also two heaters, whose ad-
dresses and temperature ranges have to be
set. Di�erently than other cells, however, these
temperatures can only be controlled manually
in the execution panel and are not driven by
the growth process. Therefore, while the min
and max temperatures have a safety meaning,
the idle and standby temperatures are irrel-
evant. For programming economy, the same
heater con�guration template has been used
as for the other cells.
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3.2.2 Main and timing con�guration

The subframes of this tab have the following function:

Substrate Heater has the same con�guration mask as the cell heaters, for lazy programming uniformity. The idle
temperature is that at which the substrate is sent at the end of a growth process; the standby temperatures is
irrelevant.

Substrate rotator besides specifying the communication port and the type of the controller, the slew rate speci�es the
maximal angular acceleration/deceleration, which the user may want to keep low in order to prevent unnecessary
impulsive stresses and friction.

Pyrometer as one of the possible ways of reading it out has hacked to be using one Eurotherm A/D channel, the address
of that can be speci�ed.

If the controller or driver �eld of one of these devices is set to Manual (for shutters) or Unknown (pyrometer readout) or
custom (rotator), the communication parameters are ignored, and there is no risk of con�ict with other devices.

Engine query times state variables are periodically read, unless a write to the same controller is imminent. These
control allow to specify the relevant timings: with which frequency to read (the more, the more immediate indication
in the Plant Control Panel 3.5), and how much time each read is suppose to take at most (to cancel a read if a
scheduled write is supposed to be sent before that time). There are presently four of such timing controls, as the
choice has been to use four engines (5).

Ramping update time How often the temperature of a ramping cell is recalculated. As the heaters are slow responding
objects, it doesn't make exceeding sense to send temperature change commands more than once in every few seconds.

Prerun waiting time The guard time before starting a process, as described in 3.5.2.1.

3.2.3 Con�guration �les

On closing the panel, all con�guration changes are e�ected in the various parts of
the program (fact which may invalidate the current recipe or settings), and the new
con�guration is written in to the default �le plantconf.cfg. The current logic is
the following. It can perhaps be changed in future, it has some drawbacks but it also its rationale and advantage.

� At program start, the default con�guration is read from the �le plantconf.cfg, which resides in the same directory
the same directory of GrowthScheduler.exe (or in that of GrowthPlan.vi, if the sources are tested in the
Labview IDE).
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� Every time the con�guration panel is closed, the �le plantconf.cfg is overwritten, either that the con�guration
really changed or not.

� The con�guration panel has in any event buttons for a) saving the current con�guration under any other name in
any directory; b) load a con�guration �le with arbitrary pathname.

� It is useful and recommendable to keep safety copies of con�gurations at a given instant in time. To that extent the
principal �le plantconf.cfg can be copied around wit OS action in a safe place, with the same or with a di�erent
name; or the con�guration panel can be used to save it under another name.

� When a con�guration �le is loaded with the con�guration panel, the new con�guration is saved in plantconf.cfg.

As a matter of fact, the �le plantconf.cfg is not meant to be easily edited as text �le, externally by the user. Some
reasoning is in 4.1.1.

3.3 Growth recipe panel

In this panel, growth process recipes can be edited, loaded,
saved. The main control of this panel is the table contain-
ing the growth recipe itself. In addition, the buttons for
(re)opening the Con�guration panel (described in 3.2.1),
the Graphs and Details panel (3.4) and the Plant con-
trol panel (3.5) are located here.

Entries of the table input by the user are displayed in
black font, derived values computed according to the rules
are printed in violet. The content of a layer row is validated
as it is typed in, marking with a red background missing
or invalid entries, and computing derived values as data
is available. Input focus is automated so that as soon as
one value is typed and Enter/Return are pressed, focus is
moved to the next relevant input cell. The resulting total
growth time is also updated as it goes.

3.3.1 The Recipe: Layer notation

The program is devised for the growth of epitaxial layers of
varying composition and thickness, substantially based on
heterogeneous III-V compounds, with dopants. Each row
of the growth table re�ects a stage of this process, either a
growth one, during which e�usion cells are brought to pre-
scribed temperatures and respective shutters are open, or
growth pauses, during which only element V cells are oper-
ated, keeping the e�usion valves open, in order to maintain
a supporting atmosphere.

3.3.1.1 Layer materials and associated input

The following di�erent compositions are admitted. The one
or the other determines which other entries in the layer
row are meaningful, and whether they are automatically
computed or need to be input. In the following, A stands
for a solute group III component, B for a base element of
group III, C for a group V, and D for a dopant. Valid
possibilities are:

18
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1. BC binary layer with base III.
Only the layer thickness is input. The growth rate of the layer is determined by the prede�ned rate chosen for B.

2. ABC ternary solid solution.
Inputs are the percentage x% of A, and the layer thickness. The component B is present at (100− x)%.

3. AABC quaternary solid solution.
Inputs are the percentages x% and y% of the two solutes A, and the layer thickness. The component B is present
at (100− x− y)%.

4. AC binary layer with 100% �solute� III.
Inputs are the desired growth rate and the desired layer thickness.

5. AAC ternary solid solution without base III
Inputs are the desired growth rate, the layer thickness and the percentage x%. The fraction y% = 100− x% is �lled
in automatically.

6. C, CC growth interruption.
The only input is the desired growth (pause) time. In the case CC, the column for the percentage z% can be �lled
so as to show an indicative value, but it doesn't a�ect any computation3.

7. rABC, rAAC ramped solid solutions (rA rAC and rA rABC are also possible though I understand not used
in practice)
The concentrations of the ramped solutes start from the concentration of the corresponding component at the end
of the previous layer, and vary linearly with height till a �nal value. The inputs are the same as for cases 2. and 5.,
but solution percentages input are intended as those to be reached at the end of the layer.

8. BC:D, ABC:D, AABC:D, AC:D, AAC:D, 3-d doped layers.
As the corresponding preceding cases, with the addition of the dopant. The additional input is the desired bulk
dopant concentration, which is assumed not to a�ect the growth rate.

9. C:D 2-d doping (∆-doping).
Inputs are the surface dopant concentration and growth time.

The convention is to display the formula with its constituents in that order, i.e. AlGa3As3 for case 2, rAlGa4As4 for
case 7, etc.

3.3.1.2 Material Picker

To avoid mistakes in inserting formulas, a modal popup picker is provided.
The picker opens automatically whenever focus is in a Material cell in the
Growth table, if Auto Picker is on; otherwise it can be invoked with the
binding F3.

The buttons of the picker are generated from what de�ned in the cell
con�guration. The color of the buttons re�ects the role of the component:
olive green for base group III components, light green for solute III, yellow
for dopants, fuchsia for group V. Components are chosen either pressing on
the buttons, or typing the letter and the �gure corresponding to the desired
cell and rate, e.g. typing C7 or 7C in the example shown in �gure to obtain Ga3 in the formula. Components can be
entered in any order, the picker validates and normalizes the formula as it goes.

To replace a component previously entered with a given rate, with a di�erent rate (e.g. Ga1 with Ga2), it is su�cient
to press the button for the new rate, or to type the new cross-code.

To remove a component from a formula, it is possible to press on a black empty cell in the relative column.

3I wonder if z% shouldn't result instead from the rates chosen, which are in �ux units anyway.
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Picker keyboard shortcuts

Return exits the picker, sending the constructed formula to the current cell in the growth table

Escape exits the picker, without passing the modi�ed material

Backspace removes the last component entered

Delete clears the current formula

3.3.1.3 Substrate rotation and temperature

They have to be �lled in for every layer. However, the default values written in advance into �layer
defaults� are proposed, as a convenience.

3.3.1.4 Looping (periodic structures, superlattices)

If a given set of consecutive layers is to be repeated a number of times, the cell �jump to� of the last layer of the set is to
be �lled with the number of the �rst layer of the set, and the �repeat� cell with the number of repetitions. All the �jump
to� cells of the member layers are highlighted in dark grey to mark the stretch. In MBE language, such repetition is said
to form a superlattice. A recipe can contain more than one non-overlapping repetition. Nested loops are allowed, even if
not used in practice.

3.3.1.5 Keyboard shortcuts in the Growth Table

F3 on a Material cell, pop up the Material picker (unless the switch �auto picker� is toggled)

Enter, Shift-Right move to the next editable cell on row, or to the beginning of the next row

Shift-Enter, Shift-Left move to the previous editable cell

Shift-Up move to the editable cell directly above, or to the �rst editable cell on the right in the row above the current,
if the cell directly above is not editable

Shift-Down move to the editable cell directly below, or to the �rst editable cell on the right in the row below the current,
if the cell directly below is not editable

Shift-Insert, Ctrl-Insert insert a layer low at the before the current position

Shift-Delete, Ctrl-Delete remove the current layer row

3.3.2 Auxiliary recipe information

These �elds are saved along with the recipe:

Process description free text

Substrate type free text

Congruent sublimation point temperature in °C. The grown crystal has to be maintained under element V atmosphere
as long as the substrate temperature is higher than this value, as it goes in 3.5.2.6.

3.3.3 Load, save, print recipe

By self-explanatory buttonry.
Recipe �les themselves are tab-separated text �les, plainly re�ect-

ing the process information and Growth table content, as input. The
default extension of recipe �les is .rcp.

When an existing recipe is loaded, its modi�cation date is set to the current time.
For �exibility and device independence, Print generates a temporary html �le with a colorized rendering of the recipe,

and opens it in the default browser. From there, it can be printed or saved using the browser's own commands.
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3.3.4 Process compilation and veri�cation

On one hand, the input validation of the table rows doesn't guarantee that the complete
growth process is feasible, because of constraints on the allowed temperatures of the cells
and because sudden rate changes on heated e�usion cells cannot take place. On the other,
the table content is not yet in the form of a process schedule.

Compilation and process validation happen when the �validate� button is
pressed, or when focus is brought to the Plant control panel (3.5) or to theGraph and
process details panel (3.4). In the current program implementation compilation is not
immediate, and moreover it is supposed to bring up warning dialogs like those in �gure,
for unrealizable recipes. Because of this, compilation is not launched automatically for
each change in the table content.

The �validate� button is grey if the recipe has been modi�ed but not validated, yellow
while it is validated, green if it is compiled and valid and red if it is compiled and invalid.
Invalid recipes can be executed, but the results may be not those prescribed by the recipe
table�cells may not reach in time the temperatures and rates prescribed, temperatures
may be clipped to the ranges con�gured for the cells, layer thicknesses may be di�erent
than what asked, etc.

Layer repetitions (3.3.1.4) demand that the growth process is unrolled, to determine the correct antecedent and followers
of a certain iteration of a given layer. This is re�ected in reporting both the step number and the corresponding [layer]
number, as displayed in the warning messages here and in the Rate table below (3.4.4).
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3.4 Graphs and process details panel

The button �Detail� on theGrowth recipe panel opens a new window with four tabs. These tabs where initially conceived
as a graphical veri�cation aid during development, and haven't all been polished for clarity. All the information shown
refers to the last recipe validated; however, opening or bringing the focus to this window triggers a validation of the recipe
(if it was changed since), to actualize the content.

3.4.1 Cumulative thickness tab

This would be a graph of the total growth thickness, or of the step timing as a function of either the growth time or
the step number. It is not the most useful graph, nor it is accurate in the case of ramped layers, as it shows a stepwise
linear approximation of the thickness rather than the real growth curve.

Some general interface features are common with the next two tabs:

� the data used as abscissa (e.g. step or growth time) and ordinata can be selected by pull-down menus by the axes;

� scale limits for abscissa and ordinata can be typed into, if the axes ane not set for Autoscale (which is changed by
right click menu on them)

� A cursor can be dragged, to inspect the numerical values of the curve. This is a standard labview widget; the position

of the cursor can also be set numerically by typing it in the cursor legend (which needs to be
opened, showing + on its left, clicking on that column)

� the cursor automatically follows the process, during execution;

� The cursor can be dragged only if the right graph tool is selected ( ). The middle tool allows zooming
the graph by point and click, if Autoscale is unset.
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3.4.2 Setpoints and rates graph

This graph is a bit more useful. By default it shows only traces of the cells used by the last validated recipe; traces
for any cell can be shown/hidden with the radio buttons on the left of the graph.

Continuous lines represent �ux from cells momentarily in use, whereas dashed lines give the setpoint of equivalent
rates at time the cell shutter is closed. Either the setpoint of the rate can change when a cell is not in use, if the schedule
requires an anticipate preparation.

3.4.3 Cells use graph
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This panel shows when cell shutters are closed/opened along the process as a digital graph, and is not particularly
readable nor useful, admittedly.

3.4.4 Rate table

This shows, step[layer] by step and cell by cell, the prescribed e�usion rates Ri at the beginning and Rf at the end of
the layer (the values may be di�erent for ramped layers), as well as the cell setpoints Seti and Setf , which can either be
bulk temperatures for �lament cells, or valve positions for crackers. The information displayed parallels the one graphically
available in the Setpoints and rates graph (3.4.2), except for not showing the time, and the evolution in the course of a
step.

Entries corresponding to cells unused in a given layer have a gray background; entries of cells used have cyclical pastel
backgrounds, as a pure guide to the eye. Out of range temperatures are marked in blue if the request was too low and
red if too high, and clipped to the acceptable range.
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3.5 Plant control panel

Once a recipe is validated (3.3.4), the cells required are highlighted by a lighter gray background.

3.5.1 Manual control

3.5.1.1 Keyboard shortcuts in the execution panel

In setpoint input �elds (substrate rotaion, temperature, cell main and secondary setpoints, cracker temperatures), numbers
can be typed and edited (e.g, the cursor is moved back and forth with Left/Right, text can be selected) before the input
is set into e�ect.

Enter, Return sets the value in the input �eld. A popup dialog appears if the resulting value is out of range (for heaters).

Up/Down Increase/decrease the value of the current setpoint of one unit, and immediately e�ect. A popup dialog
appears if the resulting value is out of range (for heaters)

Otherwise:
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F1-2, F5-F12 toggle various buttons, as indicated in the respective labels. F1 and F2 bring the typing focus in the
corresponding input �elds; all the other leave the focus in the current input �eld if it was already in one.

Escape abort a running process

3.5.2 Process execution

3.5.2.1 Starting the growth

In absence of any other more sophisticate scheme for controlling adequate pre-
heating of all cells (with preparation sequences which may be special for delicate
hardware), the start of a run simply initiates a countdown before the �rst layer.
The countdown time is set in the general plant con�guration (3.2.2), and the initial
waiting phase can be skipped iof the operator sees that the plant is in good order
to start. The process can also be aborted at this point, if something turns out to
be not in order, or if the process was started erroneously.

3.5.2.2 Process running

The cell status according to the schedule (idle, standby, preparation, temperature reached, ramping) is shown by the name
of the cell. The background turns to fuchsia when the temperature is o� of more than 1◦C from the setpoint.

3.5.2.3 Automatic/manual status of a control

When not executing a process, the state of these buttons is indi�erent to the immediate control. During a growth process
instead, any control in Auto state is driven by the requirements of the process. To override them, the control has to be
toggled as Manual. The Manual state is persistent until not resetted to Auto. That is, advancement of the process won't
change setpoints of any control set in Manual mode, until that is not reset to Auto.

To be clear, setpoint changes are commanded at precise points of time during the execution of the process. They are
change events and not values of status. When a given control it is set back to Automatic, it won't immediately reset to
the value that it should have taken if it had been earlier Auto; it will only change to the next process-dictated value in
due time.

3.5.2.4 Pause

During pause:

� all cell shutters but those of group V elements are closed. Group V elements are left open to maintain a protective
atmosphere.

� timers are frozen at the point reached

� no setpoint is changed automatically, but any control can be changed like in immediate execution mode.

Other properties of the process in execution persist; for instance it is not allowed to change the plant con�guration, and
the growth recipe can be edited only past the current layer.

3.5.2.5 Skipping steps

There are two buttons for advancing the process and skip to a later point of the schedule:

Jump the process jumps to the beginning of the desired layer in the growth table. If the destination is within a super-
lattice, the jump is implicitely to the �rst iteration of that layer. It is allowed to jump to a destination layer before
the one currently executing, even if that may be of little practical use; that it is possible is helpful in debugging
simulated processes. There is also no enforced limitation such that valid destinations may only be the �rst layers of
a superlattice.

Next goes to the following process step, which may happen to be the next layer during a linear process, or the beginning
of the next iteration of a superlattice, if called on the last layer of a periodic sequence.
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There has been no request and thus there is no provision for jumping to an arbitrary time in the middle of a given layer,
or to jump to the beginning of the previous step. I assume anything the like just doesn't make practical sense.

3.5.2.6 Process termination

Both on normal process end and on abort, the substrate heater is sent to its idle
temperature, and all cell shutters are closed, besides that of the element V cell(s)
used in the last step executed. The plant then stands by, till the substrate has
cooled down below the congruent sublimation point speci�ed in the recipe (3.3.2).
Only at that point the last shutter(s) are closed. The condition is shown in a modal
dialog, which o�ers the option of terminating abruptly nevertheless.

3.5.3 Simulated hardware

Hardware which is not identi�ed as online at program
startup is evidenced (so to say) by bleak dirty copper col-
ored labels, like in �gure; functional hardware by green
labels. Grouped entities may be labeled as absent if com-
munication attempts with one of their components failed
at startup. Thus, e�usion cells are marked as bad if either
or all of their heaters, of the shutter, are not reached.

For development purposes it has been very useful to
display fake data for absent hardware, somehow related to
con�gured limits and process setpoints, plus random jitter.

Limitations:

� there is no option for rescanning hardware and check-
ing if hardware temporary o�ine at program startup
is later available, or vice versa;

� there is no indication of hardware which falls o�ine
time after having been connected to at startup

� simulated readouts, along with real readouts, with-
out a clear delineation of a simulation mode may be
confusing.

3.5.3.1 stretching (actually, accelerating) process
time

This is an option which is useful for debugging and quick
check of the scheduling sequences. When on, it is possible
to accelerate (or decelerate) the process clock by an arbi-
trary factor. The e�ect while running in simulation mode is
that of accelerating all animations; it is quite meaningless
and probably disrecommended to use this modality with
real hardware, for two reasons:

1. large stretch factors will increase the communication
rate with devices, leading to communication errors
when too high;

2. not only layer heights would be proportionally de-
creased, also preparation times would become too
short; accelerating the process time is obviously not
a way to scale down sizes, if that ever had any sense.

27



3.6. LOGGER CHAPTER 3. OPERATION

3.6 Logger

The logger window is opened by the dedicated button in the Plant control panel. It is accessory, and besides
being the place for de�ning once for good the process log directory (3.6.1), it is mostly used only for debugging.

The idea behind it: the whole program is compartimentalized, and the Plant control panel sends execution messages
to a certain set of execution engines (see 5). Those in turn send back some acknowledgment and some readout messages
to the GUI; the GUI interprets them and reacts according to its status. The logger panel allows to inspect the stream of
these messages, �ltering out only some kinds of, as checked in the column at the left of the terminal window.

3.6.1 Automatic process log

For that to happen, a default logs directory has to be selected once (and is remembered subsequently across sessions) in
the logger panel. These logs are tab-separated text �les with default name (same as the recipe �le) and extension (.rec),
like

Process No.: simple_ramp

Start time & date: 22:31:49 16/07/2015

======================================

CRACKERS

Sb bulk=101°C cracker=118°C

AS bulk=49°C cracker=62°C

======================================

Time Layer# Sb Si Al AS In AL Ga GA subst. pyro. rot.

00:00:00 1 1 C 701 C 990 C 90 O 401 C 750 C 871 O 550 C 299 926 2.2

00:01:20 2 0 C 701 C 989 O 91 O 401 C 751 C 872 O 550 C 300 564 2.4

00:02:24 3 0 C 700 C 989 O 90 O 400 C 750 C 871 O 550 C 299 554 1.6

The content of the process log �les is �xed, and independent of other settings in the Logger panel. The cracker temperatures
reported are those at the beginning of the growth. Lines are added to the �le as long as layers start execution; times in
the �rst column are scheduled process times (don't re�ect manual pausing if there was such). The temperatures/setpoints
and shutter stati reported for each layer line are the �rst values read after the start of each layer.
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3.6.2 Raw events log

Raw log �les are a text dump of the events shown in the window, as �ltered by the left list. Raw event log �les are
intended mainly to be used for debugging purposes, or for timing analysis, with external textual tools to be devised ad
hoc and per need.

3.7 Session parameters

In addition to the hardware and system con�guration is stored in the �le plantconf.cfg in the Application Directory
(3.2.3), the following settings are remembered across sessions:

� the last path used for process log �les

� the last path used to load/save recipes

� the last path used to load/save con�guration �les

and are all stored on exit in the �le GrowthPaths.ini in the Application Directory. [the scheme might be changed in
future to support multiple plant con�gurations]
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Part II

Design philosophy and implementation choices
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In what follows I attempt to note down some of the principles which led to the make of the present code, for future
reference. I don't aim to a complete description of the code workings; for that I hope that either the source �les orga-
nization and naming, or the code itself are sort of self-explanatory. It is certainly wishful thinking, but a complete code
documentation, for a codebase which may still change, would be sort of out of place.

The development of the code certainly su�ered of inadequate initial formalization of its requirements, and of subsequent
feature creep. Laying out the development plan was in a way a red queen race, attempting to include a priori �exibility
in anticipation of possible future requests. With the risk of early overgeneralization.

The code itself has to accommodate for:

� �exibility in con�guration with di�erent hardware, interchangeable in time or between di�erent operated plants

� abstraction of the operation from the actual hardware employed, which may sometimes be di�cult to achieve (6.1)

� immediate SCADA of the hardware, with convenience shortcuts

� editing growth process recipes, which are laid out according to a number of notational conventions, and must satisfy
a number of operational constraints; editing must be assisted, convenient in �lling up derived data; and as much as
possible validated. Recipe validation and in general error handling was (stupidly) considered an unnecessary luxury
in the requirements phase, obviously a distorted attitude.

� execute process cycles in supervised mode, with reliable timing.
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Chapter 4

Data�ow and internal representations

In order to avoid a dependency hell, I introduced a multistage internal representation:

1. the cell con�guration de�nes the available elements and the role they can take in a material formula (4.1)

2. the material formula determines the assisted editing of the layer of the growth table

3. the layer line and its relation with its antecedent and followers (unrolled wise) determines the sequence of hardware
setpoints needed to execute a process. The layer table is translated into a sequence of process steps (4.2)

4. The process steps computed from the growth recipe are downloaded to the main execution engine, the Execution-
EventEnqueuer, which �rst of all translates it into four di�erent arrays of schedule elements (4.3), destined to four
di�erent hardware engines (5)

5. The ExecutionEventEnqueuer is a state machine caring for the execution status of the process, like start, stop,
pause.

6. When the process is executed, the ExecutionEventEnqueuer polls the process timer every 5ms, and dispatches
execution messages to the hardware engines. These messages are writes, if scheduled events falling in the time slot
are found; or periodical reads, when time for them is ripe.

7. To mix up enough things, communications between the engines and the GUI is implemented via several message
passing queues:

� the Plant control GUI communicates both with the ExecutionEventEnqueuer and with the executioners via
a message passing queue, the GUICommandQueue; care is taken so that only one and only one among the main
engine and the executioners1 consumes each possible message.

� the ExecutionEventEnqueuer sends commands (scheduled events) to the four hardware engines, via four dedi-
cated queues

� each of the �ve reports back to the GUI via an EngineResponseQueue. The GUI is the only consumer of these
responses, but duplicates them on reception to a further queue consumed in turn by the logger.

4.1 From cell con�guration to picker

The plant con�guration structure is stored as a cluster of:

� an array of E�usionCells

� a cluster of de�nitions of main objects

� a cluster of timings

1pun intended.
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4.1.1 Format of the plant con�guration �le

Early in devising what format to use to save con�gurations, I decided to go for �xml dump of whatever everything�.
This was a working choice, especially at a stage where it was completely unclear what kind of hardware is part of the
plant and how it is hierarchically related, and which parameters of it constitute a con�guration. Within the program the
con�guration structure organized itself as an heterogeneous cluster, and a mindless xml dump was at least a solution. Not
free of maintenance issues, though:

� the con�guration �le is all text, but for programming convenience it is written in such a complicate way that it is
quite di�cult to edit it sensefully in a text editor

� As of now, the project includes a plantconf.cfg (thus if you download a zip source it is in there), and the installers
I create also copy it in the destination directory. Thus, your custom created con�gurations are de�nitely going to
be overridden, unless you create a safety copy.

� It is becoming rarer lately, because the design is converging, but not impossible, that if version after version I have
to alter the structure of the con�guration, old con�guration �les won't load in new version, or load only a part of
the parameters. One such change could be, for example, adding a �ag "delicate" to crackers which need a slow sleep
procedure (issue #57).

� In case of old con�gurations incompatible with new programs, I may be able to adapt the �les for the new needs,
but with some e�ort, and best if I'm only one version behind. I really haven't yet thought at a way to automatically
maintain backward compatibility of such �les.

� Because of the identi�cation of the cell con�guration with the array CellProperties, the con�guration ends up
containing some physical, contingent information as part of it, such as PhysicallyPresent and actual setpoint values.

Later in the development, i.e. with commit 7120745, I phased out xml con�gurations in favour of the new compact .cfg
format.

What lead to that:

� xml con�gurations were an easy solution (just formatted dump of the labview structure de�ning the components of
the plant, using a built in tool), but were overbloated, and included not only con�guration parameters but also state
variables (presence, setpoint).

� serialization is not trivial, because the alternatives considered (native labview Json, JSON LabVIEW, AQ Lineator)
are inadequate. the native Json is extremely limited in types of data handled; json-labview does a very good job in
recursively serialize (variant) data down to its components, but handles the serialization of OO objects only if their
class are declared as children of a Serializable superclass, which involves some code changes; and more importantly,
it does not provide any mechanism to deserialize the objects back to their structure without extra coding; and the
Lineator does not provide a particularly compact output.

So I tediously created my own set of serialization functions for every possible component of the big PlantCon�guration
cluster. Where I could, I coded a single format string good both for the Con�gToText and TextToCon�g method
VIs, to concentrate changes in a single place. The choice adds the overhead that whenever the need for changing the
con�guration structure arises, the proper methods have to be updated too.

The result is a con�guration format in which each object corresponds to one line of the �le, inspired by Json but much
more rigid (to avoid a true parsing, it's only a formatted string scan) and compact. The advantages are compactness,
terseness and hence better readability, and absence of spurious state variables.

4.2 From growth table to ProcessSteps

The best labview widget to represent the growth recipe was the Table. However Labview Tables are limited in that they
only support text content, have limited and �xed editing bindings, which are overridden with lots of work and side e�ects,
and are very slowly decorated.

Everything depends on itself and its mother's ass.
A line of the growth table includes only information about the components of that layer, and moreover some timing

information whose signi�cance depends on the composition, whereas the execution of the process needs to know exactly
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what to do with all components of the plant: what to do with all cells, when to change temperature setpoints, also
accounting for preheats and idling. Furthermore, these cell settings may di�er in relation to a layer being grown the �rst,
a repeated or the last time within a superlattice.

For these reasons, it was convenient to introduce in the program an intermediate translation of the growth table as an
array of ProcessSteps. Superlattice repetitions are �rst of all unrolled, so that the correspondence {layer,iteration}−→step
is resolved.

4.2.1 numeric representation of the growth table

The growth table was designed using the labview table widget, as it was the only practical way to build a tabular
editing mask with some chance of moving focus programmatically, colorize and format entries programmatically, and so
on. However, its content is the text which is displayed and nothing beyond. Where an entry is a computed number,
truncated to few signi�cant digits for display convenience, that could become a problem if the number is further used in
computations. Truncation errors may propagate. Ways out of the situation may be:

� associate a parallel numeric array which mirrors the table at full precision; it will be a lot of work to keep it in strict
sync with all the table editing actions; many editing actions will produce a �oating result, which is inserted in the
mirror, and reformatted back to the table.

� at the moment of compiling the table into ProcessSteps, instead of blindly reading the cell string, recompute all
derived numbers using again the machinery which produced them, line per line according to the material and its
rules. That may mitigate or perhaps even circumvent the problem.

4.2.2 the class ProcessSteps

Each ProcessStep is a cluster detailing:

� corresponding role in the Growth table: original layer, formula, time of start and end layer growth

� general scalar e�ects of the layer, like thickness, rotation speed, substrate temperature

� derived rate information, i.e. growth rate of the base III element, total growth rate at the end of the previous step
and at the end of current step: they all enter in formula computations and operational cell settings (previous rate
notably for ramping layers)

� identi�cation (indices) of solute III cells used and component rates demanded from them

� an array detailing for every cell of the plant: whether that cell is in use (=shutter open) in the step, the required
initial and �nal rates and control setpoints, with in range �ags.

� an array, detailing, for every cell of the plant, a vector of (process) times at which rates, setpoints and cell status
have to be changed. Unused cells list anyway an idle setpoint at the initial time of the layer; this avoids tedious
status bookkeeping when step hopping during process execution.

The array of ProcessSteps is built from the growth table in a number of parsing steps inGrowthTableToProcessSteps.vi.

4.3 From ProcessSteps to schedules

The class GeneralSchedule has a header with schedule time, corresponding growth table row and process step, and an
action �eld, set or get. To limit expandability simplify, both the hardware writes and the periodical reads are implemented
as schedule events dispatched to the engines, and the action �eld determines the behavior.

This class has three children with speci�c properties relevant to each engine: the ShutterSchedule has a boolean array
of shutter conditions, the CellSchedule has rate, setpoint, cell number and cell use; the same ScalarValueSchedule is used
for substrate rotator and temperature.
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Chapter 5

Execution engines

with the questions always in the background - why didn't I use the DSC module (because it is not available for linux,
precondition for my steady development pace), whether did I reinvent the wheel with a custom set of execution engines
(now what, recipe execution with all its constraints could have been handled with a standard tool?), why don't I connect
with an historical database (which? that which comes with DSC, what comes nowadays? SQL? a microsoft product?).

As long as events to be logged are a subset of those returned to the GUI queue by the execution engines (see Report-
edEventsLogger.vi), though, there may be some basis for neat development.

5.1 Realtime

Reliable and repeatable growths clearly require determinism in time. Nevertheless, it would seem that the acceptable
jitter in the timing of shutters could even be of the order of 100ms (comparable with the action time), and that of heaters
even longer. Previous anecdotal evidence (both on programmer's and user's side) reported it as achievable with di�culty,
and only under draconian safeguard measures, on the demanded desktop, non RTOS.

The proper handling of the realtime requirement would require separation between the GUI and the time critical
parts, with the latter running headless on a separate realtime target, and proper intercommunication between the two.
The present design of the program has taken that into due account, with the creation of self-su�cient engines. However,
the provision for separation is not yet complete, as the engines communicate with the GUI through queues, whose scope
is the single Application instance. The future move allowing detached run of the engines on a separate target would be to
transform the queued messaging into some other, probably network based, communication mechanism.

Resource separation between GUI and engines is also not complete, as initialization is done by the GUI (namely the
Plant control panel at startup and when detecting con�guration changes). Partially, for the reasons in 6.1; partially
because (re)initialization could be implemented better.

As for on the road performance, anyway, some analysys of the log timings has shown a jitter in fact down to a few
ms, so that previous concerns seem currently non-issues. Computer powers may be larger than in previous incarnations
of the control system; anyhow the present program has been seen using only a few % of the available cpu power, and in
addition all the engine VIs have been assigned as running at �time critical priority�.
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Chapter 6

Adding further hardware and functionality

Tip when changing the structure of the system con�guration (e.g. adding new members to the global con�guration,
changing the structure of a member, etc.): if structural changes are made, the old plantconf.cfg �le will be out of sync
with the new con�guration structure, an error will result when GrowthPlan.vi attempts to read it, and an empty or
incomplete con�guration will result. In order to preserve as much as possible of the existing con�guration, a workable way
to develop structural changes is the following:

� run SystemCon�gurationPanel.vi directly;

� load the existing plantconf.cfg; this reads in values for all controls;

� abort the VI with Ctrl-.

� code the required changes;

� as soon as SystemCon�gurationPanel.vi is runnable again, run it and save a new, format-augmented plantconf.cfg.

To this extent SystemCon�gurationPanel.vi needs not to be modal, or it would remain modal also aborted. OTOH,
on the road the user should be prevented to do anything other than con�guring while the panel is open. That is the
rationale for 06ac4ef.

6.1 Issue: Double (triple) a�liation for devices

The design pattern su�ers from the following:

� some hardware devices are compound devices, e.g. cells consist of heaters, a shutter, a valve; the main chamber�it
depends how it is seen, if all is "manipulator" or further subdivided in Pyro, Substrate,...

� component devices are physically grouped in a way that crosses the compound device boundaries: all Eurotherms
are on the same 485 line (and additionally analog readouts on Eurotherms), all shutters (or groups of) are handled
by the same controller, together with other movimentation.

� execution engines are responsible for yet another cut of devices (e.g. all cell temperatures and setpoints, substrate
temperature and pyro readout but not pyro shutter or rotator, all shutters together)

The problem with this organization is that competences are confuse. For instance initialization and deallocation of
resources cannot take part in engines, because the cut of the engines is di�erent than the hardware grouping; resource
protection happens via globals and semaphoring, not via encapsulation; adding new kind of devices may turn into a jigsaw
e�ort.
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6.2 Case study: adding a new valve controller

In a later stage, porting the application to Compact 21, it turned out that we weren't able to drive the Veeco SMC-III
controller via the serial BISYNC protocol like the older Veeco SMC on MBE, and we moved to the option of modbus
RTU. The augmentation is an exemplar case, because it is self contained. We have only one class Valve, one attributes
of which was the ValveController typedef. Here the distinct code driving di�erent hardware is not implemented as one-
per-kind subclasses, but simply as conditional code in each of the method VIs for the general class Valve, selected by the
ValveController attribute. The work to be done hence amounted to:

� add a new item in the ValveController typedef

� go through the relevant method, InitializeValve, and three accessors implementing real communication with hard-
ware, that is ReadValvePosition, ReadValveTarget, WriteValveTarget, adding the code for the new case

As the Valve class de�nition itself didn't change, there was no need to propagate the changes to the (only) con�guration
panel accessing it, the Cracker panel. However, the change in typedef enumeration caused a mismatch in the existing
con�guration �les, which needed manual revision to reinstate the correct settings. As the con�guration panels persisted
across the change, that was easily done in the GUI.
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Chapter 7

Multiple con�gurations

7.1 Con�guration and session �les

My rationale for having two di�erent �les plantconf.cfg and GrowtPaths.ini is that one is the proper plant con�guration,
and this should be changed only by the responsible administrator, while session settings like the last directory chosen can
well depend on each user. I don't know if it re�ects the present way of work, but in principle many users could have their
own accounts on a plant control computer, whereas only one authorized administrator is allowed to tamper with sensible
hardware con�guration like the number of cells or the addresses of the devices.

Codewise, at some stage I also had reasons for storing the two sets of data in two di�erent structures and handling
them in di�erent parts of the program, but now that is blurred.

7.2 Multiple plants on a single computer

Now whichever scheme has to work on three computers as of now, where one of them needs to have an easy way of
accessing two di�erent con�gurations. The doubled application directory was a possible solution, but I could envisage
also others: a single application with a prominent drop-down menu for chosing the plant (how do we know what are the
options, and change them? Perhaps at startup some directory "Possible Con�gurations" is scanned. What would be the
default, etc.) (I envisage that you might even want to store historical con�gurations for a given plant, i.e. say be able to
open an old recipe with the con�guration the plant had years ago, in order to check what was going on).

Another solution could be keeping a single application directory, but copying twice the executable with di�erent
names; use as default con�guration not plantconf.cfg but NameOfTheExecutable.cfg or something the like; revert that
GrowthPaths.ini is written to the User Application directory, also with a name composed with the name of the program.
This way we could both handle di�erent permission levels, di�erent settings for di�erent users, and di�erent plants, with
the slight waste of having two copies of the executable and having to do that manually after the installation. The hindrance
is that also the �le MBEGrowthController.ini containing the default font sizes has to be renamed accordingly. I could
write a post-installation script for that; there is no end.

Another possible option is to set up things so that clicking on the (shortcut to the) con�guration �le, the executable
(a single copy of) opens loading that �le. I'd have to study how to do it smoothly in Labview.
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Chapter 8

Source control and build

8.1 Git repository

Development has been source-tracked all the way through. One copy of the source repository is at the WIS-internal project
repository, accessible only within WIS �rewall. It is a private project, so sign in on the WIS gitlab server for access �rst,
and then ask Enrico to be named as member, in order to see it.

LabVIEW source �les are stored with compiled code removed, to prevent useless binary divergence. Some instrument
manuals, some requirements documents and the sources of this manual are also stored in the same repository.

8.2 Issue tracker

WIS-internal issue tracker. As part of the above, only accepted members, with minimal status of Reporter can write
tickets.

8.3 Building and distributing the application

There is a technical issue about building the executable application with the labview compiler, documented in issue #56.
Labview crashes apparently because of the way chosen to display the software revision and the build date, i.e. getting on
the main window the information from an ancillary subVI which is programmatically �lled with that data and saved as
prebuild step. The crash seem to be done to the collision of former and new version of this VI in the compiled objects
cache, and the action required is to clear it after unloading the project from memory. To partially overcome that loophole,
a build script external to the project has been created, which also cares for additional steps like renaming the �nal installer
re�ecting the git revision id. Such steps themselves wouldn't be possible with the facilities of the project build. Clearing
the object cache though may be still needed before running that script.
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Chapter 9

Alternative ideas

First, I'm not at all convinced that functionally equivalent software doesn't exist, either commercially or as, less likely,
open sourced. In fact I'm aware of one open source example in VB, Faebian Bastiman's (seen april 2015). Commercial
products include Veeco's Molly, Riber's Crystal.

Argument could be on convenience of use, or suitability for the purpose, for the in-house conventions and habits. I
have uderstood that here the orientation is for the execution of many one-of-a-kind processes, with the option of on-the-�y
adjustments, hence the stress on the convenience of input of the recipe, rather than in�nite repetition of an industrial
process, for which it is a�ordable that the recipe is programmed only once in a while, even in a rigid and less convenient
form.

I speculate that the labview infrastructure put together to control the hardware could be augmented by a scripting
modality of control.
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