Overview Geometry and Light

Transformation optics

Science Magazine listed transformation optics among the top 10 science insights of the decade 2000-2010. It is the only research subject in physics that made it into the top 10.

Transformation optics grew out of ideas for invisibility cloaking devices and exploits connections between electromagnetism in media and in geometries. Within a short time it grew into a lively research area with applications ranging from invisibility and perfect imaging to the forces of the quantum vacuum and the quantum physics of black holes

Invisibility has been a subject of fiction for millennia, from myths of the ancient Greeks and Germans to modern novels and films. In 2006 invisibility turned from fiction into science, primarily initiated by the publication of first ideas for cloaking devices and the subsequent demonstration of cloaking for microwaves.

Perfect imaging is the ability to optically transfer images with a resolution not limited by the wave nature of light. Advances in imaging are of significant importance to modern electronics, because the structures of microchips are made by photolithography; in order to make smaller structures, light with increasingly smaller wavelength is used, which is increasingly difficult.

The quantum vacuum is the ground state of the physical fields. Their vacuum fluctuations give rise to the ‘Casimir force’ – a sticky force that is ubiquitous throughout nature. It causes parking tickets to attach to windscreens and the moving parts of micromachinery to attract and stick together. By understanding vacuum forces better one can learn how to turn them from attraction to repulsion such that one can levitate objects on, literally, nothing.

Black holes are surrounded by horizons that create quantum particles from the virtual particles of the quantum vacuum, Hawking radiation. Understanding and testing this mysterious phenomenon will shed light on connections between quantum physics and general relativity.