LC-MS Based Metabolomics

Analysing the METABOLOME

1. Metabolite Extraction

2. Metabolite detection (with or without separation)

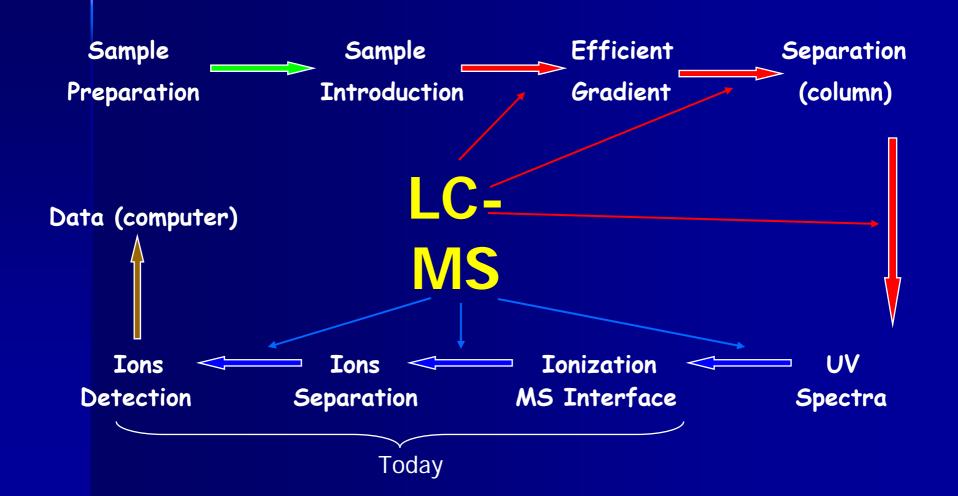
3. Data analysis

Metabolite Detection

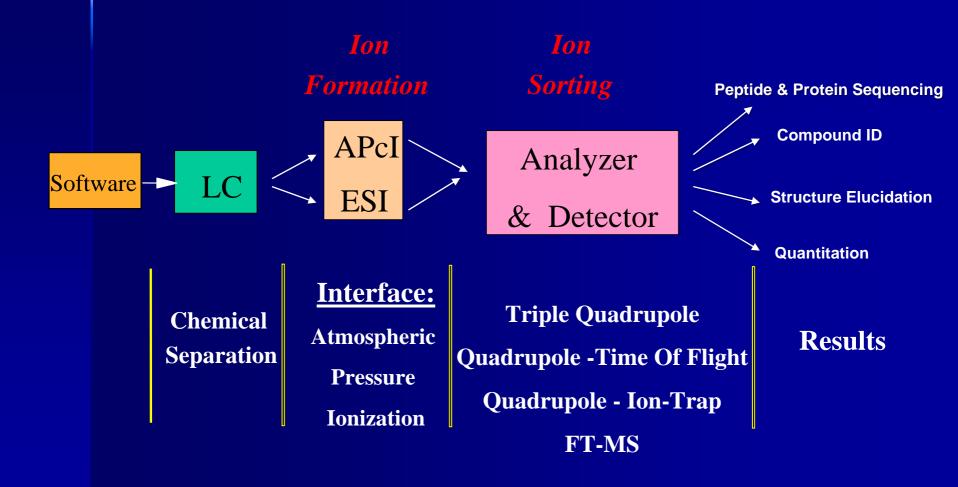
- GC-MS: Naturally volatile or made volatile (any organicflavors, sugars, lipids, acids)
- <u>NMR</u> any compound containing hydrogen
- HP Liquid Chromatography + detector
 Comon detectors-
 - UV-detector (phenolics)
 - MASS SPECTROMETER (MS) as detector (LC-MS)

Metabolite Detection

MASS SPECTROMETER (MS) as detector (LC-MS):


Compounds that are not well characterized by other methods:

Non volatile


High molecular weight

Too sensitive to heat to be analyzed by GC

Your Sample LC/MS Result

Components in LC-MS

Mass Spectrometer

Breaks up constituents into molecular ions and other fragments

2. The ions then pass through an electric and/or magnetic field that separates them according to their mass-to-charge ratio (m/z)

3. Measures masses

Mass Spectrometer

- 4. Universal detection method
 - * compared to UV/VIS (PDA), fluorescence etc.
 - * more specific than NMR
- 5. More sensitive for most compounds
- 6. Structural information on metabolite
 - * fragmentation pattern
 - * accurate mass
- 7. For both LC and GC

Technology of LC-MS and LC-MS-MS

- Interfaces- Ionization
 (elimination of solvent and generation of gas-phase ions)
- e.g. Z Spray

Analyzers – Quadrupoles (Q) and Time of Flight (TOF)

LC-MS Interfaces

In MS-

- * Measuring the mass of a huge variety of compounds, in a huge variety of matrices
- * Need range of methods to IONISE all the different compounds

Alternative Ionization Modes

- El or CI, Electron (impact) OR Chemical Ionization (in GC-MS)
- Gas-phase ionization methods
- Small volatile molecules are heated and enter the gas phase

Not always suitable:

- <u>Difficult</u> to get large or involatile molecules into the gas phase
- Laser desorption
 - Matrix-assisted laser desorption ionization (MALDI)
- Particle bombardment
 - Fast atomic bombardment (FAB)
 - Secondary ion mass spectrometry (SIMS)
- Field desorption Ionization

- El or CI, Electron (impact) OR Chemical Ionization (in GC-MS)
- Gas-phase ionization methods
- Small volatile molecules are heated and enter the gas phase

Not always suitable:

- <u>Difficult</u> to get large or involatile molecules into the gas phase
- Heating the non-volatile molecules degrades them

Ionization for Non-Volatiles:

Early ones-

- Particle bombardment
 - Fast atomic bombardment (FAB)
 - Secondary ion mass spectrometry (SIMS)
- Field desorption Ionization
- Thermospray ionization

Ionization for Non-Volatiles:

Early ones-

- Particle bombardment -
- Fast atomic bombardment (FAB)
- Secondary ion mass spectrometry (SIMS)
 - single experiments, background signal from matrix
- Field desorption complex, single experiments at once
- Thermospray temprature degrades sample

- Atmospheric Pressure Ionization (API), in LC-MS
 - Electrospray Ionisation (ESI): polar and semi-polar
 - Atmospheric Pressure Chemical Ionization (APCI): less polar

polarity of analyte molecule

lipids

Atmospheric Pressure Ionisation (API) Techniques

ESI and APCI differ in...

- How ions are generated
 - •ESI solution phase ionization
 - •APCI gas phase ionization
- Analyte compatibility
 - •ESI polar compounds and large biomolecules
 - •APCI less polar, smaller compounds (relative to those ionized by ESI) that have some volatility
- Flow rate compatibility
 - •ESI 0.001 to 1 mL/min
 - •APCI 0.2 to 2 mL/min

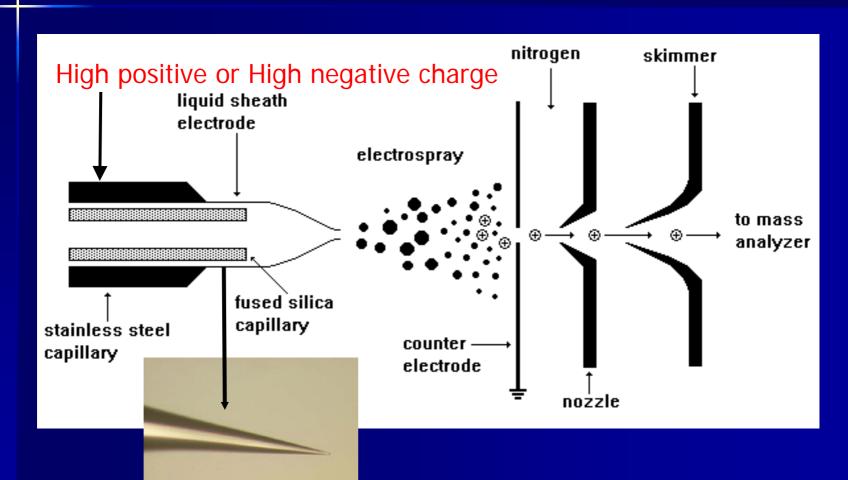
Ionization Methods

- •Electrospray (ESI)
- Atmospheric Pressure
 Chemical Ionization (APCI)
- •Laser Desorption (MALDI)
- Chemical Ionization

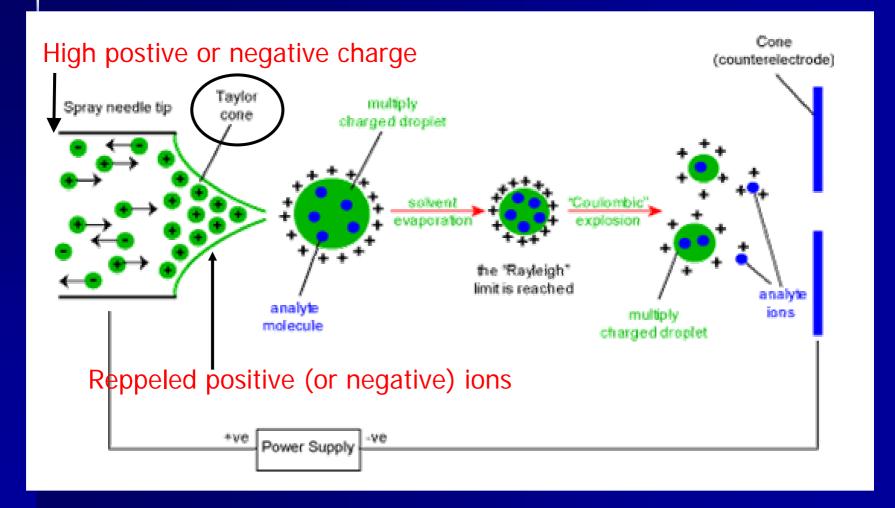
ESI, APCI and MALDI can be used with LC

"Soft" Ionization

- Fast Atom Bombardment (FAB or SIMS)
- Electron Impact


El ionization can be used with GC

"Hard" Ionization


How do the analytes become charged?

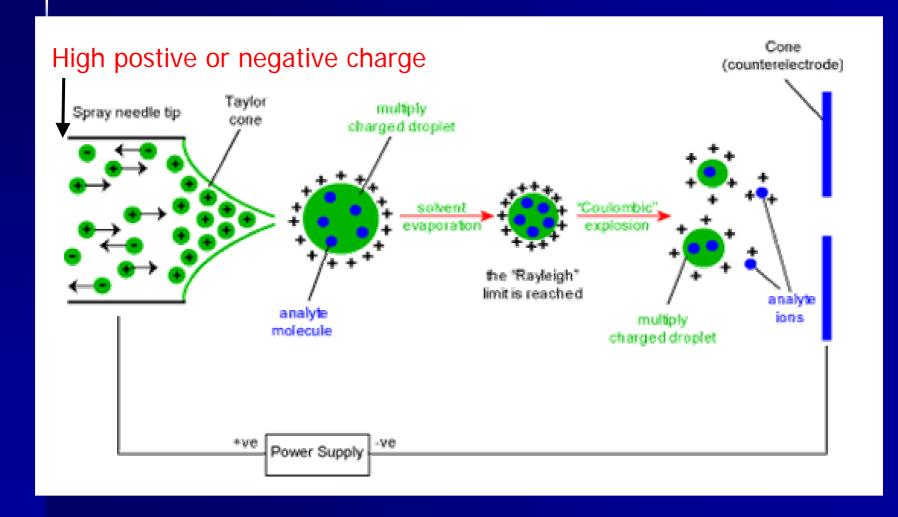
- While in EI, loss of an electron producing a radical molecular ion
- In soft ionisation techniques, analyte molecules are:
 protonated [M + H]+
 or:
 de-protenoated [M H]-
- Could also be sodiated, potassiated etc..
 (adducts)

Ion Formation in ESI

How do the analytes become charged?

Positive or Negative Modes?

The formation of positive or negative ions depends on the sign of the applied electrical field


ES+: (M+H)+

Good ionization of <u>basic compounds</u> (<u>get proton</u>) E.g. amino, amide, ester, aldehyde/keto functional groups (formic acid in sample solution to help ionize)

ES-: (M-H)

Acidic Compounds (give proton) E.g. organic acids, containing OH (ammonium buffer in sample solution to help ionize)

Solvent Loss in ESI & Ion Formation

Flectrospray Ionization ESI

Typical ES Positive Ion Samples

- Peptides and proteins.
- Small polar compounds.
- Drugs and their metabolites.
- Environmental contaminants (e.g. pesticides / pollutants).
- Dye compounds.
- Some organometallics.
- Small saccharides.

Typical ES Negative Ion Samples

- Some proteins.
- Some drug metabolites (e.g. glucuronide conjugates).
- Oligonucleotides.
- Some saccharides and polysaccharides.

Electrospray Theory

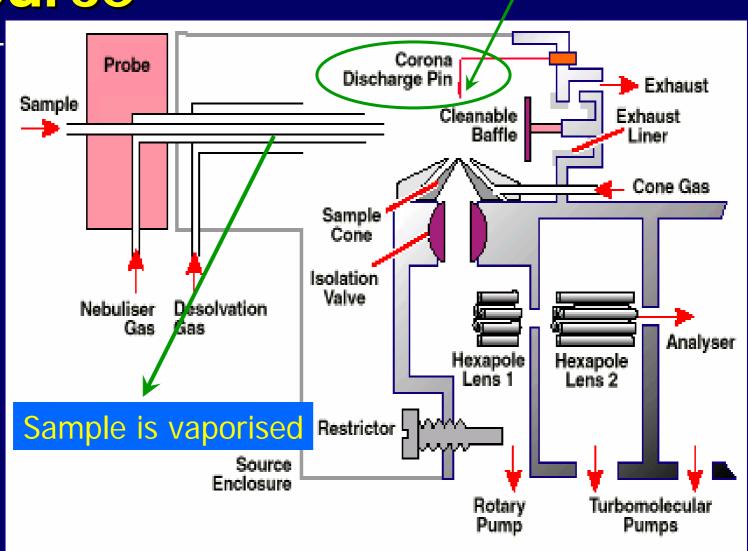
Summary ESI

ESI is an atmospheric pressure ion source

Small molecules singly chraged

High MW samples become multiply chares (e.g. proteins)

MWs of 150,000 Da (amu) cab be measured accurately


Atmospheric Pressure Chemical Ionization - APCI

Atmospheric Pressure Ionization Interface

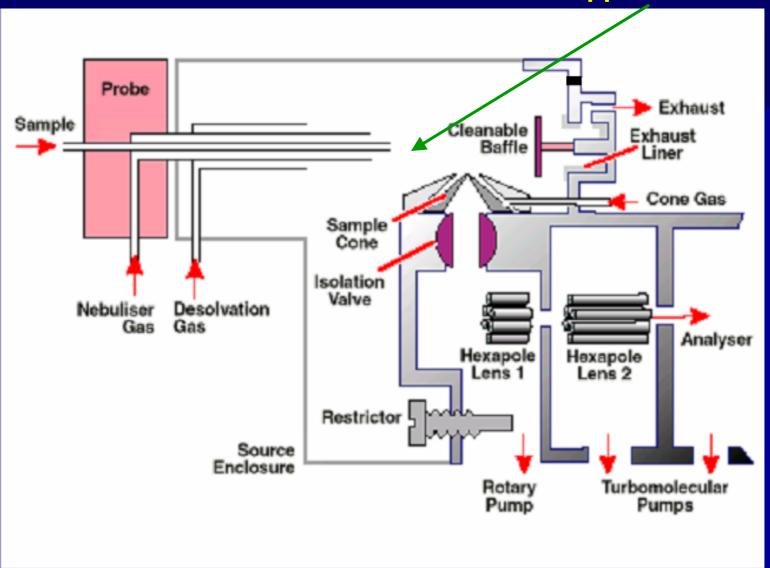
APcI Source

Ionization of solvent & solvent transfers the charge to analyte

APcI Theory

Atmospheric Pressure Chemical Ionisation (APcI)

Low molecular weight (<1000 Da)

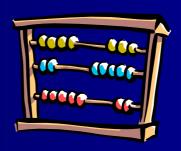

Singly charged species

ESI vs APcI

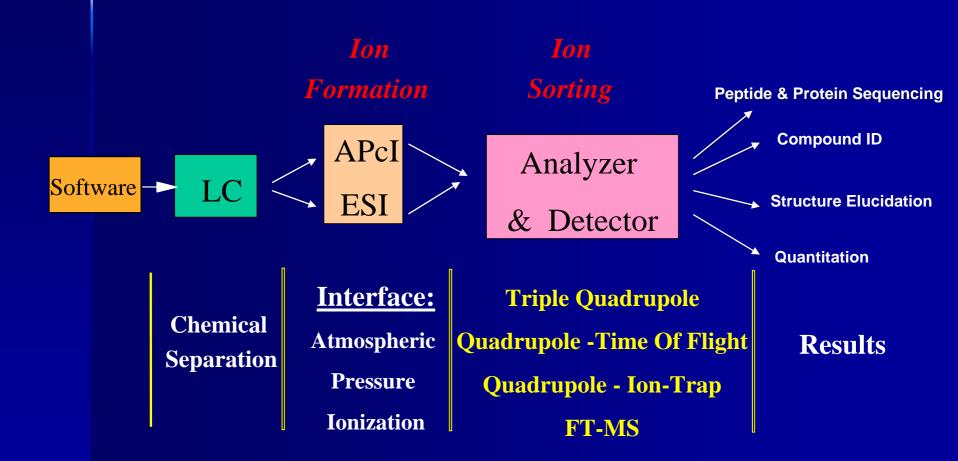
Tech	nique	Flow Rate (ml/min)	MW Range	Species Produced
ESI		0.001 – 0.3	<200,000 Da	(M+H)+ (M-H)- (M+nH) ⁿ⁺
APcI		0.2 – 2.0	<1000 Da	(M+H)+ (M-H)-

Z SPRAYTM Source

What happens from here?

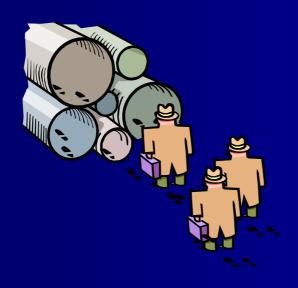


Z-Spray Interface



Mass Analyzers

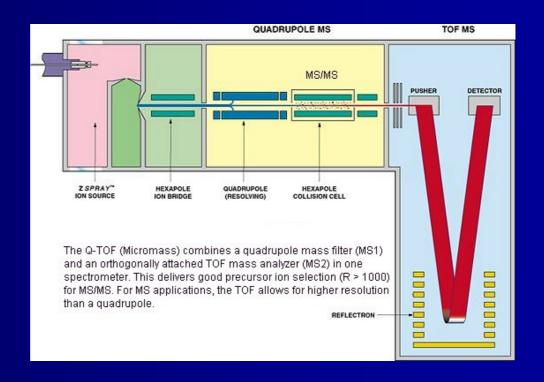
Ion Sorting



Components in LC-MS

Quadrupole and Tandem Quadrupole

Ion Separation Analyzers


Quadrupole Theory

Benefits of Time-Of-Flight MS

high mass resolution (up to 10 or 5 ppm)

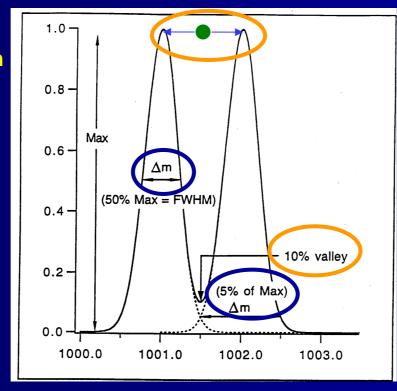
exact mass

Resolution & Accuracy of a Mass-spectrometer

Resolution

Resolution, (or Resolving Power) of a mass sectrometer:

A measure of its ability to separate adjacent ions


At higher resolution, small differences may be detected.

Determining Resolution

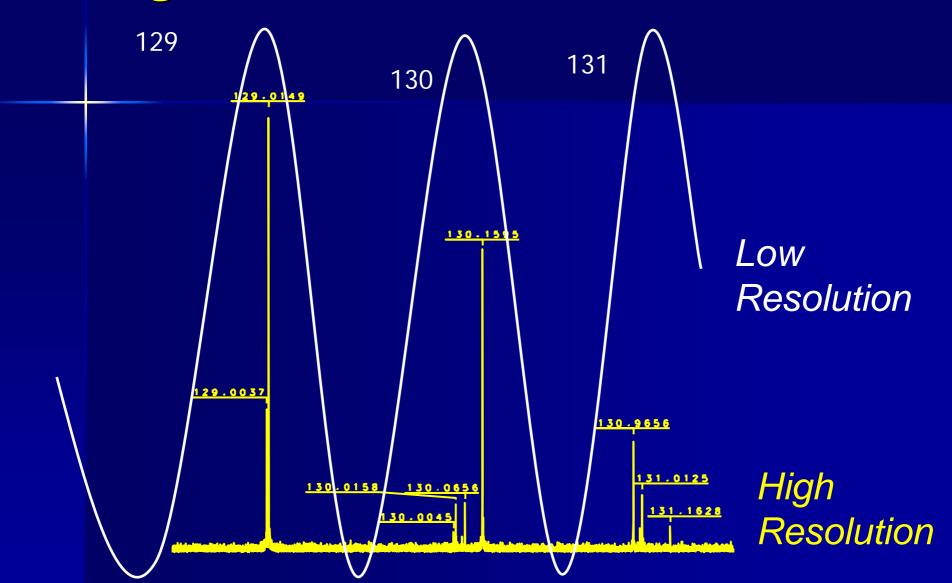
Single Ion method

Full Width at Half Maximum (50%, FWHM) or at 5% of the peak height

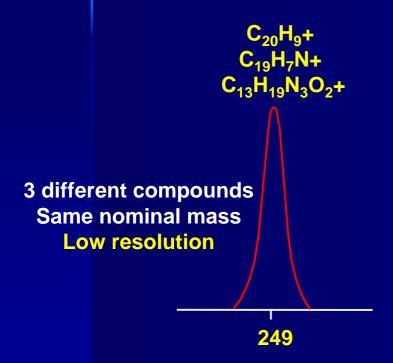
$$R = \frac{m}{\Delta m}$$

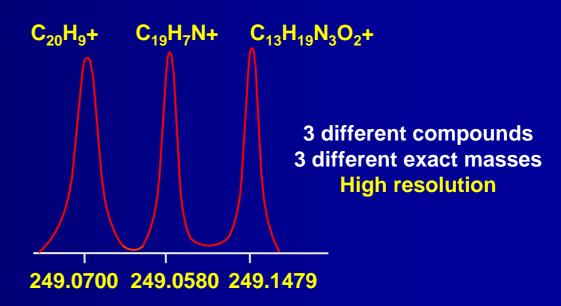
Double Ion method

2 adjacent ion peaks with a 10% valley max


Mass Analyzers

- Ion Cyclotron (FT-ICR-MS)
- •Time of Flight (TOF)
- Magnetic Sector
- Quadrupole Ion Trap
- Quadrupole

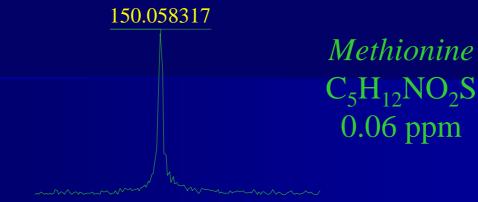

"High Resolution"
Instruments


"Low Resolution"
Instruments

High Resolution vs. Low Resolution

Resolution

Mass Analyzers

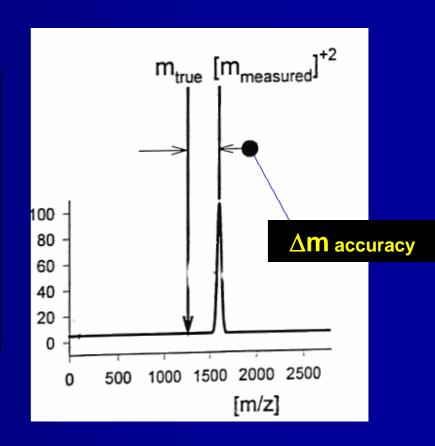

•lon Cyclotron	Resolving Power	Mass Accuracy
(FT-ICR-MS)	200,000	<1ppm
•Time of Flight (TOF)	20,000	3-10ppm
•Magnetic Sector	60,000	2-5ppm
•Quadrupole Ion Trap	1,000	n/a
•Quadrupole	1,000	n/a

Mass Accuracy- FTMS

- Instrument Calibration -

		Exact	Experimental	Difference	
	Calibrant	Mass	Mass	(ppm)	
	Alanine	90.0550	90.054998	0.0175	
	Lysine	147.1128	147.112783	0.1173	
	Glutamate	148.0604	148.060420	0.1353	
ı	Methionine	<i>150.0583</i>	150.058317	0.1109	
	Tyrosine	182.0812	182.081184	0.0866	
r.	Tryptophan	205.0972	205.097192	0.0380	

Mass Accuracy Determining Empirical Formula, Structural Elucidation


	#	12C	1H	160	14N	31P	32S	23Na	39K	mass	error
>	1	5	12	2	1	0	1	0	0	150.0583257	5.826e-08
	2	1	15	2	2	1	1	0	0	150.0586364	2.128e-06
	3	3	15	0	2	0	1	0	1	150.0587525	2.902e-06
	4	9	11	0	0	1	0	0	0	150.0592883	6.473e-06
	5	3	15	0	1	2	0	1	0	150.0571936	7.486e-06
	6	5	14	0	1	2	0	0	0	150.0595989	8.543e-06
	7	4	16	1	0	1	0	0	1	150.0570349	8.544e-06
	8	3	10	1	4	0	1	0	0	150.0569831	8.889e-06
	9	2	16	3	0	2	0	0	0	150.0569188	9.318e-06

Mass Accuracy

Ability of a mass analyzer to assign the mass of an ion close to its true value (exact mass)

 Δm accuracy = mreal - mmeasured

 $ln ppm = 10^6 * \Delta m$ accuracy / ln ppm

Mass Accuracy

High mass accuracy (exact mass measurement) is usually associated to high resolution analyzers

Unknown compound determination Exact mass helps to define its atomic composition

Scan Speed (or rate)

- The rate at which we can acquire a mass spectrum, (mass units/sec).
- Is an essential acquisition parameter for MS
- Will affect the amount of information (qualitative and quantitative) that can reasonably be attained with a given mass analyzer.

Mass Analyzers

Analyzer	Range	Accuracy	Resolution	Speed
	amu	amu		amu/s
Quad	< 4000	0.1	1000-2000	4000
Ion Trap	< 20 000	0.1	1000-2000	4000
TOF	1 000 000	0.0001	500-10 000	1 000 000

Next Class

Data after ion detection in LC-MS