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Summary

� Land surface models (LSMs) typically use empirical functions to represent vegetation

responses to soil drought. These functions largely neglect recent advances in plant ecophysiol-

ogy that link xylem hydraulic functioning with stomatal responses to climate.
� We developed an analytical stomatal optimization model based on xylem hydraulics (SOX)

to predict plant responses to drought. Coupling SOX to the Joint UK Land Environment Simu-

lator (JULES) LSM, we conducted a global evaluation of SOX against leaf- and ecosystem-

level observations.
� SOX simulates leaf stomatal conductance responses to climate for woody plants more accu-

rately and parsimoniously than the existing JULES stomatal conductance model. An ecosys-

tem-level evaluation at 70 eddy flux sites shows that SOX decreases the sensitivity of gross

primary productivity (GPP) to soil moisture, which improves the model agreement with obser-

vations and increases the predicted annual GPP by 30% in relation to JULES. SOX decreases

JULES root-mean-square error in GPP by up to 45% in evergreen tropical forests, and can sim-

ulate realistic patterns of canopy water potential and soil water dynamics at the studied sites.
� SOX provides a parsimonious way to incorporate recent advances in plant hydraulics and

optimality theory into LSMs, and an alternative to empirical stress factors.

Introduction

Large areas of the globe will be exposed to increased aridity in the
near future (Sheffield & Wood, 2008; Duffy et al., 2015;
Marengo et al., 2018). As drought events become more intense
and frequent, accurately representing vegetation–climate feed-
backs in Earth system models (ESMs) is increasingly important,
as these interactions can drastically influence model projections
of global climate change (Cox et al., 2000). The current genera-
tion of land surface models (LSMs) does not accurately simulate
vegetation carbon dynamics during drought (Sitch et al., 2008;
Powell et al., 2013; Medlyn et al., 2016; Ukkola et al., 2016;
Restrepo-Coupe et al., 2017; Rogers et al., 2017; Eller et al.,

2018b), thereby restricting our capability to predict the effect of
increased aridity on vegetation distribution and its feedbacks on
the global carbon cycle and climate. Many LSMs represent the
effects of reduced soil moisture on canopy carbon assimilation
(A) using an empirical drought factor commonly referred as b-
factor (Cox et al., 1998). The b-factor approach has been shown
to overestimate plant responses to seasonal and experimentally
induced drought (Ukkola et al., 2016; Restrepo-Coupe et al.,
2017; Eller et al., 2018b). The b-factor has a large impact on the
modelled global carbon budget, supressing 30–40% of the
annual gross primary productivity (GPP) in large areas of arid
and semiarid ecosystems (Trugman et al., 2018). Despite its
importance, there is scarce empirical support for the drought
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functions used in most LSMs (Medlyn et al., 2016). The lack of
a theoretical or empirical basis for the b-factor implies an urgent
need for new modelling approaches to replace this important
component of LSMs so as to improve our capacity to predict veg-
etation–climate interactions.

Stomatal responses of plants to soil drought involve complex
chemical signalling and hydrodynamic processes in leaf cells,
some of which have not been entirely elucidated (Buckley, 2017,
2019; Qu et al., 2019). Stomatal optimization models are a use-
ful approach to model stomatal behaviour that circumvents the
need to explicitly represent the physiological processes involved
in stomatal regulation. Optimization models employ a ‘goal-ori-
ented’ approach, assuming that plant stomata behaviour has been
selected through plant evolutionary history to maximize a given
objective function (Cowan, 2002; Dewar et al., 2009; Prentice
et al., 2014; Buckley, 2017). The traditional approach to model
optimal stomatal behaviour is derived from the seminal work of
Cowan & Farquhar (1977). This approach proposes that optimal
stomatal behaviour maximizes A minus the carbon cost of water
lost (kE) over a given time interval, where E is transpiration and
k is the Lagrange multiplier that represents the carbon cost of a
unit of water lost. This model, hereafter labelled CF, after Cowan
and Farquhar, is capable of simulating many patterns of stomatal
responses to climate over short timescales (Farquhar et al., 1980;
Berninger & Hari, 1993), and has provided the theoretical basis
for several widely used semi-empirical stomatal models (Jacobs,
1994; Leuning, 1995; Medlyn et al., 2011). However, CF pre-
dicts that stomatal conductance (gs) increases in response to ele-
vated CO2 when A is Rubisco-limited, which contradicts most
observations (Mott, 1988; Medlyn et al., 2001). Other limita-
tions are related to the k, as the CF hypothesis does not link k to
measurable plant traits or environmental quantities (Buckley,
2017), and assumes k is constant over the period of reference
(Cowan & Farquhar, 1977), which makes the original CF unable
to predict long-term gs decline in response to soil moisture deple-
tion.

Since the original CF work, many attempts have been made to
incorporate the effects of declining soil moisture in the CF stom-
atal optimization framework (Cowan, 1986; M€akel€a et al., 1996;
Williams et al., 1996; Manzoni et al., 2013). Some of these
attempts, such as the soil–plant–atmosphere (SPA) model of Wil-
liams et al. (1996), employ principles of plant hydraulics to con-
strain stomatal optimization and have been successfully
incorporated into LSMs (Bonan et al., 2014). The numerical
approach used by SPA employs a hydraulic threshold to set a
lower water potential limit (Ψmin) for gs, which simulates a strict
isohydric stomatal regulation (Fisher et al., 2006). Despite using
plant hydraulics, SPA still relies on a water-use efficiency opti-
mization similar to CF to model stomatal behaviour when
Ψ >Ψmin (Williams et al., 1996; Bonan et al., 2014).

Alternative routes to model plant optimal stomatal behaviour
have been proposed recently (for a review, see Mencuccini et al.,
2019a). These approaches circumvent the CF limitations by
assuming that plant optimal stomatal behaviour minimizes the
instantaneous fitness costs associated with low Ψ. These new
optimization models use widely available plant hydraulic traits

(Kattge et al., 2011; Choat et al., 2012) to simulate gs responses
to environmental conditions, producing a realistic gs decline in
response to elevated atmospheric CO2 and soil drought (Sperry
et al., 2017; Venturas et al., 2018; Eller et al., 2018b; Wang
et al., 2019). This approach predicts a tight coordination between
stomatal and xylem functioning which is widely corroborated by
observations (Hubbard et al., 2001; Meinzer et al., 2009; Klein,
2014). Another advantage of this approach is its capacity to simu-
late a diversity of contrasting stomatal behaviours, from iso- to
anisohydric (Martinez-Vilalta et al., 2014; Klein, 2014).

Sperry et al. (2017) proposes a model that assumes that, as
xylem hydraulic conductance declines, the increased risk of
hydraulic failure is the main fitness cost associated with low Ψ.
Eller et al. (2018b) adapted the Sperry et al. (2017) model into
the stomatal optimization model based on xylem hydraulics
(SOX), which differs from the Sperry et al. (2017) model princi-
pally by using a different optimization target. The SOX opti-
mization target is based on the PGEN model (Friend, 1995),
which assumes that stomata optimize plant dry matter produc-
tion, represented by the product of photosynthesis and a linear
function of Ψ. The SOX model in Eller et al. (2018b) uses a
numerical routine to find the optimum gs. However, the PGEN
optimization target can also be found analytically (Friend & Cox,
1995; Dewar et al., 2018). A parsimonious analytical formulation
for SOX would facilitate its incorporation into existing LSMs
and provide a practical alternative to the b-function for mod-
elling stomatal responses to drought at global scales.

In this study we develop an analytical approximation for the
numerical SOX model presented in Eller et al. (2018b). We then
create a new configuration for the Joint UK Land Environment
Simulator (JULES; Best et al., 2011; Clark et al., 2011) that uses
SOX to compute vegetation gs from environmental and plant
hydraulic data. Using a global dataset of xylem hydraulic traits,
together with an extensive leaf gas-exchange and eddy covariance
dataset, we calibrate the SOX parameters and compare the
JULES-SOX performance to the default JULES using the b-
function, across all major global biomes. Our goals in this paper
are twofold: to test SOX agreement with global observations of gs
to assess the generality of the underlying hypothesis in SOX, that
is, that plant stomata evolved to balance carbon assimilation with
the loss of hydraulic conductance; and to evaluate the effect of
SOX on JULES ecosystem-scale predictions of carbon and water
fluxes, and their agreement with observations.

Materials and Methods

Analytical SOX description

The SOX central hypothesis can be summarized as ‘stomatal con-
ductance (gs) is such as to maximize the product of leaf photosyn-
thesis and xylem hydraulic conductance’ and is given by:

A½ciðgsÞ�K ½WmðgsÞ�; Eqn 1

where A is leaf net CO2 assimilation (mol CO2 m
�2 s�1), which

is a function of leaf internal CO2 partial pressure (ci, in Pa),
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which is itself a function of stomatal conductance to CO2 (gs,
mol m�2 s�1). The K is the normalized (0–1) xylem hydraulic
conductance computed as:

K ðWÞ ¼ 1

½1þ ðW=W50Þa � ; Eqn 2

where Ψ50 is Ψ when K = 0.5 and the parameter a gives the shape
of the curve, with a higher a producing a steeper response to Ψ.
We use the mean (Ψm, MPa) of the canopy water potential at the
predawn (Ψpd, MPa) and the canopy water potential (Ψc, MPa)
to compute K with Eqn 2 to account for the gradual decline in Ψ
along the soil to canopy hydraulic pathway (see details in Sup-
porting Information Notes S1). The gs value that maximizes Eqn
1 is found at:

@AK

@gs
¼ 0: Eqn 3

The gs value that satisfies Eqn 3 was found numerically in Eller
et al. (2018b), but a computationally efficient analytical solution
is preferable for application in dynamic global vegetation models
(DGVMs) and ESMs. We developed an analytical approximation
for the optimal SOX gs using the partial derivatives of A with
respect to ci and K with respect to Ψm. All steps of the model
derivation are described in Notes S1. The resulting SOX equa-
tion for the optimal gs is:

gs ¼ 0:5
@A

@ci

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4n

@A=@ci
þ 1

s
� 1

 !
; Eqn 4

The benefit of stomatal opening is represented here by the sen-
sitivity of leaf photosynthesis to the internal CO2 concentration
(@A=@ci). By contrast, the parameter ξ represents the cost of
stomatal opening in terms of loss of xylem conductivity under
low Ψpd and/or higher leaf-to-air vapour pressure (D,
mol mol�1):

n ¼ 2

1=K @K =@Wmrp1:6D
: Eqn 5

Low ξ indicates high hydraulic costs occurring during drought
(i.e. lower Ψpd and higher D; Fig. S1). SOX simulates dynamic
changes on the plant hydraulic resistance (rp), computing rp as a
function of Ψpd and the plant minimum hydraulic resistance
(rpmin, m

2 s MPa mol�1 H2O):

rp ¼
rp;min

K Wpd

� � : Eqn 6

Solving SOX main equations (Eqns 4, 5) requires computing
the partial derivatives of A and K, @A/@ci and @K/@Ψm, respec-
tively. These derivatives were estimated numerically in this study
as described in Notes S2.

We evaluated SOX as a stand-alone leaf-level model, and cou-
pled to JULES (hereafter JULES-SOX). The leaf-level model was
evaluated against leaf gas exchange data as an ‘assumption cen-
tred’ (sensu Medlyn et al., 2015) test of the hypothesis underlying
SOX. The JULES-SOX was then evaluated against ecosystem-
level eddy flux data, which constituted the first practical test of
the utility of SOX for LSMs.

JULES b-function description

The JULES model (Best et al., 2011; Clark et al., 2011) uses the
Collatz et al. (1991, 1992) photosynthesis model for C3 and C4

plants (Notes S3) to produce unstressed rates of A based on the
colimitation of light, Rubisco carboxylation capacity, and the
transport of photoassimilates (for C3 plants) and PEPcarboxylase
limitation (for C4 plants). The effect of soil moisture in A in the
default JULES is given by multiplying A by the b factor, com-
puted using the b-function from Cox et al. (1998):

b ¼
1 for h[ hc

h�hw
hc�hw

for hw\h� hc
0 for h� hw

;

8<
: Eqn 7

where h is the mean soil moisture in the root zone (m3 m�3), and
hc and hw, are the critical and wilting points, which are defined
by Cox et al. (1998) as the h when soil Ψ is� 0.033
and� 1.5MPa, respectively. The default JULES formulation
employs the Jacobs (1994) equation to predict ci from D, ca and
the CO2 compensation point, Γ (Pa):

ci ¼ f0 1� D

Dcrit

� �
ca � Cð Þ; Eqn 8

where f0 and Dcrit are empirical parameters (Jacobs, 1994; Cox
et al., 1998).

The JULES-SOX configuration replaces Eqns 7 and 8, com-
puting gs from environmental data and plant hydraulic inputs
with Eqns 4 and 5. To compute A from the gs predicted by Eqn
4, we solved the limiting photosynthetic rates from the Collatz
et al. (1991, 1992) model as functions of ca and gs, as described
in Notes S3.

Leaf-level SOX evaluation

We used a global compilation of leaf gas exchange data to evalu-
ate the SOX capacity to reproduce leaf stomatal responses of a
wide range of woody plants. This dataset contains observations
compiled by Lin et al. (2015), complemented with other pub-
lished and unpublished data (see Table S1 and Fig. S2 for addi-
tional information). In total, there are 3597 measurements of gs
and Ψpd together with environmental variables used for driving
the model, that is, incident photosynthetic active radiation (Ipar),
air temperature (Ta), ca and D. These data come from 30 woody
plant species collected in 15 sites around the world (Fig. S2b).
The Ψpd was measured on the same day as gs, and the
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environmental data was measured simultaneously with gs. The
dataset included field and glasshouse observations, with environ-
mental conditions varying from well-watered to extreme drought
(Ψpd =�7MPa). These observations were grouped into the
global plant functional type (PFT) categories from Harper et al.
(2016) (Table 1). Harper et al. (2016) divides angiosperm tree
species into broadleaf evergreen tropical trees (BET-Tr),
broadleaf evergreen temperate trees (BET-Te) and broadleaf
deciduous trees (BDT), while gymnosperms tree species are
divided into needleleaf evergreen trees (NET) and needleleaf
deciduous trees (NDT). Shrub species were divided into ever-
green shrubs (ESh) and deciduous shrubs (DSh), and two grass
PFTs defined by their photosynthetic pathway (C3 and C4). The
grass PFTs and the NDT were excluded from the leaf-level evalu-
ation because no stomatal conductance data were available for
these PFTs in the dataset used in this study.

The plant hydraulic parameters used in SOX (i.e. Ψ50, a, and
rpmin) were fitted to the gs data using an algorithm that minimizes
the model residual sum of squares within the constraints of the
observed Ψ50, a and rpmin. We compiled hydraulic data for each
PFT from the literature to constrain the leaf-level model fit. The
Ψ50 for woody plants was obtained from a version of the Choat
et al. (2012) dataset updated recently by Mencuccini et al.
(2019b). The shape parameter a of the xylem vulnerability func-
tion (Eqn 2) was estimated from the linear gradient between Ψ50

and the Ψ when the plant loses 88% of its maximum hydraulic
conductance. The rpmin was estimated from branch-level
hydraulic conductivity measurements scaled from branch to
whole plant, taking into account plant height, Huber value and
xylem tapering using the calculations described in Christoffersen
et al. (2016) and Savage et al. (2010) (Notes S4). All the data
used for these calculations were obtained from the hydraulic
dataset from Mencuccini et al. (2019b). We note that scaling
branch to whole tree rpmin requires several assumptions about tree
hydraulic architecture (Notes S4). Therefore, the presented values
of rpmin must be considered as a reference useful only to assess if
the rpmin input values used in the model are within the same
order of magnitude of the observations. The other parameters of

the photosynthesis model used in SOX (Notes S3) were set equal
to those in Harper et al. (2016).

The model predictive skill was evaluated using the model root-
mean-square errors (RMSE) and the Nash & Sutcliffe (1970)
model efficiency index (NSE). The NSE varies from �∞ to 1,
with 1 indicating perfect agreement between model and observa-
tions, while NSE < 0 indicates that the mean value of the obser-
vations is a better predictor than the model. The model
parsimony was evaluated using the Akaike information criterion
(AIC), which penalizes model overparameterization (Bozdogan,
1987). We compared SOX AIC score with the b-function (Eqns
7, 8). The parameters f0 and Dcrit, (Eqn 8) were fitted to the PFT
gs data, while hc and hw were held at their default values (�0.033
and� 1.5MPa, respectively).

The uncertainty in plant hydraulic parameters caused by
within-PFT hydraulic variability was propagated to the model
predictions using bootstrapped 95% confidence intervals. We
created the interval based on 1000 model runs with parameters
resampled from the hydraulic trait data for each PFT.

Eddy-covariance based JULES-SOX evaluation

We evaluated default JULES and JULES-SOX against daily GPP
estimates derived from eddy flux tower data at 62 FLUXNET
sites (http://fluxnet.fluxdata.org, Baldocchi et al., 2001) and eight
LBA sites (https://daac.ornl.gov/LBA, Saleska et al., 2013), cover-
ing all the major biomes of the world (Fig. S2; Table S2). In 10
of these sites we also had data for surface (5–15 cm) soil moisture
content, which was used to evaluate the model soil moisture
dynamics predictions. We classified the land cover on each site
using the International Geosphere-Biosphere Programme (IGBP)
classification (Loveland et al., 2000). Each site was classified as
one of the following categories according to its prescribed PFT
cover (Table S2): cropland (CRO), deciduous broadleaf forests
(DBF), deciduous needleleaf forests (DNF), temperate evergreen
broadleaf forests (EBF-Te), tropical evergreen broadleaf forests
(EBF-Tr), evergreen needleleaf forest (ENF), grassland (GRA),
mixed forest (MF), savannah (SAV), shrubland (SHR) and wet-
lands (WET). We grouped the IGBP categories open and closed
shrublands into SHR, as we only had a single closed shrubland
site. Similarly, woody savannah was grouped with SAV, as we
only had two woody savannah sites. We divided the evergreen
broad leaf forests category into EBF-Te and EBF-Tr, as these sites
were dominated by distinct PFTs (BET-Te and BET-Tr, respec-
tively).

We evaluated JULES-SOX using the SOX hydraulic parame-
ters (i.e. Ψ50, a, and rpmin) that minimized the residual sum of
squares between SOX predictions and the eddy flux GPP obser-
vations from a subset of the sites used for model evaluation
(Fig. S2; Table S2). Each site was used to calibrate the hydraulic
parameters for its dominant PFT (i.e. the PFT covering > 50%
of the site area), except for DSh, which was not dominant in any
of the available sites. We used a site with DSh cover of 35% (US-
SRM) to calibrate the hydraulic parameters of this PFT. The
hydraulic parameters of the others PFTs (if any) present on the
site were kept constant during the model runs for parameter

Table 1 Residual sum of squares (RSS), number of leaf-level stomatal
conductance observations (N) used to fit n parameters to the data, and the
resulting Akaike information criterion differences (DAIC) between stomatal
optimization based on xylem hydraulics (SOX) and the b-function.

PFT N

SOX b-function

DAICRSS n RSS n

BET-Tr 434 4.83 3 6.53 2 �126.1
BET-Te 1334 19.68 3 37.37 2 �853.2
BDT 71 3.48 3 3.04 2 11.6
NET 1571 0.65 3 2.29 2 �1926.4
ESh 133 3.37 3 7.94 2 �112
DSh 64 2.76 3 8.03 2 �66.4

PFT, plant functional type; BET-Tr, broadleaf evergreen tropical tree; BET-
Te, broadleaf evergreen temperate tree; BDT, broadleaf deciduous tree;
NET, needleleaf evergreen tree; ESh, evergreen shrubs; DSh, deciduous
shrubs.
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calibration. Similar to the leaf-level evaluation, the parameter cal-
ibration in JULES-SOX was constrained within the range of the
observed values of Ψ50, a, and rpmin for all PFTs, except for
NDT, which did not have enough observations to satisfactorily
constrain the model parameters. The Ψ50 for grasses was obtained
from the Lens et al. (2016) dataset updated with data from
Ocheltree et al. (2016).

Model setup

The JULES and JULES-SOX configurations used in this study
employed the 10-layer canopy scheme with sunlit and shaded
leaves in each layer as described in Clark et al. (2011). The
canopy radiation profile was given by the two-stream approach
from Sellers (1985), with the sun-fleck penetration scheme from
Mercado et al. (2009), and an exponential decrease of photosyn-
thetic capacity through the canopy (Mercado et al., 2007). All
the model runs used in this study were site-level simulations
driven with hourly local meteorological data. Vegetation dynam-
ics (Cox, 2001) was turned off and the site PFT coverage by site
was prescribed based on the site vegetation description obtained
from the site principal investigators (Table S2) or information
from the site available on the FLUXNET website (https://fluxne
t.fluxdata.org/sites/site-list-and-pages/). Site soil hydraulic prop-
erties were parameterized using Brooks & Corey (1964) relations.
These properties were derived from data collected at each site or,
when local data were not available, calculated from the sand/silt/
clay fractions in the nearest gridbox in the high-resolution input
file to the Met Office Central Ancillary Program (Dharssi et al.,
2009), using approximations from Cosby et al. (1984). The
model was spun up by recycling the meteorological data at each
site for up to 50 yr.

Results

SOX sensitivity to environmental and hydraulic drivers

The SOX analytical approximation (Eqns 4, 5) has gs responses
to climate which are consistent with the patterns commonly
reported in the literature (Mott, 1988; Leuning, 1995; Dewar
et al., 2018). The gs responses to Ipar and ca in SOX (Fig. 1a) are
given by the @A/@ci gradient decreasing at low light because of
the changes in the light response curve, as A starts being limited
by light (Notes S3), or at high ca (Notes S2). SOX correctly pre-
dicted stomatal closure in response to increased ca under
Rubisco-limited conditions (Mott, 1988; Fig. 1a). The classical
exponential gs responses to D (Leuning, 1995) was reproduced in
SOX (Fig. 1a) through the D effect on ξ (Eqn 5; Fig. S1a). An
exponential gs decline was also predicted by SOX in response to
decreasing Ψpd (Fig. 1a), which summarizes both the responses to
the soil water availability in the root zone and the hydraulic stress
of transporting water to the top of the canopy (Eqn S1.2 in Notes
S1). The plant hydraulic parameters modulated the model sensi-
tivity to D or Ψpd (Fig. 1b–d), with a less negative Ψ50 or a higher
rpmin increasing the gs sensitivity to Ψpd and D (Fig. 1c,d). The
effect of the vulnerability curve shape parameter a was more

complex: lower a increased gs sensitivity to less negative Ψpd, but
decreased gs sensitivity to very negative Ψpd values (Fig. 1c).

The patterns produced by the analytical SOX were similar to
the numerical version from Eller et al. (2018b), with a correlation
coefficient ranging from 0.92 to 1 (Fig. S3). However, the use of
linear gradients in Eqns 4 and 5 (Notes S2) can cause discrepan-
cies between the different model versions under certain ranges of
environmental conditions. The analytical version of SOX under-
estimated gs at low D (Fig. S3), overestimated gs at low ca, and gs
increased faster in response to light (Fig. S3) than in the numeri-
cal model.

SOX leaf-level evaluation

Stomatal optimization based on xylem hydraulics simulated the
observed leaf-level gs responses to soil drought better than the b-
function in all the studied woody PFTs, except BDT (Fig. 2).
The b-function predicted that all PFTs will reach gs = 0 at
Ψpd >�2MPa, whereas SOX predicted gs > 0 even when
Ψpd <�4MPa in some PFTs (Fig. 2b,e). The less conservative
stomatal behaviour predicted by SOX produced a NSE that was,
on average, 0.65 higher and a RMSE that was 26% lower than
the b-function. Most of the observed gs was within SOX 95%
confidence bounds derived from the hydraulic parameters’ uncer-
tainty (shaded region in Fig. 2). The only values outside SOX
uncertainty boundaries were the highest gs values in BET-Tr and
BET-Te (Fig. 2a,b), and the lowest NET gs values when
Ψpd >�3.5MPa (Fig. 2d).

Stomatal optimization based on xylem hydraulics produced a
better fit to the gs data, which resulted in a lower AIC than the b-
function for all PFTs, except BDT (Table 1). Fitting the two
empirical parameters of the Jacobs (1994) equation (f0 and Dcrit;
Eqn 8) to the gs data results in a b-function AIC score that is
512.1 higher than SOX (Table 1). For the BDT observations,
the b-function results in an AIC score that is 11.6 lower than
SOX. Our BDT observations were restricted to relatively well-
watered conditions (lowest Ψpd was � 1.2MPa), which limits the
utility of this dataset to evaluate the model responses to soil
drought.

JULES-SOX site-level calibration

The hydraulic parameters that maximized the JULES-SOX fit to
the GPP data at the calibration sites (Table S2; Fig. S2) were
within 1 SD of the mean observed hydraulic parameters for most
PFTs (Table 2). The gymnosperm PFTs (NDT and NET)
required Ψ50 values 1.6 MPa less negative than their observed
Ψ50 means to fit the GPP data, which is lower than the observed
SD range but still within the range of Ψ50 observations for NET
(Ψ50 ranges from� 2.3 to� 7.5 MPa in NET). The NDT and
BET-Tr calibrated a were also slightly lower than the SD range
(Table 2), but within the observed a range for BET-Tr (a ranges
from 1.8 to 7.8 in BET-Tr). The only PFT with a calibrated
rpmin outside the SD range of the mean rpmin was ESh (Table 2).

The monthly GPP modelled by JULES-SOX fitted the eddy
covariance GPP data better than the default JULES in eight out
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of the nine sites used for parameter calibration (Table S2; Figs 3,
S2). The default JULES NSE was 0.01 higher in the DSh site
(Fig. 3i), whereas in all the other sites JULES-SOX had a better
fit. The difference between JULES-SOX and default JULES NSE
ranged from 0.03 for C3 grasses (Fig. 3f) to 11.44 for BET-Tr
(Fig. 3a). The large improvement in the BET-Tr site was caused
by the lower GPP decline predicted by SOX during January–
March and September–December. The decline in BET-Tr GPP
in default JULES can be attributed to the b-factor overestimating
the effects of soil moisture on the vegetation carbon assimilation
during drier periods (Fig. S4a). On average, JULES-SOX NSE
for GPP was 1.59 higher than default JULES, while its RMSE
was 38% lower than JULES.

The less conservative stomatal behaviour predicted by SOX
resulted in higher evapotranspiration rates throughout the year
(Figs S5, S6), which depleted soil moisture to lower values than
the b-function in default JULES during drier periods (Figs S4,
S7). The soil moisture dynamics from JULES-SOX are more
closely aligned with the monthly soil moisture observations in
eight out of the 10 sites where soil moisture data were available
(Fig. S7). JULES-SOX NSE for monthly soil moisture was 1.67
higher and RMSE was 19% lower than default JULES. JULES-
SOX also simulates realistic Ψc for most PFTs (Figs 4, S4). The

modelled Ψc at the calibration sites is within the interquartile
range of the observed minimum Ψc at midday for all woody
PFTs, except NDT (Fig. 4).

Biome-level JULES-SOX evaluation

Using JULES-SOX with calibrated SOX hydraulic parameters
produced a better fit to the GPP data than default JULES for 50
out of the 70 eddy flux evaluation sites (Tables 3, S2; Fig. 5).
Across all biomes the JULES-SOX median NSE was 0.19 higher
than default JULES, and its RMSE was 19% lower (Table 3).
The difference between JULES-SOX and JULES skill was highest
at EBF-Tr sites, which have a median NSE 3.18 higher and
RMSE 45% lower in JULES-SOX (Table 3; Fig 5a). The fit of
EBT-Te to data was also improved substantially by JULES-SOX,
with JULES-SOX having a median NSE 1.01 higher and RMSE
18% lower (Fig. 5a; Table 3). Default JULES only outperformed
JULES-SOX at CRO, which had a median NSE 0.08 lower in
JULES-SOX, and GRA, where the RMSE 5% was higher in
JULES-SOX (Fig. 5a; Table 3).

Default JULES significantly underestimated the observed
mean annual GPP by 143.3 g Cm�2 across all biomes, which
corresponds to 13.6% of the observed mean annual GPP
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Fig. 1 (a, b) Stomatal conductance (gs)
sensitivity to environmental drivers (a) and
plant hydraulic traits (b) as modelled by
stomatal optimization based on xylem
hydraulics (SOX) (D, vapour pressure deficit;
Ψpd, predawn water potential; Ipar, incident
photosynthetically active radiation; ca,
atmospheric CO2 partial pressure; Ψ50, Ψ
when plant loses 50% of its maximum
conductance; a, shape of vulnerability
function; rpmin, minimum plant hydraulic
resistance). Variables were changed
individually while the others were held
constant at their reference values
(D = 0.5 kPa, Ψpd =�0.5MPa,
Ipar = 600 µmol m�2 s�1, ca = 36 Pa,
Ψ50 =�2MPa, a = 3,
rpmin = 1m2 sMPammol�1). For (c) and (d)
the reference lines (dashed black) represent
values of Ψ50 =�3MPa, a = 5,
rpmin = 1mmol�1 m2 sMPa, and the coloured
lines show how changing each hydraulic
parameter affects gs response to Ψpd and D.
In (c) and (d), Ipar was set to
2000 µmol m�2 s�1. The Rubisco maximum
carboxylation rate at 25°C (Vcmax25) was set
to 100 µmol m�2 s and the rest of the
photosynthetic parameters follow the
broadleaf evergreen tropical tree (BET-Tr)
parameterization from Harper et al. (2016).
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(Fig. 5b). JULES-SOX deviation from the observed mean annual
GPP was considerably smaller (71.6 g Cm�2; Fig. 5b). The sig-
nificantly lower annual GPP predicted by default JULES can be
attributed to b-function-induced GPP declines, which also pro-
duced a stronger GPP seasonality than is present in the data
(Fig. 5c). JULES overestimated the median observed GPP sea-
sonality by 70%, compared with a 13% overestimation by
JULES-SOX (Fig. 5c). This difference means JULES predicts
17% of the sites have a markedly seasonal GPP with a Seasonality
Index (SI; Walsh & Lawler, 1981) higher than 0.8, while just 4%
of the sites actually have SI > 0.8. JULES-SOX predicts only 8%
of the sites would have SI > 0.8.

The light-use efficiency (LUE; Fig. 6) is the ratio between
GPP and the Ipar absorbed by the canopy (Stocker et al.,
2018), and can be used to disentangle the effects of soil

moisture and light availability controlling the vegetation
GPP. The JULES LUE declined as soil dried out, with a
mean linear slope of 1.21 (� 0.1) across all biomes. By con-
trast, the JULES-SOX LUE–soil moisture relationship had a
mean slope of 0.73 (� 0.21), with some biomes, such as
DBF, reaching a slope as low as 0.22 (Fig. 6b). The conse-
quence of sustaining higher LUE at low soil moisture in
JULES-SOX is a greater depletion of soil moisture, as indi-
cated by the more left-skewed soil moisture probability dis-
tribution predicted by JULES-SOX (lower panels in Fig. 6).
The mean moisture content of the top 1 m of soil predicted
by JULES-SOX was, on average, 10% lower than default
JULES. In JULES-SOX some biomes, such as ENF, could
reach a soil moisture, on average, 17% lower than JULES
(Fig. 6f).
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Fig. 2 Predicted and observed (grey points)
stomatal conductance (gs) response to
changes in leaf predawn water potential
(Ψpd) for the woody plant functional types
(PFT) from Harper et al. (2016), except for
needleleaf deciduous trees, which were not
present in the dataset used in this study. The
red and blue lines are the best fits from the
stomatal optimization based on xylem
hydraulics (SOX) and b-function (Eqns 7, 8),
respectively. The shaded regions are
nonparametric 95% confidence boundaries
derived from 1000 bootstrapping replications
of the SOX hydraulic inputs. All
environmental conditions except Ψpd were
held constant at their median values when
the gs measurements were taken. The Ψpd

was converted in soil volumetric water
content to drive the b-function using the
Brooks & Corey (1964) equations
parameterized with soil physical properties
derived from the Met Office Central Ancillary
Program (Dharssi et al., 2009). The model fit
to data is shown as the root-mean-square
errors (RMSE) and Nash-Sutcliffe (1970)
model efficiency index (NSE). The PFT
abbreviations in each panel are as follows: (a)
broadleaf evergreen tropical tree (BET-Tr);
(b) broadleaf evergreen temperate tree (BET-
Te); (c) broadleaf deciduous tree (BDT); (d)
needleleaf evergreen tree (NET); (e)
evergreen shrubs (ESh); and (f) deciduous
shrubs (DSh).
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Discussion

We report the first evaluation of a LSM using a stomatal opti-
mization model fully based on xylem hydraulics to drive the vege-
tation stomatal responses to climate. Our results provide support
for the SOX underlying hypothesis that stomata evolved to bal-
ance carbon assimilation with instantaneous hydraulic conduc-
tance loss. The risk of mortality through hydraulic failure (Choat
et al., 2012; Rowland et al., 2015; Anderegg et al., 2016; Adams
et al., 2017) should drive the evolution of mechanisms to prevent
the plant from reaching lethal embolism thresholds (Sperry,
2004). There is abundant evidence that stomata controls xylem
tension, and consequently embolism (Hubbard et al., 2001; Bro-
dribb et al., 2003; Meinzer et al., 2009; Klein, 2014). Our model
represents this xylem–stomata coordination through the assump-
tion of optimization by natural selection (Wolf et al., 2016).

Whereas our model fits the observations of most PFTs better
than its empirical alternative, there is still a considerable amount
of unexplained variance in the data (Fig. 2). This can be partially
attributed to the large hydraulic heterogeneity within each PFT,
but we must also acknowledge that many processes not directly
related to xylem hydraulics are important to plant life history and
stomatal evolution. Processes related to nutrient use and acquisi-
tion, carbohydrate allocation and storage, the maintenance of tis-
sues and biochemical apparatus, and protection from pathogens
and herbivores (Melotto et al., 2008; Cramer et al., 2009; Pren-
tice et al., 2014) could all explain part of our model residual vari-
ance. It is extremely important to explore the relevance of these
processes in future research on stomatal optimality. However, the
SOX model as we propose it already provides a parsimonious
alternative to the empirical models commonly used in LSMs.

Our findings that xylem hydraulics-based models can ade-
quately simulate stomatal behaviour agree with other recent stud-
ies. For example, Anderegg et al. (2018b) shows that a
hydraulics-based optimization model can simulate the stomatal
behaviour of woody plants better than the CF model. More

recently, Wang et al. (2019) shows that a similar hydraulics-based
model can predict stomatal responses to increased CO2 better
than the Ball–Berry–Leuning empirical model (Leuning, 1995).
These results show the potential of using plant hydraulics to
model the stomatal behaviour of plants across contrasting envi-
ronmental conditions, and supports its use in ESMs to project
the evolution of global climate.

The analytical formulation developed for SOX facilitates its
coupling to LSMs, allowing the host LSM to constrain its predic-
tions using plant hydraulic information. We show that inclusion
of plant hydraulics in JULES through SOX improves its capabili-
ties to simulate GPP and soil moisture dynamics in most of the
studied biomes (Figs 3–5). In addition, SOX opens new possibili-
ties to evaluate LSM predictions and expands the range of
hypotheses that can be tested with JULES. Using JULES-SOX
within ESMs will allow us to understand how hydraulic processes
affect climatic and biogeochemical cycles at the global scale, as
well as to investigate the role of plant hydraulics on vegetation
distribution and its response to climate change.

SOX parametrization and parsimony

Other LSMs and DGVMs have already successfully employed
principles of plant hydraulics (Hickler et al., 2006; Bonan et al.,
2014; Kennedy et al., 2019), but JULES-SOX is the first LSM to
use the new generation of hydraulically based stomatal optimiza-
tion models (Wolf et al., 2016; Sperry et al., 2017; Anderegg
et al., 2018b; Eller et al., 2018b) to predict stomatal responses to
climate. The SPA (Williams et al., 1996) adaptation to the com-
munity land model (CLM) by Bonan et al. (2014) was one of the
first approaches to link plant stomatal function to plant hydraulic
processes in a LSM. Despite SPA being an extremely useful
model, SOX has an advantage in circumstances where assuming a
strict isohydric behaviour is not appropriate (Klein, 2014;
Martinez-Vilalta et al., 2014). In relation to SOX, SPA does not
represent dynamic changes in the plant hydraulic conductance or

Table 2 Observed (Obs) mean (� SD) hydraulic parameters compiled from the literature for each plant functional type (PFT) from JULES (Harper et al.,
2016).

PFT

Ψ50 (MPa) a (unitless) rpmin (10
�3 mol�1 m2 sMPa)

N Obs Cala Nb Obs Cal N Obs Cal

BET-Tr 77 �1.9 (� 1.3) �1.7 20 4.4 (� 2.1) 2.1 40 2.2 (� 3.4) 0.6
BET-Te 44 �2.7 (� 1.5) �1.8 17 3.7 (� 1.8) 2.8 40 3.1 (� 8) 5
BDT 87 �2.6 (� 1.4) �1.6 43 5.5 (� 3.8) 3.5 31 5.3 (� 5.6) 0.5
NET 48 �4.2 (� 1.2) �2.6 25 8.7 (� 4.9) 4.9 20 2.4 (� 1.8) 4.2
NDT 5 �3.4 (� 0.6) �1.8 2 7.4 (� 5) 1.8 2 8 (� 4.3) 9
C3 45 �3.1 (� 1.6) �2.4 – – 2.2 – – 3.2
C4 15 �2.7 (� 1.7) �1.5 – – 1.8 – – 9.5
ESh 61 �4 (� 2.2) �2.1 53 4.1 (� 3.3) 2.5 49 1.5 (� 1.8) 9.5
DSh 26 �4 (� 2.3) �1.8 3 3.4 (� 2.2) 2.1 4 2.6 (� 2.4) 5

BET-Tr, broadleaf evergreen tropical tree; BET-Te, broadleaf evergreen temperate tree; BDT, broadleaf deciduous tree; NET, needleleaf evergreen tree;
NDT, needleleaf deciduous tree; C3, C3 grasses; C4, C4 grasses; ESh, evergreen shrubs; DSh, deciduous shrubs.
aThe calibrated (Cal) columns are the parameter values that maximize the fit of the Joint UK Land Environment Simulator–stomatal optimization based on
xylem hydraulics (JULES-SOX) to observed gross primary productivity (GPP) in the calibration sites (see Supporting Information Table S2; Fig. S2).
bThe N column is the number of species compiled for the correspondent parameter.
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Fig. 3 Monthly mean gross primary production (GPP) modelled by default Joint UK Land Environment Simulator (JULES, blue line) and JULES-stomatal
optimization based on xylem hydraulics (JULES-SOX, red line) vs observations (grey points are means and bars are 29 SE) at each eddy flux site used for
calibrating the SOX hydraulic parameters (plant functional type (PFT); Supporting Information Table S2; Fig. S3). The model fit to data is shown as the
root-mean-square errors (RMSE) and Nash-Sutcliffe (1970) model efficiency index (NSE). The PFT abbreviations in each panel are as follows: (a) broadleaf
evergreen tropical tree (BET-Tr); (b) broadleaf evergreen temperate tree (BET-Te); (c) broadleaf deciduous tree (BDT); (d) needleleaf evergreen tree (NET);
(e) needleleaf deciduous tree (NDT); (f) C3 grasses (C3); (g) C4 grasses (C4); (h) evergreen shrubs (ESh); (i) deciduous shrubs (DSh).
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an anisohydric mode of stomatal regulation (Williams et al.,
1996; Fisher et al., 2006). However, SPA accounts for plant
hydraulic capacitance, which can be important for plant func-
tioning, especially during the early morning (Goldstein et al.,
1998), and is currently not implemented in SOX.

Recently, Kennedy et al. (2019) implemented a plant
hydraulic scheme (PHS) in a CLM. The PHS simulates dynamic

changes in hydraulic conductance in different compartments
along the soil–atmosphere continuum, providing a more detailed
representation than SOX of hydraulic processes occurring along
the soil–plant hydraulic pathway. However, PHS still requires
empirical parameters to represent stomatal responses to soil
drought and D (Kennedy et al., 2019), namely the g0 and g1
parameters from the Medlyn et al. (2011) model, and the critical
and wilting points used in the empirical stress factor. The main
advantage of SOX is providing an alternative to the b-function
and empirical stomatal parameters by linking plant hydraulic
processes directly to stomatal functioning. As we treat the soil–
plant–atmosphere pathway as a single hydraulic compartment,
SOX only requires the hydraulic parameters rpmin, Ψ50 and a to
predict stomatal responses to climate. This makes SOX even
more parsimonious than default JULES, which requires four
empirical parameters to simulate stomatal responses to climate
(Eqns 7, 8) and does not simulate any aspect of vegetation
hydraulic functioning (Clark et al., 2011).

We show that the SOX hydraulic parameters in most PFTs
can be constrained with plant branch-level hydraulic observations
(Table 2), which is an advantage over models that employ empir-
ical parameters difficult to constrain and interpret biologically.
However, we observed discrepancies between the SOX-calibrated
parameters and the observed hydraulic traits in certain PFTs
(Table 2). In some cases, such as NDT, the parameter discrep-
ancy may have been a result of a very restricted observational
sampling of hydraulic parameters in this group. The NDT only
had Ψ50 data for five species and a and rpmin for two species
(Table 2). Considering that the observations used in this study
were not collected in the same FLUXNET sites used to evaluate
SOX, some of the observed discrepancies between calibrated and
measured parameters might reflect hydraulic differences between
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Fig. 4 Minimum observed midday leaf water
potential (Ψmidday) from 279 woody plant
species compiled from the literature grouped
using the Harper et al. (2016) plant
functional type (PFT) categories. The Ψmidday

for each of the calibration sites as modelled
by stomatal optimization based on xylem
hydraulics (SOX) (see Supporting
Information Table S2; Fig. S2) is plotted in
red. The circle is the mean Ψmidday and the
arrows indicate the minimum and maximum
Ψmidday. The data for the deciduous PFT were
restricted to the growing season. The PFT
abbreviations in each panel are as follows:
broadleaf evergreen tropical tree (BET-Tr);
broadleaf evergreen temperate tree (BET-
Te); broadleaf deciduous tree (BDT);
needleleaf evergreen tree (NET); needleleaf
deciduous tree (NDT); C3 grasses (C3); (g) C4

grasses (C4); evergreen shrubs (ESh);
deciduous shrubs (DSh).

Table 3 Median Nash-Sutcliffe (1970) model efficiency index (NSE) and
root-mean-square error (RMSE) for the biomes used for evaluating the
Joint UK Land Environment Simulator–stomatal optimization based on
xylem hydraulics (JULES-SOX) and the default JULES.

Biomea Nb

JULES-SOX JULES

NSE RMSE NSE RMSE

CRO 3 0.49 123.12 0.57 141.1
DBF 7 0.89 37.32 0.83 47.19
DNF 1 0.58 25.93 0.37 31.97
EBF-Te 3 �0.23 45.22 �1.24 66.36
EBF-Tr 6 0.41 40.36 �2.77 73.53
ENF 5 0.9 34.14 0.59 40.58
GRA 12 0.22 32.31 �0.01 30.62
MF 3 0.85 47.87 0.59 79.29
SAV 5 �0.4 59.72 �2.12 89.69
SHR 4 0.78 14.90 0.64 15.92
WET 21 0.68 32.23 0.46 38.67

aBiome abbreviations are as follows: CRO, cropland; DBF, deciduous
broadleaf forests; DNF, deciduous needleleaf forests; EBF-Te, temperate
evergreen broadleaf forests; EBF-Tr, tropical evergreen broadleaf forests;
ENF, evergreen needleleaf forest; GRA, grassland; MF, mixed forest; SAV,
savannah; SHR, shrubland; WET, wetlands.
bThe N column is the number of sites representing the biome in the eddy
covariance dataset.

New Phytologist (2020) � 2020 The Authors

New Phytologist� 2020 New Phytologist Trustwww.newphytologist.com

Research

New
Phytologist10



populations treated as the same PFT in this study. For example,
the deciduous angiosperms species present in the XFT dataset
used in this study contain mostly hydraulic data from cold-decid-
uous temperate species (Mencuccini et al., 2019b), which might
not be adequate to describe the hydraulic system of tropical and
subtropical drought-deciduous. Our hydraulic scheme opens up
possibilities of improving the representation of different global
vegetation types in JULES with different hydraulic and pheno-
logical strategies. Capturing the large diversity of ecological
strategies in plants is important to simulate species-rich ecosys-
tems such as tropical forests (Xu et al., 2016).

Anderegg et al. (2018a) computed the community-weighted
average values for Ψ50 in two of the FLUXNET sites used in this
study (US-MMS and IT-Ren) and obtained values closer to the
calibrated values for BDT and NET (�2.1 and �3.6MPa,
respectively) than the means from our compiled hydraulic dataset
(Table 2). In Eller et al. (2018b) a numerical version of SOX out-
performed the b-function approach when parameterized with
locally measured branch-level hydraulic data from EBF-Tr. These
findings suggest that SOX can be constrained with in situ
hydraulic measurements when these are available. However, we
must also consider the possibility that there are intrinsic limita-
tions in using branch-level hydraulic data to parameterize the
model. Roots and leaves can be more vulnerable to embolism
than branches (Bartlett et al., 2016; Wolfe et al., 2016), which
can make these tissues bottleneck plant hydraulic conductance
during drought. The soil outside the roots can also limit plant

hydraulic conductance and, ultimately, control its water use
(Fisher et al., 2007). These bottlenecks could bias the SOX-cali-
brated hydraulic parameters towards the limiting component and
explain its departure from the branch-level hydraulic data. In this
case, SOX parameterization would benefit from the use of more
integrative methodologies to estimate hydraulic parameters that
represent the entire soil–plant hydraulic vulnerability (Eller et al.,
2018a). Alternatively, the SOX structure (i.e. the K function in
Eqn 2) would need to explicitly represent the variability between
different hydraulic compartments along the soil–plant–atmo-
sphere pathway, similar to SPA or other models (Eller et al.,
2018b; Kennedy et al., 2019; Mencuccini et al., 2019b).

Ecosystem-level implications of SOX

Stomatal optimization based on xylem hydraulics improved
JULES GPP simulation in over 70% of the 70 studied sites, and
soil moisture dynamics in 80% of the 10 sites where soil moisture
data were available. This improved fit was achieved using
hydraulic parameters calibrated against the GPP data of a small
subset of eddy flux sites (the sites in Fig. S2), which suggests that
the calibrated parameters are generic enough to be used in global
simulations. The lower sensitivity of SOX to soil moisture
improved the simulations of annual GPP (Fig. 5) and predicted
terrestrial biomes to assimilate on average 2.58Mg C ha�1 yr�1

or 30% more than predicted by default JULES. This increased
carbon assimilation could affect Earth’s atmospheric CO2
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Fig. 5 (a) The Taylor diagram shows the difference in Joint UK Land Environment Simulator (JULES) and JULES-stomatal optimization based on xylem
hydraulics (JULES-SOX) skill to predict the monthly gross primary productivity (GPP) in each studied biome. Green lines are the model-centred root-mean-
square errors (RMSE), and points closer to the reference circle on the x-axis indicate higher model skill. The two arrows highlight the improvement in model
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between models (default JULES in blue, JULES-SOX in red) and observations (Obs) in the annual GPP (b) and the GPP seasonality (GPP SI) (c). Data gaps
were excluded from the annual GPP calculations for both models and observations, and therefore the differences can be used to evaluate the model skill,
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evolution and climate change projections (Cox et al., 2000; Win-
kler et al., 2019).

The JULES-SOX model particularly improved the fit of EBF-
Tr sites to the observations (Fig. 5; Table 3), using hydraulic
parameters very similar to those observed in BET-Tr (Table 2).
Considering that SOX is also able to capture the response of
EBF-Tr even to extreme experimental drought (Eller et al.,
2018b), JULES-SOX may contribute to decrease the large uncer-
tainty in how these important ecosystems will respond to climate
change (Sitch et al., 2008). Tropical forest productivity estimated
by SOX is less sensitive to seasonal soil drought (Figs 3, S4),
which is consistent with the little seasonality often observed in
tropical forest–atmosphere CO2 exchange (Grace et al., 1995;
Carswell et al., 2002; Alden et al., 2016), as well as to forest
responses to experimental drought (Meir et al., 2009; da Costa

et al., 2010; Meir et al., 2018). da Costa et al. (2018) showed that
even after 15 yr of partial rainfall exclusion, Amazon trees can
maintain or even increase their transpiration rates (albeit follow-
ing significant mortality). Whereas tropical forest resistance to
drought has previously been attributed only to deep roots pos-
sessed by the vegetation (Nepstad et al., 1994), our results indi-
cate that plants more resistant to embolism could maintain their
carbon assimilation during drought even without a deeper root
system.

The unavoidable consequence of maintaining stomatal gas
exchange during soil drought is a greater depletion of soil mois-
ture reserves (Figs 6, S4, S7). This behaviour is a direct conse-
quence of the main assumption in SOX, which reflects a ‘use or
lose it’ stomatal regulation strategy with respect to soil moisture
(Sperry et al., 2017). SOX assumes plants with a more
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conservative water-use strategy will be outcompeted by neigh-
bouring plants with a less conservative stomatal behaviour (Wolf
et al., 2016). The demographic consequences of the stomatal reg-
ulation strategy embedded in SOX should be explored in future
studies using the dynamic vegetation component of JULES (Cox,
2001; Moore et al., 2018). The more competitive soil moisture
dynamics predicted by SOX, together with a more accurate repre-
sentation of vegetation drought-induced mortality, which also
can be developed from SOX, might be the key to predicting sud-
den and widespread vegetation die-off during droughts that have
been increasingly reported in ecosystems around the globe (Allen
et al., 2010; Worrall et al., 2010; Meir et al., 2015).
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