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A biome-dependent distribution gradient of 
tree species range edges is strongly dictated 
by climate spatial heterogeneity

David Lerner    1  , Marcos Fernández Martínez    2, Stav Livne-Luzon    1, 
Jonathan Belmaker3,4, Josep Peñuelas    2,5 & Tamir Klein    1

Understanding the causes of the arrest of species distributions has been 
a fundamental question in ecology and evolution. These questions are of 
particular interest for trees owing to their long lifespan and sessile nature. 
A surge in data availability evokes a macro-ecological analysis to determine 
the underlying forces limiting distributions. Here we analyse the spatial 
distribution of >3,600 major tree species to determine geographical areas 
of range-edge hotspots and find drivers for their arrest. We confirmed biome 
edges to be strong delineators of distributions. Importantly, we identified 
a stronger contribution of temperate than tropical biomes to range edges, 
adding strength to the notion that tropical areas are centres of radiation. 
We subsequently identified a strong association of range-edge hotspots 
with steep spatial climatic gradients. We linked spatial and temporal 
homogeneity and high potential evapotranspiration in the tropics as the 
strongest predictors of this phenomenon. We propose that the poleward 
migration of species in light of climate change might be hindered because of 
steep climatic gradients.

The geographical distributions of species are marked by their range 
limits. Understanding the causes of distribution arrest has been a 
fundamental question in ecology and evolution1–4. Given the strong 
interplay among biotic, abiotic, demographic, physical and historical 
forces in predicting range edges (REs), it has been challenging to find 
underpinnings for their formation. Two main environmental forces 
seem to play a major role in the formation of REs: spatial environmental 
heterogeneity and habitat quality4–6. Most models on the formation of 
species REs rely on the interplay between either one of these two forces 
and non-climatic pressures to explain their formation. For example, 
steep climate gradients combined with high dispersal and gene flow 
reduce species’ fitness and genetically constrains their evolution into 
new environments7,8. Likewise, low habitat quality reduces population 
size2,9, increasing drift and migration load10–12. Nevertheless, the sig-
nificance of climate in the interplay between these two environmental 

components in defining REs for an array of species or on a wide bio-
geographical scale remains elusive13,14.

The field of biogeography has long sought an understanding 
of species ranges despite having limited tools3,15. Given the surge in 
large-scale datasets, it is now possible to better identify the underpin-
nings of species distributions by studying the macro eco-evolutionary 
processes involved in their formation12,13,16–18. Although methods and 
results are disparate between studies, there is almost a consensus that 
the presence of large-scale biogeographical units confines species 
with climate as their primary predictor. For example, Bontager et al.12 
suggested distinct characteristics for RE populations dependent on 
their latitude. Likewise, niche conservatism and strong beta-diversity 
patterns seem to withhold at large macro-ecological scales17–19. This is 
generally true for plant species, with biomes being the most consistent 
classifier on the basis of structural and functional similarity20,21. Recent 
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example, northern REs in Africa, Asia and North America were associ-
ated with the Sahara Desert, montane grasslands of the Himalayas 
and the tundra biome, respectively; Fig. 1). A significant fraction of 
eastern inland REs were in Europe, but almost no significant REHs 
were identified, implying sparse distribution of REs throughout the 
continent, or an effect of a smaller area for distribution compared 
with other continents.

Contribution of biome–biome intersections to REHs
We quantitatively identified the global patterns of arrest by analysing 
the fraction of REHs that stopped at biome–biome intersections—14 
central global ecological regions best distinguished by their climate, 
fauna and flora obtained from the World Wildlife Fund (WWF, http://
www.worldwildlife.org/) (Fig. 1)—and by delineating a buffer zone at 
points of intersection between two or more biomes. Although not 
significant, the number of REH was strongly associated with the inter-
section between biomes (arrow in Fig. 2a), indicating that climatic 
conditions were a probable reason for the REs of tree species at biome 
edges. Our results, however, identified an unequal contribution of 
the different biome edges to the fraction of REH (Fig. 2a). We then 
analysed the individual biome–biome intersections normalized by a 
global permutation (that is, from permutation of the global distribu-
tion of REH; Methods). Here, we identified a strong contribution of 
REH at the intersections between temperate and desert biomes (Fig. 
2b(i)) in comparison with a weaker contribution at the intersections of 
tropical and subtropical biomes (between themselves and with tem-
perate biomes). The significance of the contribution of REH (P < 0.05) 
(Methods) was attributed almost exclusively to the intersections within 
temperate biomes (asterisks in Fig. 2b). This unequal contribution of 
the temperate versus tropical and subtropical biomes was consistent 
globally. Nevertheless, under a per-biome permutation (that is, nor-
malizing each intersect by a selective permutation from the respec-
tive biome combinations separately; Fig. 2b(ii)), we observed a much 
weaker contribution of REs to the formation of biomes. Only a selected 
number of biome–biome intersections made a significant contribution 
to the formation of REH, yet no specific pattern between temperate 
and tropical biomes was observed. Indeed, the strong positive cor-
relation of the number of REs between biomes with the number of REs 
within biomes (Fig. 2c; R = 0.9, linear regression, P < 0.001) reflects 
the discrepancy between the panels in Fig. 2b, because the number 
of REH at the edge of biomes had a strong linear association with the 
number of REH within that biome. However, we identified five biomes 
outside the 95% confidence interval (CI) of the regression (Fig. 2c). The 
two biomes above the regression CI (desert and boreal) were ones in 
which the number of REH at the edges was larger than predicted (Fig. 
2c). By contrast, temperate coniferous forest, mangrove and flooded 
grasslands fell below the CI of the regression, indicating a much larger 
number of REH within the biome compared with the edge.

A parallel analysis using the distribution of REs (rather than REH) 
was conducted to identify similarities and differences between the 
distributions. The results indicated a similar pattern of distribution 
(Supplementary Fig. 4a,b compared with Fig. 2b,c), suggesting global 
forces associated with REH.

Climatic predictors of RE formation
Intersections between biomes were a substantial cause of RE forma-
tion, therefore we also investigated the dependence of RE formation 
on climate. We tested both the ‘absolute climate’ (annual and seasonal 
average temperature and precipitation) and the ‘spatial heterogeneity 
of climate’ (SH; spatial variability of absolute climate) at each of the 
global hexagons using 19 bioclimatic variables obtained from World-
Clim (Methods). Elevation (absolute and SH) and latitude were also 
accounted for at each hexagon resolution. Generalized linear models 
(GLMs) of regression between each climatic variable as an independ-
ent predictor indicated that all 40 climatic variables were significant 

efforts have been made to understand how accurate and substantial 
biome entities are at defining species distributions21,22. Nevertheless, it 
remains an open question whether, and to what extent, the intersection 
between biomes is a source of species range-edge hotspots (REHs). 
Deciphering such patterns will enable a proper understanding of how 
communities of species redistribute and are structured geographically, 
and if similar biomes in distinct geographic areas have similar effects 
on the distribution of species.

Although there has been increased interest in defining the bio-
geographical underpinnings of species distributions, most techniques 
have used species relatedness and diversity metrics to test for the exist-
ence of shared niche space between species and communities. Direct 
analysis of the ecological and climatic limitations on geographical 
space, although trivial, remains elusive. Here, we look at the universal 
set of climatic factors and geographical patterns of species distribu-
tions by focusing directly on species’ RE distributions.

We present the first-to-date global study of tree species REs, 
applying a novel, simple, yet effective method of delineating REs to 
(1) identify deterministic patterns of REs, as seen by RE-dense areas 
(REHs); (2) determine whether the classification of biomes as dis-
tinct community-level patterns of biodiversity properly delineates 
the niche of species; (3) identify global-scale REH patterns; and (4) 
discern the underlying niche factors responsible for RE formation. In 
particular, we investigate whether the spatial heterogeneity of abiotic 
factors or a universal predictor of habitat quality are determinants of 
RE formation. We focus in particular on tree species because they are 
an exemplary group in the study of the ecological changes predicted 
to occur at the peripheries of distributions, given their long-lived 
characteristics and fundamental role in many ecosystems23,24,  
specifically biomes19,25.

Although we do not study the interplay between climate and other 
ecological and evolutionary limiting factors to species distributions 
(for example, seed dispersal, plasticity and adaptation), discerning 
these patterns and the climatic components leading to such distribu-
tions will enable a better understanding of interplays between biotic 
and abiotic factors in future studies. A better understanding of the 
climatic factors affecting dispersal allows for better predictions of the 
success of species to track changing climates, and in turn, whether they 
will be subject to migration lags26–28.

Results
Global dataset and REH distribution
We present the first report, to our knowledge, of the global distribution 
of tree REHs (Fig. 1), marked by hexagons with significant clustering of 
REs (Supplementary Fig. 1). We did not identify any significant colds-
pots, given the baseline presence of REs around the globe. The visual 
patterns emerging from these distributions indicated that distribu-
tions stopped disproportionally more often at the edges of biomes 
than within them. For example, northern REH occurred mostly at the 
intersection between a montane (Himalayas) and a desert biome (Gobi 
Desert) or at the edge of the tundra in North America. Southern REH in 
Africa and southern Eurasia tended to stop at the edges of desert biomes 
(for example, Sahara Desert) but mainly at the edges of temperate and 
montane grasslands in the Southern Hemisphere (pampas and Andes, 
respectively). Notably, eastern and western REH were mostly in similar 
geographical locations; for example, at the intersections between 
the Himalayas and central Asian deserts or at the edge of the Atacama 
Desert in South America.

To identify the underlying niche factors that define REs, we 
focused only on inland REs, because REs at the edge of a water source 
are probably due to an obvious geographical barrier rather than 
an ecological effect. The fraction of inland REs was globally similar 
between continents (between 65% and 75%), except for Australia (~45%;  
Supplementary Fig. 2a). The large fraction of inland REs (Supple-
mentary Fig. 2b) was mainly associated with the edges of biomes (for 
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predictors of RE formation (P < 0.05) (Supplementary Fig. 5a). Interest-
ingly, most absolute climatic variables were negatively associated with 
the global RE distribution (Fig. 3a,b), implying a general prediction of 
REs occurring in climates with low temperatures and low precipitation. 
A positive association was attributed to the four climatic variables that 
defined the temporal heterogeneity of temperature and precipitation 
(mean diurnal range, temperature seasonality, temperature annual 
range and precipitation seasonality; BioClim variables 2, 4, 7 and 15, 
respectively) (Fig. 3a and Supplementary Fig. 5) and all of the SH cli-
matic variables. A mixed model with biomes and continents as random 
factors gave a reduced number of variables that significantly predicted 
the formation of RE (Fig. 3a). A crossed model with both continents and 
biomes consistently gave a stronger fit (Akaike information criterion 
(AIC) values) than only considering either of these categorical random 

factors independently (Supplementary Fig. 6b). In this more stringent 
global analysis, latitude, absolute temperature and SH temperature, 
precipitation and elevation were significant predictors of REH. The 
goodness of fit (R2) of each model, as a measure of predictive strength, 
indicated that spatial heterogeneity accounted for RE formation bet-
ter than their absolute equivalents. A model selection was carried out 
to identify the most important factors associated with RE formation, 
followed by averaging of the models with a ∆AIC < 2 (Fig. 3c). The SH 
climatic variables again defined RE better than the absolute climatic 
variables. Although absolute climatic variables such as isothermality 
(BioClim3), temperature of the wettest quarter (BioClim8) (both char-
acteristic of tropical and subtropical climates) and annual precipitation 
(BioClim12) were strongly associated with REs in a GLM, temperature 
of the warmest quarter (BioClim10) was the only predictor strongly 
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figure over a standardized Z-distribution of biomes is shown (first distribution), 
where the arrow marks the percentage of REHs at biome intersections in the 
dataset (one-sided P values). b, Heat maps of the percentage of REH (relative to 
the total number of hotspots) at the intersection between two biomes. A biome-
pair intersection with a significant number of hotspots (P < 0.08) is marked with 

an asterisk. Biome pairs that have no intersections are shown in grey. Normalized 
over (i) a global bootstrap and (ii) a per-biome bootstrap. c, Correlations (and 
regression lines) of the relationships between the number of REs at the edges of 
biomes and the number of REs within the biomes. The shaded area represents 
the 95% CI around the regression line. P values are calculated using a two-sided 
Student’s t-test (degrees of freedom = 12). See Methods for further information 
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permutations. T&sT, tropic and subtropic; Temp, temperate.
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associated with RE under the mixed model (Fig. 3a and Supplementary 
Fig. 6). This difference in results can be seen visually when comparing 
between continents (Fig. 3b), for example, in Fig. 3b(iii), with tempera-
ture of the wettest quarter (BioClim8) having partial dissociations in 
Africa and South America; that is, the two continents with the most 
tropical biomes. Furthermore, SH isothermality (BioClim3), mini-
mum temperature of the coldest month (SH BioClim6), precipitation  
(SH BioClim13 and BioClim16) and elevation change (SH elevation) 
were all predictors of REs. Interestingly, the absolute climatic predic-
tors (BioClim8 and BioClim10) were strongly negatively correlated 
with spatial heterogeneity at the minimum temperature of the coldest 
month (SH BioClim6) (Supplementary Fig. 7b), indicating its represen-
tation of a tropical biome climate. The weaker relative importance of SH 
precipitation (Fig. 3c, left) is due to its dissociation with the continents 
that most strongly represent temperate regions: Europe and North 
America (Fig. 3b(iv)).

In parallel, we ran models with ENVIREM, a dataset of environ-
mental variables complementary to WorldClim that are more eco-
physiologically meaningful for plant species29. Most ENVIREM variables 
associated with REH are spatially heterogeneous (Fig. 3c and Sup-
plementary Fig. 7). Absolute potential evapotranspiration (PET) of 
the coldest quarter was strongly correlated with both absolute tem-
perature of the warmest quarter (BioClim10) and SH temperature 
of the coldest month (BioClim6); the two predictors are indicative 
of a transition between tropical and temperate biomes (Supplemen-
tary Fig. 7b). SH embergerQ and SH PET of the warmest quarter were 
strongly associated with SH precipitation (BioClim13 and BioClim16) 
and SH temperature of the warmest quarter (BioClim10), respectively. 
Despite the strong correlation of all absolute ENVIREM variables with 
absolute BioClim variables29, we identified several SH ENVIREM vari-
ables to be weakly correlated with BioClim (for example, SH moisture 
index and PET of the driest month). All the results in Fig. 3 were robust 
against spatial autocorrelation (Supplementary Fig. 5b; see Methods 
for further information).

The REH distribution from our generated polygons was compared 
with a REH distribution from expert polygons (Methods) to test the 
accuracy of our generated dataset. Indeed, the results of GLMs con-
verge, indicating the robustness of our generated dataset to describe 
REs (Supplementary Fig. 8).

Discussion
The results support our hypothesis of a non-random distribution of 
REs. We were able to confirm that many tree species REs were clus-
tered rather than sparsely (stochastic) distributed by obtaining a larger 
number of significant REH. This finding suggests the underlying pres-
ence of ecological and evolutionary forces governing REH formation. 
Similarly, the matching results obtained from the biome analyses when 
accounting for REs (Supplementary Fig. 4) or REH (Fig. 2) were also 
indicative of the deterministic clustering of species REs at these specific  
ecological barriers (biome edges). Nevertheless, we identified 

case-specific exceptions such as the scattered distribution of east-
ern REs throughout Europe, indicated by the strong identification 
of internal REs (Supplementary Fig. 2b), but not REH (Fig. 1c). This 
could potentially have occurred as a consequence of either intense 
anthropogenic activity throughout30,31 that prevented the distribu-
tion of tree species to reach their natural REs, or the effect of a smaller 
land area compared with other continents, altering the effect of how 
species interact with abiotic factors, thus affecting their distribution 
and adaptation.

Our results also indicated a strong dependence of REH on the 
edges of biomes, strongly supporting the many efforts to determine 
whether the division of the planet into discrete geographical units 
has been delineated appropriately22,32–35. Our findings, however, were 
unexpectedly biome-specific, identifying the biome borders that 
most defined tree distributions (Fig. 2). There is no seemingly obvi-
ous pattern of differential contribution to REH when analysing each 
biome independently (per-biome bootstrap; Fig. 2a). However, a clear 
distinction between tropical/temperate distributions of REH is strongly 
observed under a biome–biome pairs analysis (global bootstrap;  
Fig. 2b). Specifically, REs were strongly dependent on desert, temperate 
and montane edges compared with their weak dependence on tropi-
cal and subtropical biome edges. Despite the marginally significant 
association of REs to biomes globally (Fig. 2a), a tropical–temperate 
REH distribution is not specifically dependent on biome edges, but 
rather represents a global biome trend (Fig. 2b(i) and 2c). In addi-
tion, the importance of biomes in describing climate’s association to 
REs, as seen from a mixed effects model (Fig. 3a and Supplementary  
Fig. 6c), and the absence of latitude in predicting REs in a global model  
(Fig. 3c), is further indicative of the importance of biomes (rather than 
a latitudinal effect) in defining REs.

The large differences in the relative number of REs between the 
tropical and temperate biomes can indicate adaptive mechanisms 
between species residing in either of these two types of biomes. These 
non-trivial results may have been related to the latitude diversity gradi-
ent36–38, a well-established pattern in which biodiversity is higher in the 
tropics than in temperate regions. The notion that these differences 
surged through the effective evolutionary time hypothesis37,39 suggests 
that genetic diversity is higher in the tropics owing to the possible 
longer times needed for adaptation and expansion. Similarly, long-term 
climatic oscillations have been suggested to reduce cladogenesis at 
higher latitudes, consistent with the observation that tropical areas 
are centres of evolutionary novelty37,40,41 and evolve faster than tem-
perate regions36, leading to the notion of tropics as centres for the 
radial expansion of clades and species. Recent studies have identified 
mechanisms for this ‘out of the tropics expansion’ model42,43 and have 
reported a higher fraction of bridge species (species violating niche 
conservatism) from the tropics compared with temperate regions. 
We conclude that the lower contribution to REs in tropical versus 
temperate regions is consistent with stronger radial expansions from 
the tropics than from temperate regions.

Fig. 3 | Climatic predictors of RE formation. Models of RE formation using 
the absolute climate (mean) and the spatial heterogeneity (PV index) of the 19 
WorldClim variables and elevation. a, Individual (binomial) mixed regression 
models between each of the predictor variables and number of REs (1–19 are 
BioClim variables) accounting for continents and biomes as random effects. 
The estimated coefficients of the explanatory variables (β) are represented by 
the colour gradient. *P < 0.05, **P < 0.01 (two-sided Student’s t-test). BioClim1, 
annual mean temperature; BioClim2, mean diurnal range (mean of monthly 
(maximum temperature–minimum temperature); BioClim3, isothermality; 
BioClim4, temperature seasonality; BioClim5, maximum temperature of the 
warmest month; BioClim6, minimum temperature of the coldest month; 
BioClim7, temperature annual range; BioClim8, mean temperature of the wettest 
quarter; BioClim9, mean temperature of the driest quarter; BioClim10, mean 
temperature of the warmest quarter; BioClim11, mean temperature of the coldest 

quarter; BioClim12, annual precipitation; BioClim13, precipitation of the wettest 
month; BioClim14, precipitation of the driest month; BioClim15, precipitation 
seasonality (PV); BioClim16, precipitation of the wettest quarter; BioClim17, 
precipitation of the driest quarter; BioClim18, precipitation of the driest quarter; 
BioClim19, precipitation of the coldest quarter. b, Violin plots depicting the 
results from a for four predictor variables. The distribution of continental 
climates is shown in grey, contrasted with the climatic distribution specific to 
the REH (scaled to the intensity of the hotspot, that is, the Z-score). Q, quarter. 
c, Forest plot of a model average from the highest predicting LMM with both 
BioClim and ENVRIEM variables (identified with a model selection). M, month; 
PPT, precipitation; T, temperature. Beta values (log-odds) are shown for each 
predictor. Absolute and SH climate was obtained from all of the inland global 
hexagonal units (n = 5,851). Error bars represent 95% CI around the average effect.
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However, other mechanisms could explain the distinctive REH 
patterns between tropical and temperate regions. For example, 
based on several studies demonstrating the large physiological and 

evolutionary effects of forest fragmentation30,44,45, the increased 
long-term anthropogenic activity, and consequently excessive frag-
mentation, in forests in temperate regions compared with tropical 
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and subtropical regions may have hindered the adaptation of spe-
cies to novel climates. The lack of association of REH specifically 
with temperate grasslands, temperate conifers and Mediterra-
nean biomes (Fig. 2a) could be indicative of such an effect, because  
these biomes have been historically subject to strong  
anthropogenic activity.

Our analyses confirmed the strong dependence of RE on climate. 
Lower temperature, higher climatic heterogeneity (both temporal and 
spatial) and elevation changes were the strongest climatic predictors 
of REs. Analysis of the best predictive variables indicated a notice-
able weak correlation between most of the leading factors determin-
ing REs (Supplementary Fig. 7b), suggesting that these factors were 
site-specific predictors of REs (for example, desert biome with low 
annual precipitation, montane grassland with high elevation, and tropi-
cal and subtropical biomes with temperature homogeneity (isother-
mality, temperature of the wettest quarter and spatial heterogeneity of 
low temperature—SH6)). We suggest that the strong negative correla-
tion between these absolute climatic variables and the spatial hetero-
geneity of low temperature is an indication of different temperature 
patterns between tropical and temperate regions; that is, a buffered 
heterogeneous temperature in the tropics in contrast to the latitudinal 
effect of decreasing temperatures in the temperate biomes. There was 
an overall positive trend for the effect of precipitation (BioClim12–
BioClim19) when controlling for biome because the signal appeared 
only when biome is included as a random factor (Supplementary  
Fig. 6). This means there must be other unaccounted for confounding 
factors altering the relationship when analysing all biomes together, 
suggesting that the effect is not biome dependent. Although this study 
does not make note of the complex interplay between biotic and abi-
otic forces or the ecological traits of tree species (for example, seed 
dispersal and phenology) in the formation of RE, we find a consistent 
global effect of temperature, and spatial heterogeneity of temperature 
and precipitation to predict their formation throughout the different 
models. This is indicative of their principal role as universal predictors 
of species distributions.

The strong prediction of REH formation from PET of the coldest 
quarter and its covariance to the tropical–temperate transition vari-
ables (SH BioClim6 and absolute BioClim10) could reflect a possible 
mechanistic evolutionary constraint for the distribution of woody 
species at temperate biomes. At higher latitudinal temperate biomes, 
where evapotranspiration is strongly reduced especially during the 
coldest quarter, there is a strong limitation on photosynthesis and 
growth caused by the significant time reduction in stomatal conduct-
ance46,47. Similarly, given the strength of its prediction of REH, SH 
embergerQ (pluviothermic quotient) could indicate a more refined 
mechanism for RE formation than its covariates of precipitation (SH 
BioClim13 and BioClim16). This index describes mean annual precipi-
tation in relation to annual changes in temperature. embergerQ thus 
increases the predictability of how precipitation also dictates the for-
mation of REH in more temperate biomes (Fig. 3b(iv)). The consistency 
of our results indicates spatial and temporal heterogeneity of climate 
and topography as overwhelmingly stronger predictors of RE forma-
tion than their absolute climatic counterparts (Fig. 3) and, in turn, frail 
evidence for a universal poor habitat quality. Even in cases in which 
mean climatic variables strongly predict REH, these were strongly 
associated with this transition from spatial and temporal climatically 
homogenous tropical and subtropical biomes to more heterogeneous 
temperate biomes. Nevertheless, we note the importance of a lack of 
evapotranspiration, particularly in cold climates, as a main predictor 
of RE formation.

These observations have substantial implications for the 
effects of climate change on tree distributions and tree migration. 
Although prediction of a future steeper temperature gradient as a 
result of greenhouse gas emission and climate change is not triv-
ial48–50, such an increase in temperature gradients could greatly affect 

the distribution of species. In particular, our results strengthen the 
growing understanding that the predicted poleward migration of 
tree species might not be as successful as previously predicted27,28. 
The increase in stronger spatial gradients (especially at lower lati-
tudes)28,49,51 or extreme and spontaneous events might all be causes 
of migration lags, despite the suitable temperatures at higher lati-
tudes and altitudes. Likewise, the importance of PET from temperate 
biomes on the formation of REH presented here could also suggest a 
possible migration lag or loss of adaptation owing to the predicted 
reduction in PET at higher latitudes52. Our results thus highlight the 
importance of accounting for more precise spatial heterogeneity of 
climate as a critical feature in future models of species distribution 
and the development of more precise conservation efforts such as  
assisted migration.

Methods
Data acquisition and polygon formation
Supplementary Figure 9 visually summarizes the methodologies used 
to obtain global REH distributions. We downloaded a dataset of tree 
species from the open-source dataset Global Biodiversity Information 
Facility (GBIF; 5 July 2021, https://doi.org/10.15468/dl.ajen6k) using R 
packages ‘rgbif’ and ‘taxize’ and the Botanic Gardens Conservation 
list of 60,000 tree species. We downloaded occurrences with entries 
from 1980 onwards, removing any occurrence reported with a geo-
spatial issue, species not belonging to the kingdom Plantae (in case of 
mismatched species names), and any occurrence marked as unlikely, 
mismatched or invalid. We removed occurrences that had reported 
uncertainties of >100 km and records based on fossils and unknown 
sources. We then used the R package ‘CoordinateCleaner’53 to remove 
any occurrences with zero coordinates, equal x and y coordinates, 
duplicates, occurrences at sea, coordinates at capitals and centroids. 
To finalize, we again removed species with fewer than 300 occurrences. 
The data we used undoubtedly contained sampling bias54, probably 
overrepresenting the number of REs in some regions with a reduced 
or negligible sampling effort. We tried to overcome this issue by bas-
ing our filtering steps on several previous studies6,53,54. The strength 
of the critical filtering steps applied in our analysis resembled those 
presented previously54.

We converted the georeferenced species occurrences (x and y 
coordinates) into distributional polygons in parallel using two inde-
pendent techniques: through concave-hull (Supplementary Methods) 
and multivariate kernel-density estimation (described below). Given 
the strong similarity between the two methods (Supplementary Fig. 8), 
we discuss the methods and results in detail only for the kernel-density 
estimated polygons. We created polygons using two-dimensional 
kernel-density estimations. We first divided the extent of all the coordi-
nates into 800 grid points in each dimension (longitude and latitude) to 
produce a matrix of 640,000 grid cells for each species. Subsequently, 
we selected for the grid cells with the highest 99% estimation of the spe-
cies’ occurrence and rasterized these. Polygons were then delineated 
around the contour of the rasters.

Polygon groupings
All polygons belonging to the same species were grouped based on 
their absolute distance from one another. Polygons separated by 
≤500 km were grouped together, with the assumption that fragmen-
tation, gene flow and unreported data could all warrant two nearby 
populations being considered as one. We used the hclust function 
(package ‘stats’, agglomeration method: complete) to hierarchically 
cluster populations from a sequence of three or more populations by 
their distances, also using a cut-off of 500 km (cutree function, pack-
age ‘stats’) for determining the clusters. The final dataset comprised 
>3,600 tree species, ranging from one to nine populations (polygons) 
per species, for a total of 8,500 populations. All spatial data were ana-
lysed using R packages ‘sf’ and ‘raster’.
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RE determination
RE-dense areas were determined by defining distinct global units, 
identifying the RE of each species and mapping species RE to the global 
units to calculate the density of REs per unit. In detail, first we raster-
ized the world map to spatially bin the density of REs. To overcome the 
problem of spatial distortion, we used hexagonal bins with the R pack-
age ‘dggridR’, developed using the ISEA Discrete Global Grids system, 
a repetition of polygons on the surface of an icosahedron, allowing 
for the projection of equal-sized bins on a two-dimensional plane. 
We defined the size of each hexagon as ~23,000 km2 (with an average 
spacing between centre nodes of 165 km). Second, we used coordinates 
of the cardinal directions (north, south, east and west) to represent 
species REs by subdividing each polygon cluster into four quartiles 
in the four cardinal directions (northeast, northwest, southeast and 
southwest). The REs for each quartile were determined as the two 
most-outward coordinates of the corresponding cardinal directions 
(for example, north and east cardinal coordinates for the northeast 
quartile). Eight REs were thus determined for each population (two 
for each cardinal direction). As a filtering step, we accounted for both 
REs from the same cardinal direction if they were >20 arc degrees apart, 
otherwise we accounted only for the farthest point from the centroid. 
Third, the total number of REs obtained using this method was normal-
ized by the total number of species intersecting its respective hexagon. 
In parallel, we also defined REs by accounting for the perimeter of the 
polygon for each species (Supplementary Fig. 10). The ‘perimeter’ 
system may be a more realistic and complete system for identifying 
REs, but the ‘cardinal coordinate’ system, although more simplistic in 
nature, provides a clearer visual representation of the distribution of 
REs, and allows for the directionality of REs to be compared, essential 
farther along the pipeline by distinguishing between coastline and 
inland REs and identifying hotspots in the four cardinal directions.

We then classified coastline and inland REs, assuming that the 
arrest of species distribution at the edge of a water source was probably 
due to an obvious geographical barrier rather than an ecological effect. 
Coastline REs were determined by creating a semicircle (buffer of 3 arc 
degrees) around each RE in the direction of its cardinal coordinate and 
measuring the percentage overlap with water. Cardinal coordinates 
with >50% overlap were considered a ‘coastal RE’.

To find the probability distribution of REs at the edge of a water 
source (Supplementary Fig. 2), we permutated the global population 
of REs (except for the Australian population) and used the mean of 
this permutation to compare with the number of REs in each of the 
continents.

Hotspot analysis
Hotspots were identified using Getis–Ord Gi* hotspot analysis55,56  
to find spatial correlations between hexagon (inland and normalized) 
RE densities. We initially compiled a list of neighbours between all 
hexagons using the poly2nb function and then obtained the local G 
statistic using the weighted density (normalized number of REs) of 
the global hexagons and their relative distance from each other. The G 
statistic calculates a Z-score (measure of standard deviation) for each 
hexagon. P values were then determined using the critical Z-scores at 
95% CI followed by a Bonferroni correction with the p.adjustSP func-
tion (using the number of neighbours between hexagons rather than 
the total number of hexagons). All analyses were carried out using the 
R package ‘spdep’57.

We compared the analysis from the linear models with 
expert-based polygons from three different sources: International 
Union for Conservation of Nature, Botanical Information and Eco-
logical Network and European Forest Genetic Resources Programme. 
A randomized weighted sample of all of this dataset was used to gen-
erate a global distribution of REH by running this sample through our 
pipeline. GLMs were run on the global distribution of expert-based 
REH in the same way as with our generated polygons. Given the uneven 

distribution of expert-based polygons globally (Supplementary Fig. 8a),  
we ran models excluding Asia and Africa to account for this bias. As 
seen by the strong similarity between the GLMs of expert polygons in 
a global and filtered model (Supplementary Fig. 8b,c(iii)), we observed 
an overrepresentation of the expert polygons for these continents. 
Likewise, the GLMs from our generated polygons are very similar to 
those obtained from the filtered model. In this case, practically all 
variables showed the same relationship with REs (either positive or 
negative β values) as well as similar magnitudes.

Statistical analyses
Contribution of biome edge to RE. We used the 14 biomes defined by 
the WWF for our analyses. The distributions were downloaded from the 
WWF webpage (http://www.worldwildlife.org/). To identify the inter-
section between biomes, we reduced the complexity of the polygon 
edge using the package ‘rmapshaper’, which can perform topologi-
cally aware polygon simplifications, thus maintaining the intersection 
between biomes upon reduction of the ‘edginess’ of the polygons. 
The intersections were delineated and subsequently enlarged (with 
a buffer distance of 0.1 arcminute, ~185 m at the equator). A global 
permutation assay was carried out by randomizing (1,000 iterations) 
the global distribution of hexagons with REH (absolute Z-score), and a 
per-biome stratified permutation was carried out by randomizing the 
distribution of hexagons with REH within each biome independently.

The averaged global bootstrap shown in Fig. 2a was calculated 
using a per-biome bootstrap to obtain the probability distribution 
of REH at biome edges (Supplementary Fig. 3a). Distributions that 
were not normally distributed as a result of their small size (flooded 
grassland, mangrove and tropical and subtropical coniferous forest; 
Supplementary Fig. 3b) were removed from the analysis. A general 
trend for the probability of REs falling at the intersection of biomes 
was therefore measured as a unified standardized Z-distribution, and 
compared with the median Z-score from the actual per cent overlap 
for each biome.

The density of hotspots at the intersection between biomes was 
calculated using the sum of Z-scores of the hotspots at that inter-
section, and the percentage contribution was then calculated using 
this value over the total Z-score at all biome intersections. The global 
or per-biome 1,000 permutation means were used as a normalizing 
denominator for the values obtained from our dataset (Fig. 2b and  
Supplementary Fig. 4a). The denominator could be either larger or 
smaller than the numerator, so we log-transformed the outcome to 
obtain a linear-like relationship. Contribution within a biome was 
calculated in the same way as for the contribution at the edge, using 
the mean from a permutated assay to normalize for the absolute value.

Climatic dependency of RE. We tested the relationship between 
RE density and climatic features by assigning a set of environmental 
variables to each hexagon. We used the bioclimatic attributes down-
loaded from WorldClim Global Climate Data58 at a resolution of 5 arc-
minutes. The 19 BioClim variables and elevations for each hexagon were 
extracted using the R package ‘raster’. We also used the 16 ENVIREM 
variables described by Title and Bemmels29, downloaded from their 
website, at a resolution of 2.5 arcminutes. Absolute climate for each 
hexagon was obtained using the mean over all pixels. Climatic SH was 
calculated using the proportional variability (PV) index59,60 over all 
pixels in each hexagon.

We used an array of linear mixed models (LMM; Fig. 3 and  
Supplementary Figs. 5 and 6) to test for the dependence of REs on 
climate and the robustness of the results. LMM were carried out to 
account for biomes and continents. Both variables were introduced as 
random effects in random intercept models. A model selection analysis 
was used to determine the models that best predicted the formation 
of REs. Random intercept models using both continent and biome as 
random variables were run, and models with ∆AIC < 2 were selected for. 
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Given the strong correlation between different predictor variables, we 
ran only models with variable combinations that had a Pearson’s corre-
lation value of r < 0.7. The relative contribution of the variable included 
in the model was calculated from the selected models. Analyses were 
run using R package ‘MuMIn’61.

All statistical analyses (individual GLMs and multiple-predictor 
GLMs) were tested for their robustness to spatial autocorrelation 
by creating a spatial autocovariate (function autocov_dist function, 
package ‘spdep’), calculated as the distance-weighted average of 
neighbouring dependent variables62, so hexagons in proximity were 
averaged and those farther away received a lower weighting average. 
We set the predetermined distance to 200 km based on the average 
distance between cells. The spatial autocovariate was then included 
in the regression model as a dependent variable.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The occurrence points used from GBIF can be found on the GBIF 
webpage (https://doi.org/10.15468/dl.ajen6k). Polygons generated 
from occurrence points are provided in the public Zenodo repository 
10.5281/zenodo.7613535. Biome polygons were obtained from the WWF 
webpage (http://www.worldwildlife.org/). Bioclimatic attributes were 
downloaded from WorldClim Global Climate Data58. ENVIREM variables 
were downloaded from their webpage (https://envirem.github.io/).

Code availability
Custom codes related to this paper can be found in a GitHub repository 
at https://github.com/dlernerg/Global-Range-edges
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