
ULTRASAT

Ultraviolet Transient Astronomy Satellite

Eli Waxman, Weizmann Inst. of Science Feb. 2017

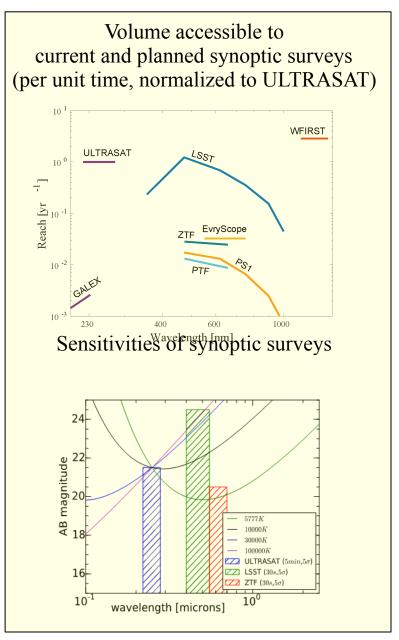
S. Kulkarni	E. Waxman
E. S. Phinney	A. Gal-Yam
M. Kasliwal	E. Ofek
G. Hallinan	J. Topaz
S. Nikzad	I. Sagiv
S. Gezari	O. Lapid
J. Kollmeier	M. Soumagnad
	S. Ben-Ami

- O. Aharonson
- D. Maoz

ULTRASAT: Science vision

- It is time for Time-Domain Astronomy.
- Exciting frontiers, e.g. cosmic explosions, require wide field transient surveys.
- Enabled by current technology.
- TDA drives observatories in Optical (LSST), Radio (LOFAR, SKA), X/γ-ray (Swift/Fermi/AstroSAT/e-Rosita).
- Missing: UV.
 Will address major open questions:
- Deaths of massive stars,
- Counterparts of Gravitational wave sources,
- Ia SN progenitors,
- Tidal disruption events (100/yr),
- Variability from min to month time scale for Active galactic nuclei (>10³), Variable/flaring stars (>10⁵),
- Star-planet connection

ULTRASAT will revolutionize our understanding of the transient UV universe.


Field of View	210 deg ²			
Band	220-280 nm			
Cadence	900 s			
Limiting mag	21.9 (5ơ, 900s)			
PSF, pixel #	20", 40Mp×l			
Alert distribution	<20 min			
Т₀О	50% of sky in <5min for >2.5hr			
2π Galactic survey	30mag/arcsec ²			
Extra-Galactic deep drills	33mag/arcsec ²			
300 times the survey capacity of				
GALEX.				
Drive vigorous ground-based				

follow-up programs.

ULTRASAT: Science vision

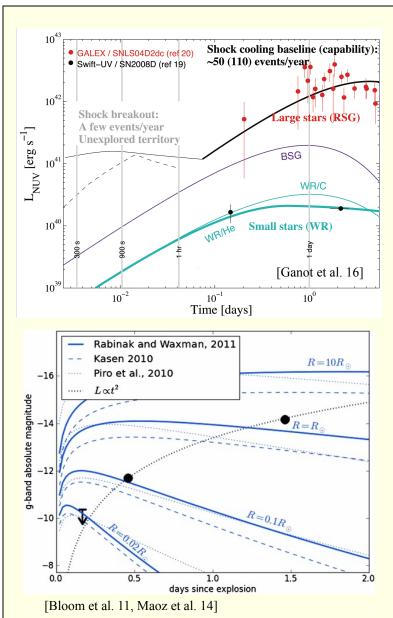
 ULTRASAT's survey reach is comparable to LSST, but it opens a new band (NUV) and a new temporal cadence (minutes) not be accessible to any other survey.

 For hot sources (e.g. young supernovae) ULTRASAT's sensitivity is competitive even with LSST, the deepest wide-field survey planned.

ULTRASAT: Science highlights

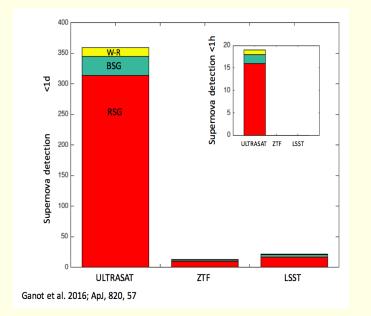
Source Type		# Events	Science Impact
Supernovae			
·	Shock break-out and Early (shock cooling) of core collapse SNe	>30 >400	Understand the explosive death of massive stars
	Superluminous SNe	>200	Early evolution, shock cooling emission
	Type Ia SNe	>30	Discriminate between SD and DD progenitors
Compact Object Transie	nts		
	Emission from Gravitational Wave events: NS-NS and NS-BH	~20	Constrain the physics of the sources of gravitational waves
	Cataclysmic variables	>20	Accretion and outburst physics
	Tidal disruption of stars by black holes	>200	Accretion physics, black hole demographics
Quasars and Active Gala	ctic Nuclei		
	Continuous UV lightcurves	>6000	Accretion physics, BLR Reverberation mapping
Stars			
	M star flares	>3×10 ⁵	Planet habitability, magnetospheres
	RR Lyrae	>800	Pulsation physics
	Nonradial hot pulsators, e.g., a Cyg, δ Scuti, SX Phe, β Cep etc. types	>200	Asteroseismology
	Eclipsing binaries	>300	Chromosphere and eclipse mapping
Galaxies and Clusters			
	All Sky Survey – galaxies	>10 ⁸	Galaxy Evolution, star formation rate

Science goal I: Deaths of Massive stars

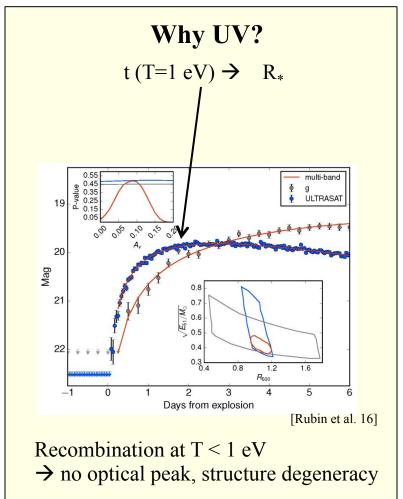

- Supernova mechanism not understood.
- Key to progress:
- Identify the "initial conditions",
 which stars explode as which SNe?
- So far- a handful of associations
 (pre- vs post- explosion high-res. host galaxy images).
- An alternative- Early, <1d, UV emission carries unique signatures of the progenitor ("erased" at later time): Progenitor type (size, envelope composition), Explosion properties, Pre-explosion evolution.

Science goal I: Deaths of Massive stars

- Early UV/opt.: status.
- A handful of (late, low-quality)
 Red-Super Giant explosion detections.
- Space UV (lucky) detection of 1 SN Ib:
 R=10¹¹cm; He + C/O envelope; E/M
 - → Mixed He Wolf-Rayet;

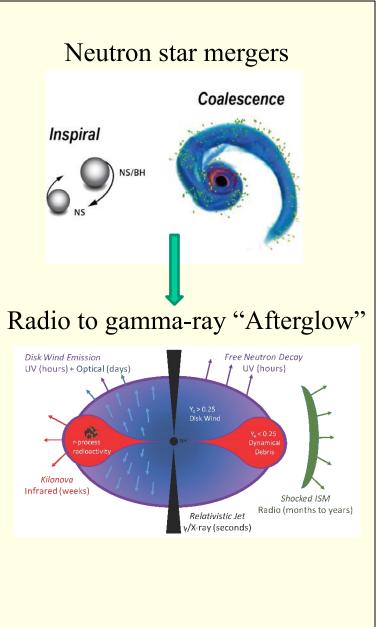

Explosion energy.

- Handful of type Ia non detections: $R_* < 4 \times 10^9 \text{ cm} \rightarrow \text{ White Dwarfs.}$
- Current data
- Validate models,
- Direct constraints on compact progenitors,
- Demonstrate potential.
- ULTRASAT:
- >100/yr, <1d, high quality UV,
 Map all (including rare) SN types.
- Rapid alerts for follow-ups.

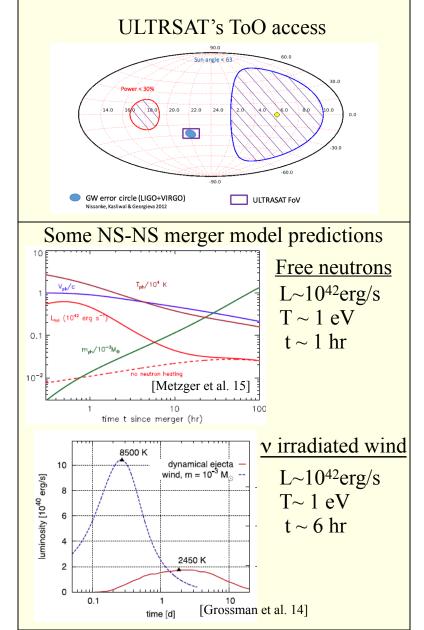


Science goal I: ULTRASAT's uniqueness

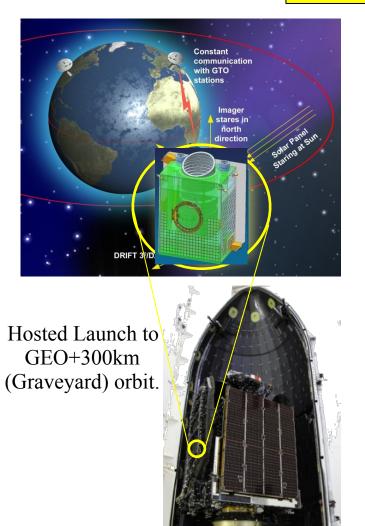
ULTRASAT is an order of magnitude more powerful discovery machine than any other survey

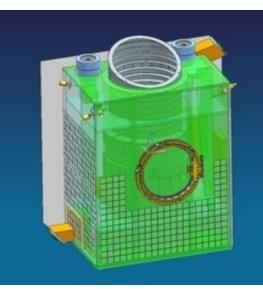


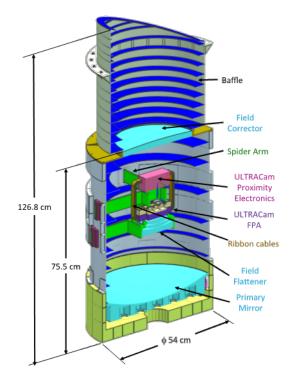
ULTRASAT will map all (including rare) SN types


Science goal II: Gravitational wave sources

- LIGO detected BH-BH merger GWs.
- GWs from NS-NS mergers expected.
 100 deg² error box, d<200Mpc.
- EM detection: localization, distance, phys.
 - X-rays: likely 1:100 (beamed).
 - Radio: ~1yr delay, requires CSM.
 - IR: challenging (wide field inst.).
 - Optical: more difficult than UV.

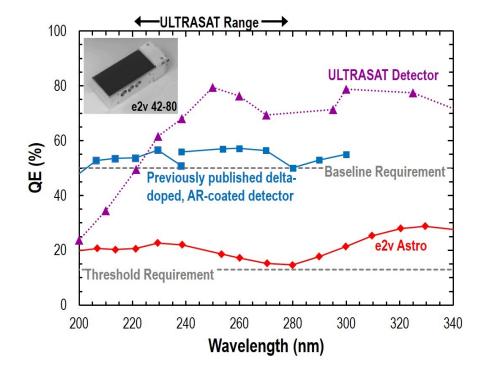

Science goal II: Gravitational wave sources

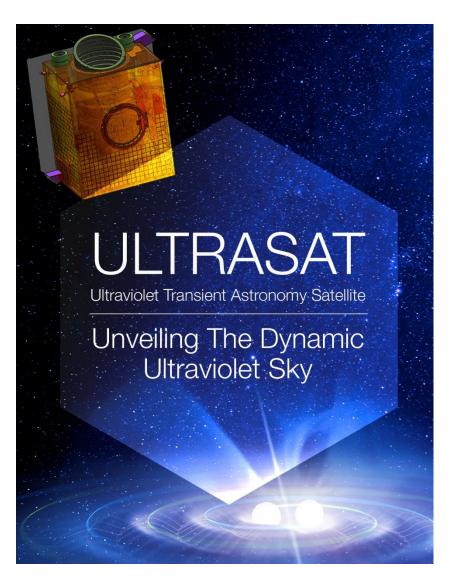

- LIGO detected BH-BH merger GWs.
- GWs from NS-NS mergers expected.
 100 deg² error box, d<200Mpc.
- EM detection: localization, distance, phys.
 - X-rays: likely 1:100 (beamed).
 - Radio: ~1yr delay, requires CSM.
 - IR: challenging (wide field inst.).
 - Optical: more difficult than UV.
- ULTRASAT
 - Instantaneous >50% of sky
 (8 times better than ground based),
 in <5 min for >2.5hr.
 - GW error box in a single image.
 - Sensitive out to 200 Mpc to early
 UV signals predicted in common models.



ULTRASAT: Implementation

ISA committed (>50%), NASA MOO proposal- Dec 2016.




Dimentions: 1.2 X 1.2 X 0.6 (m³)Power:150 WMass:160 kgCost (incld. Launch & Operation): \$100M

ULTRASAT: UV detectors

[JPL-Nilkzad et al. 16]

Outlook: The importance of an ISRAELI lead breakthrough science mission

- ULTRASAT: breakthrough science with agile, low cost satellite mission.
- Attract talent to science & technology.
- First large scale collaboration of Israeli space industry with NASA.
- Lead the way to future missions, with Israeli industry at an advantage point.