ULTRASAT: A Wide-Field UV Space Telescope

Revolutionize our understanding of the hot transient Universe

DESY.

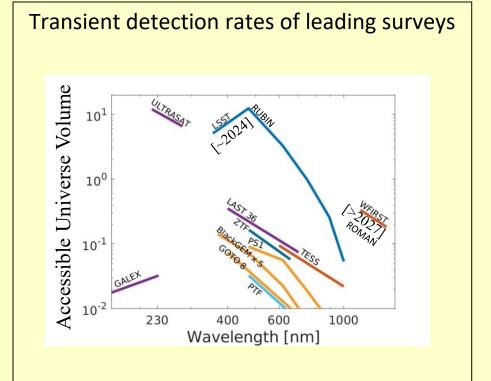
PI Program Manager	E. Waxman (WIS) U. Netzer (ISA/WIS)	Funding partners	Industry partners
Deputy PI	A. Gal-Yam (WIS)	ISA	IAI
Camera PI	D. Berge (DESY)		
Project Scientist	Y. Shvartzvald (WIS)	WIS	Elop
Science Lead	E. Ofek (WIS)	DESY	Tower
Payload Lead	S. Ben-Ami (WIS)	NASA	I
Technology Lead	O. Lapid (WIS)		

Elbit Systems

Where Analog and Value Meet

Eli Waxman | Weizmann Institute of Science

וז ויצבא לרגדנא

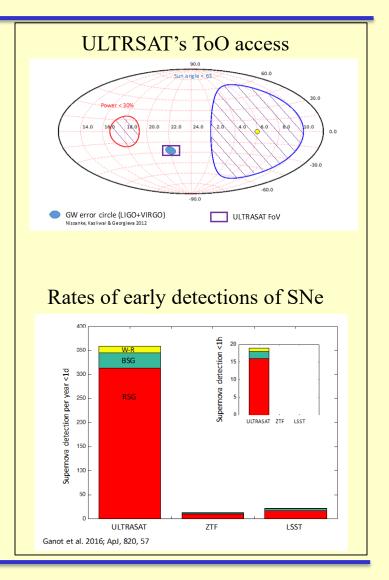

ULTRASAT's uniqueness

Key Properties

- Very large, 200 deg², field of view.
- High UV (230-290nm) sensitivity: 1.5 x 10⁻³ ph/cm² s (900s, 5σ) [m = 22.5].

Key Capabilities

- Monitor an unprecedentedly large volume of the Universe.
- New window in wavelength (NUV) and in cadence (minutes - months).
- Real-time alerts to ground/space-based telescopes (GEO orbit), initiate world-wide follow-ups.
- ToO: Instantaneous >50% of the sky in <15 min for >3 hr.

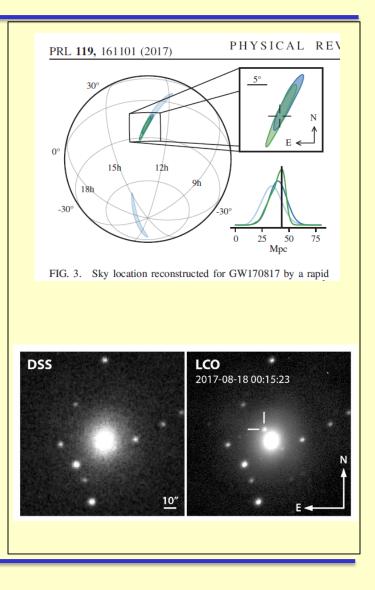

ULTRASAT: Key Science Goals

<u>EM counterparts to GW sources</u> Starting 2026: ~ 10 NS-NS merger events per year, ~100 deg² error boxes. ULTRASAT will provide:

- Fast localization of NS-NS/BH mergers-Rapid, <15min, access to >50% of sky, Cover GW error box in a single image.
- UV light curves to measure ejecta properties.

Deaths of massive stars

- High quality early high cadence UV data, Rapid alerts for follow-ups, 100's of SNe including rare types.
- Measure properties of supernova progenitors.
- Map progenitors to supernova types.
- Reveal pre-explosion evolution and mass loss.



First detection of GW from a NS merger [2017]

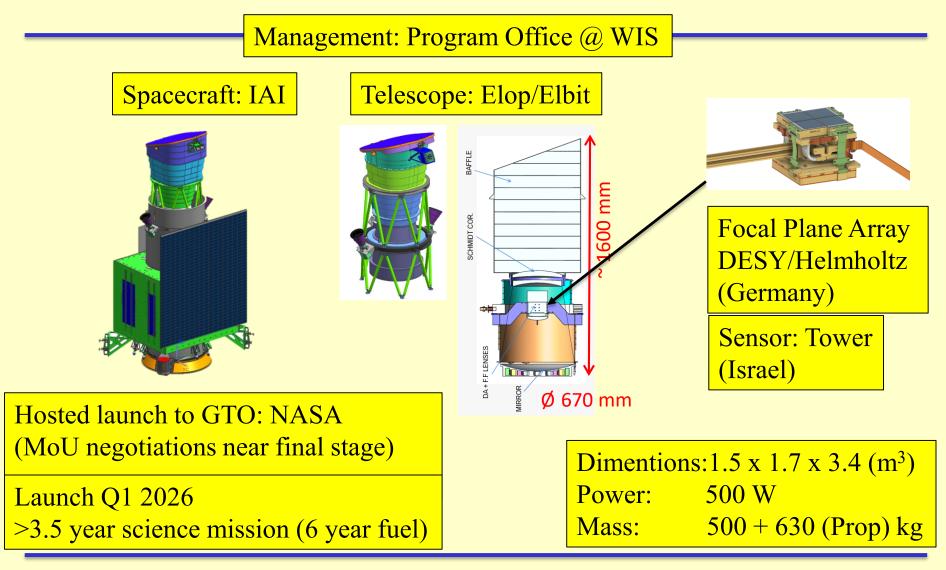
- Very nearby, ~ 120 million light years.
 Light detected after 0.5 day, UV bright.
- ULTRASAT is far superior to other searches

 Identifying light by searching over all galaxies within GW error volume- will be prohibitive, at 1 Billion light years- 1000's of galaxies.
 - Detection in other bands (infra-red, radio) will be highly challenging.
- Heavy elements beyond Iron produced, How heavy (Germanium or Gold) – uncertain.
 Earlier light detection, in particular in UV, will provide unique constraints.

Strong support to ULTRASAT

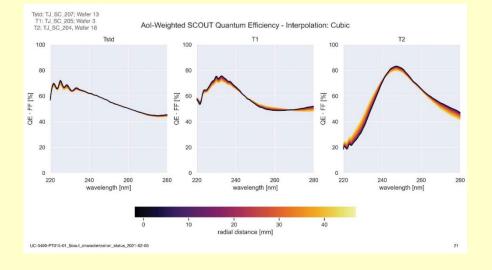
ULTRASAT: A broad science impact

Source Type		# Events per 3 yr mission	Science Impact	
Supernovae				
	Shock break-out and Early (shock cooling) of core collapse SNe	>40 >500	Understand the explosive death of massive stars	
	Superluminous SNe	>250	Early evolution, shock cooling emission	
	Type la SNe	>40	Discriminate between SD and DD progenitors	
Compact Object Transients				
	Emission from Gravitational Wave events: NS-NS and NS-BH	~25	Constrain the physics of the sources of gravitational waves	
	Cataclysmic variables	>25	Accretion and outburst physics	
	Tidal disruption of stars by black holes	>250	Accretion physics, black hole demographics	
Quasars and Active Galactic Nuclei				
	Continuous UV lightcurves	>7500	Accretion physics, BLR Reverberation mapping	
Stars				
	M star flares	>4×10 ⁵	Planet habitability, magnetospheres	
	RR Lyrae	>1000	Pulsation physics	
	Nonradial hot pulsators, e.g., α Cyg, δ Scuti, SX Phe, β Cep etc. types	>250	Asteroseismology	
	Eclipsing binaries	>400	Chromosphere and eclipse mapping	
Galaxies and Clusters				
	All Sky Survey – galaxies	>10 ⁸	Galaxy Evolution, star formation rate	

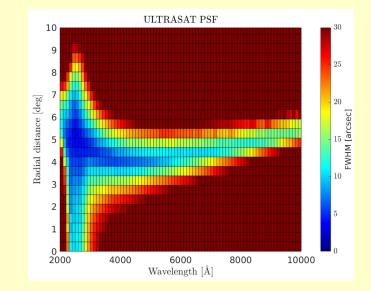

Science goal: Planet habitability

- UV flares and Coronal Mass ejections around prime candidate stars for terrestrial planet searches (M-dwarfs/young Solar analogues)
 - Severely limit habitability,
 - May allow prebiotic chemistry,
 - May produce false positive biomarker signatures

 $(O_3 \text{ from photo-dissociation of } H_2O \& CO_2).$


- Flares dominate UV output. Flare rates unknown.
- ULTRASAT will monitor ~10⁶ stars
 - Determine NUV flare frequency and luminosity distribution as functions of both spectral subclass and stellar rotation period,
 - Determine best habitable planet candidates (e.g., from TESS) for expensive spectroscopic bio-marker searches, e.g. by JWST (extended).

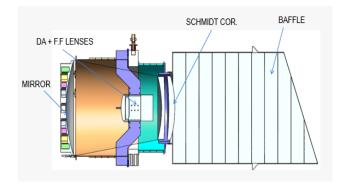
ULTRASAT: Implementation & Collaboration

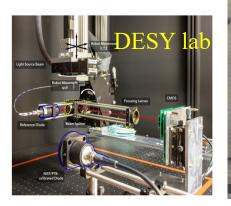


ULTRASAT: Key technology challenges

• CMOS sensor - UV QE>60% (Tower).

 UV optics performance across a wide FOV (WIS/Elop).





CMOS detectors produced by Tower, tested by DESY

Mirror shaping at Elop

Mission status

- The program is on track.
- Full teams have been assigned and are working.
- Major risks identified and managed:
 - \odot Challenging time line,
 - Complex Interfaces,
 - \odot Contamination prevention and control.
- Mission cost (including launch) approx. \$110M.

ULTRASAT: Science Collaboration

Data policy: Alerts public in real time;

12 mon. proprietary period for all other data products.

- 13 Science Working Groups WG members receive real time data access.
 Open to all (and already including most) Israeli astronomers.
- NASA Launch contribution-Science return: 8 US PIs (NASA funded) will join WG's, NASA project scientist: J. Rhoads.
- DESY Camera contribution Science return: 3 DESY PIs in WG's.
- Rubin (LSST) collaboration Science return: 6 US PIs in WG's.

ULTRASAT: Science impact

- Revolutionize our view of the hot transient Universe:
 - Discovery volume 300 X GALEX,
 - Continuous min-mon cadence at 22.5 mag in a new window (NUV),
 - Real-time alerts to ground/space-based telescopes.
- A broad impact:

GW sources, SNe, variable and flare stars, AGN, TDEs, compact objects, galaxies.

• Groundbreaking science with an affordable satellite mission.