

ULTRASAT Performance and Capabilities

"Ultrasat introduction" session @ AAS 2023, Jan 11, 2023

Yossi Shvartzvald | ULTRASAT Project Scientist | Weizmann Institute of Science

ULTRASAT implementation

Focal Plane Array

- Developed and supplied by DESY
- BSI CMOS from TowerJazz production completed!
 - 4 Tiles aligned to < 50 μ m
- High UV QE using:
 - high-K dielectric coating
 - Optimized anti-reflection coating
- Space qualified design (e.g., radiation hardness)
- Electronic design passed full verification
- Flight sensors diced and now are **being packaged**

Sensor main Spec.

Photosensitive area (single tile)	45 x 45 mm ² 7.14 x 7.14 deg ²
Pixel size Pixel scale	9.5 μm 5.4"
Mean QE at 230-290nm	>60%
Operation temperature	200±5 °K
Dark current @ 200 °K	<0.03 e ⁻ /sec
Readout noise @ High-gain	<3.5 e⁻/pixel
Electronic cross-Talk	<0.01%
Readout time	<20 sec
Pixel sampling scheme	Rolling shutter + Dual gain

Liran+2022

For more details see: Asif+2021 Bastian-Querner+2021

צבו לבדע | Page 3

Focal Plane Array

"Scouts" QE measurements: Optimal ARC selection

For more details see: Asif+2021 Bastian-Querner+2021 Liran+2022

First Sensor Tile

Development camera structure

Telescope components

Baffle

- **Schmidt Correctors**
 - 33 cm clear aperture
 - Fused Silica & CaF₂ Ο
 - **Reduce Spherical aberration** Ο
- Mirror 50 cm Zerodur
- **Field Flattener lenses**
 - \circ Fused Silica & CaF₂
 - Focus mechanism Ο
 - Reduces Field Curvature 0
- **Out-of-band Sapphire filter**
- **Focal Plane array**

Telescope structure and optics

FF2 VANE SC1

MIRROR TUBE

MIRROR

Baffle

Stray light

- Pointing limits:
 - No Sunlight enters at any time
 - Earth light required suppression
 - No direct moonlight hit the corrector
- Enables >50% sky accessibility at any given moment

Trapped electrons propagating through the corrector

- Reduce Cerenkov radiation the dominant background noise source!
- Reduce transmission degradation

For more details see: Ben-Ami+2022 Shvartzvald+ in perp.

Baffle main Spec.

Sun pointing limit	>70°
Earth (center) pointing limit	>56°
Moon pointing limit	>34°
Stray light suppression factor	< 2 x 10 ⁻¹¹
Electron suppression (Cerenkov)	< 1/6

Shvartzvald+ in perp.

Chromatic position-dependent PSF

Optimized for:

- ULTRASAT band: 230-290nm
- Central 170 deg²

<u>PSF</u>

For more details see: Ben-Ami+2022

Chromatic position-dependent PSF

Optimized for:

- ULTRASAT band: 230-290nm
- Central 170 deg²

For more details see: Ben-Ami+2022

Effective PSF

Source and position dependent

Shvartzvald+ in perp.

Limiting magnitude

• Source and position dependent

Background Noise

Source	Variance (e⁻/pix)
Zodiac (Survey)	27
Cerenkov (75%)	15
Stray light (max)	12
Dark current	12
Readout noise [^2]	6
Electronic Crosstalk	2
Gain	1
Quantum Yield	<1
Total	75

Limiting magnitude

<u>Sensitivity</u>

• Source and position dependent

Shvartzvald+ in perp.

Spacecraft

- Launch (provided by NASA) into GTO orbit
 - Self propulsion to GEO orbit
 - Final orbit Slot 4-West
 - Full Station Keeping
- Continuous transmission to the ground
- Instantaneous >50% of the sky in <15 min
- No limit on number of ToO's, except for max 25/yr with negative energy balance ("Hard ToO")
- Duration of Hard ToO: >3 h

Mission lifetime	>3 years
Kinematic lifetime	6 years
Science observations availability	>90%
Pointing stability	<3.0" over 300s (3 σ)
Data Downlink rate	>5 Mbps
Pointing slew agility	>30°/min

ULTRASAT: Mission Profile

SURVEY (\rightarrow Key goal 2)

- High cadence 200 deg² with 5 min cadence (21 hr/day)
- Low cadence 8000 deg² with 4 day cadence (3 hr/day)
- Real-time data download and analysis -Alerts <15min of observations

TARGET OF OPPORTUNITY (ToO's; \rightarrow Key goal 1)

- Instantaneous >50% of the sky in <15 min for >3 h
- No limit on ToO number, except for max 25/yr with negative power balance (33%)
- Continuous transmission to the ground

UV ALL SKY MAP

- 3hr/day during the first 6 months
- 7x deeper than current state-of-the-art (GALEX) (>23 AB limiting mag @ |b|>30°)

Operations

Ground Control Station (@ IAI):

- Command & Control, Telemetry Processing
- Immediate ToO tasking
- Receive imagery data, deliver to WIS (SOC)
- Perform ranging for orbit determination

Science Operation Center (@ WIS) :

- Observation planning
- Image and Data processing
- Scientific Data Products archiving
- Ultrasat Alerts generation

נכון ויצמן למדט

Data Policy

- ULTRASAT real-time alerts publicly available immediately
- All other ULTRASAT data products:
 - Periodic public data releases (DRs), after full calibration and verification
 - Proprietary period 12 months
- Members of the ULTRASAT collaboration and the science working groups will have immediate access to all ULTRASAT data products

Performance summary:

- Very large 200 deg² FOV
- Operation waveband 230-290 nm
- Mean PSF FWHM 8.5"
- Mean limiting mag 22.5 (5σ, 3x300s)
- Orbit: GEO
- Launch mass ~1100 kg, Dimensions 1.5x1.7x3.4 m³
- Transient alert after observation time: <15 min
- Observation start after ToO trigger: <15min

Modes of operation:

- Survey modes:
- High cadence (~21 hours/day)
 - 1 field: 200 deg², 5 min cadence
- Low cadence (~3 hours/day)
 40 fields: 8000 deg², 4-day cadence
- Target of opportunity (ToO's)...
- UV All-sky map + building ref images 3 hr/day during first 6 months

Collaboration workshop: July 11-13, 2023

ULTRASAT Prize Fellowship @ WIS: submission deadline in 4 days (Jan 15)