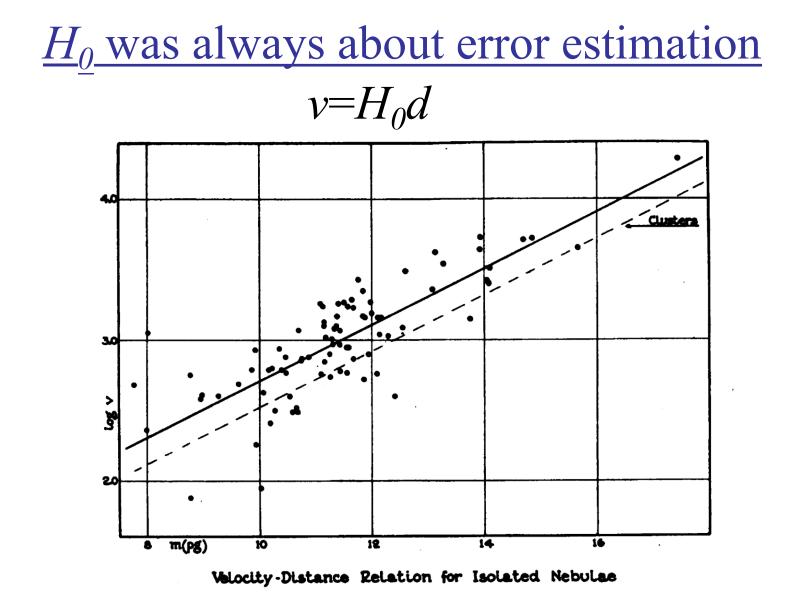
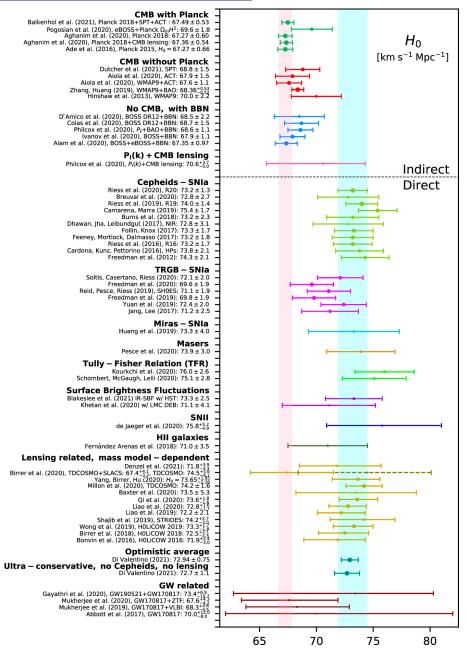

# $H_{\theta}$ calibration precision through joint ULTRASAT-GW detections

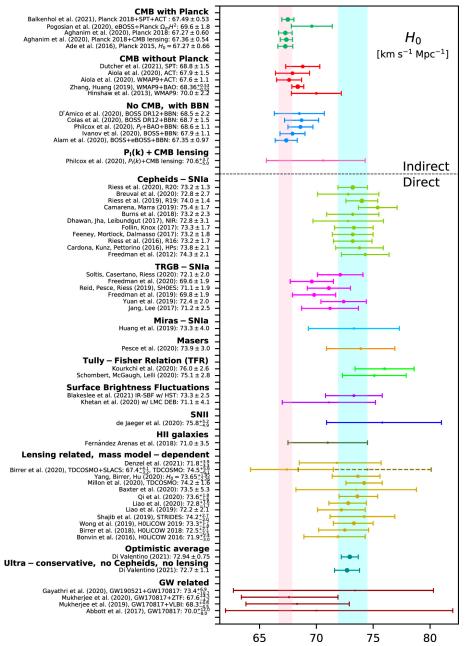
### Doron Kushnir (WIS)


Collaborators: Barak Zackay (WIS), Jonas Sinapius (DESY)

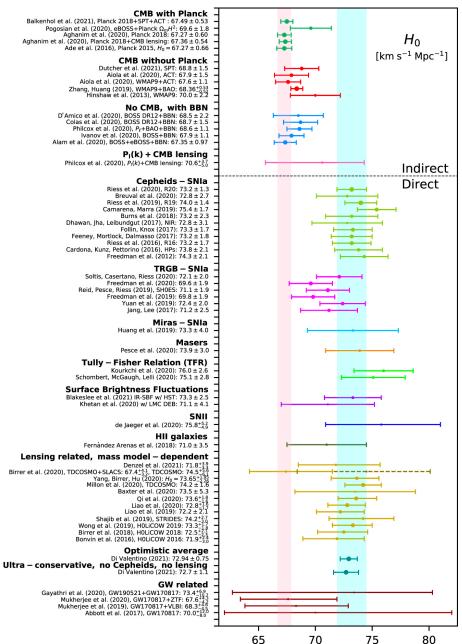
#### 11/7/23



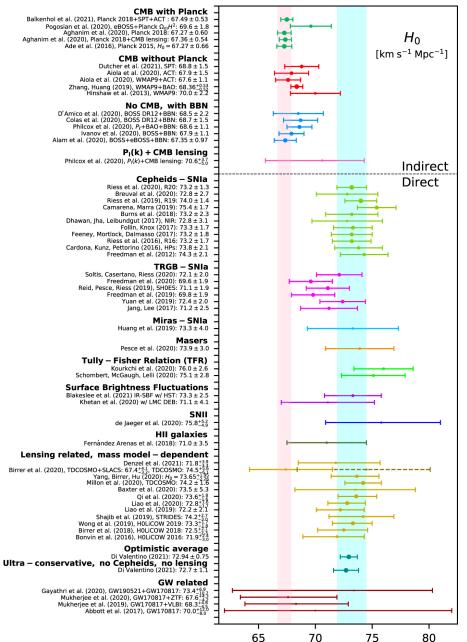

Velocity-Distance Relation for Isolated Nebulae


Hubble & Humason (1934)

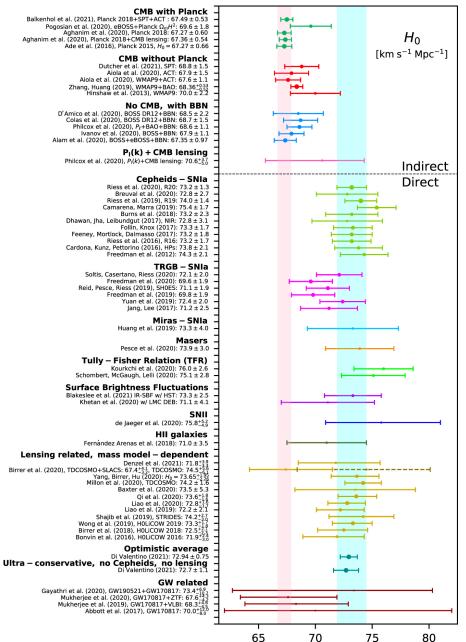



•  $H_0$  too large by a factor of  $\approx 10$ .




- Strongest tension:
  - *Planck* CMB temperature and polarization anisotropies : 67.4±0.5 km/s/Mpc
  - SH0ES Cepheid and Type Ia supernovae: 73.04±1.04 km/s/Mpc




- Strongest tension:
  - *Planck* CMB temperature and polarization anisotropies : 67.4±0.5 km/s/Mpc
- SH0ES Cepheid and Type Ia supernovae: 73.04±1.04 km/s/Mpc
- $\approx 5\sigma$  tension



- Strongest tension:
  - *Planck* CMB temperature and polarization anisotropies : 67.4±0.5 km/s/Mpc
- SH0ES Cepheid and Type Ia supernovae: 73.04±1.04 km/s/Mpc
- $\approx 5\sigma$  tension
- Either modification to standard ACDM cosmology or unidentified systematic errors.



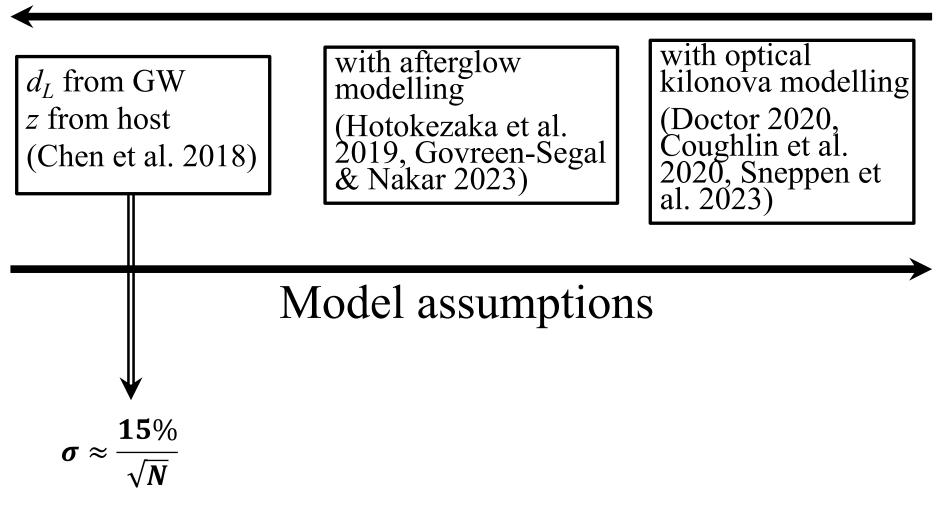
- Strongest tension:
  - *Planck* CMB temperature and polarization anisotropies : 67.4±0.5 km/s/Mpc
- SH0ES Cepheid and Type Ia supernovae: 73.04±1.04 km/s/Mpc
- $\approx 5\sigma$  tension
- Either modification to standard ACDM cosmology or unidentified systematic errors.
- GW+kilonova allows local measurement from first principles.



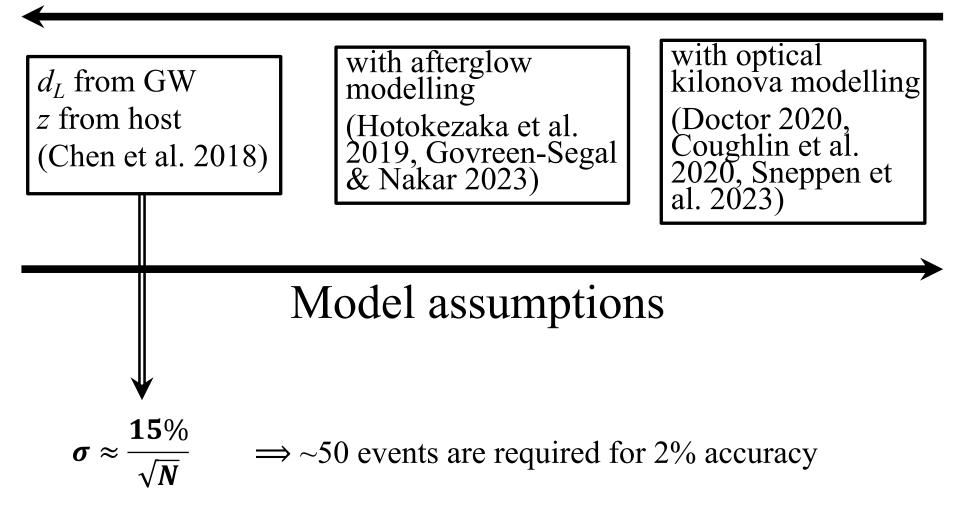
Number of required events for a given accuracy

Number of required events for a given accuracy

*d*<sub>L</sub> from GW *z* from host (Chen et al. 2018)


Number of required events for a given accuracy

*d<sub>L</sub>* from GW *z* from host (Chen et al. 2018) with afterglow modelling (Hotokezaka et al. 2019, Govreen-Segal & Nakar 2023)


Number of required events for a given accuracy

*d<sub>L</sub>* from GW *z* from host (Chen et al. 2018) with afterglow modelling (Hotokezaka et al. 2019, Govreen-Segal & Nakar 2023) with optical kilonova modelling (Doctor 2020, Coughlin et al. 2020, Sneppen et al. 2023)

Number of required events for a given accuracy



Number of required events for a given accuracy



BNS rate is 10-1700 yr<sup>-1</sup>Gpc<sup>-3</sup>

https://emfollow.docs.ligo.org/userguide/capabilities.html

- BNS rate is 10-1700 yr<sup>-1</sup>Gpc<sup>-3</sup>
- O4 volume is  $0.17 \text{ Gpc}^3 \Rightarrow 34r_{200}$  annual events with ~0.40 Gpc median distance (already ruled out by  $2\sigma$  with no detection after 0.12 year).

- BNS rate is 10-1700 yr<sup>-1</sup>Gpc<sup>-3</sup>
- O4 volume is  $0.17 \text{ Gpc}^3 \Rightarrow 34r_{200}$  annual events with ~0.40 Gpc median distance (already ruled out by  $2\sigma$  with no detection after 0.12 year).
- O5 volume is 0.83 Gpc<sup>3</sup>  $\Rightarrow$  166 $r_{200}$  annual events with ~0.74 Gpc median distance.

- BNS rate is 10-1700 yr<sup>-1</sup>Gpc<sup>-3</sup>
- O4 volume is  $0.17 \text{ Gpc}^3 \Rightarrow 34r_{200}$  annual events with ~0.40 Gpc median distance (already ruled out by  $2\sigma$  with no detection after 0.12 year).
- O5 volume is 0.83 Gpc<sup>3</sup>  $\Rightarrow$  166 $r_{200}$  annual events with ~0.74 Gpc median distance.
- For  $r_{200} \sim 1$ , ULTRASAT TOO is sufficient

- BNS rate is 10-1700 yr<sup>-1</sup>Gpc<sup>-3</sup>
- O4 volume is  $0.17 \text{ Gpc}^3 \Rightarrow 34r_{200}$  annual events with ~0.40 Gpc median distance (already ruled out by  $2\sigma$  with no detection after 0.12 year).
- O5 volume is 0.83 Gpc<sup>3</sup>  $\Rightarrow$  166 $r_{200}$  annual events with ~0.74 Gpc median distance.
- For  $r_{200} \sim 1$ , ULTRASAT TOO is sufficient
- TOO is in problem for  $r_{200}$ <0.3 and/or O5 volume is <0.3 Gpc<sup>3</sup> (median distance ~0.6 Gpc)

#### https://emfollow.docs.ligo.org/userguide/capabilities.html

• For BB with  $L=10^{42}$  erg/s and T>10kK, kilonova are detected to  $d\sim0.6-0.7$  Gpc (900 s integration time, 22.5 mag)

- For BB with  $L=10^{42}$  erg/s and T>10kK, kilonova are detected to  $d\sim0.6-0.7$  Gpc (900 s integration time, 22.5 mag)
- High cadence field detects  $\sim 1.5r_{200}$  events annually.

- For BB with  $L=10^{42}$  erg/s and T>10kK, kilonova are detected to  $d\sim0.6-0.7$  Gpc (900 s integration time, 22.5 mag)
- High cadence field detects  $\sim 1.5r_{200}$  events annually.
- Low cadence survey detects  $\sim 5r_{200}$  events annually (for UV kilonova time scale of 8 hours, single visit for detection, see Param's talk).

- For BB with  $L=10^{42}$  erg/s and T>10kK, kilonova are detected to  $d\sim0.6-0.7$  Gpc (900 s integration time, 22.5 mag)
- High cadence field detects  $\sim 1.5r_{200}$  events annually.
- Low cadence survey detects  $\sim 5r_{200}$  events annually (for UV kilonova time scale of 8 hours, single visit for detection, see Param's talk).
- With 24h low cadence survey  $\Rightarrow \sim 40r_{200}$  events annually.

- For BB with  $L=10^{42}$  erg/s and T>10kK, kilonova are detected to  $d\sim0.6-0.7$  Gpc (900 s integration time, 22.5 mag)
- High cadence field detects  $\sim 1.5r_{200}$  events annually.
- Low cadence survey detects  $\sim 5r_{200}$  events annually (for UV kilonova time scale of 8 hours, single visit for detection, see Param's talk).
- With 24h low cadence survey  $\Rightarrow \sim 40r_{200}$  events annually.

• Assume all ULTRASAT events missed by LIGO + later found in post-processing (4 hours trailing-LIGO survey, reasonable to expect ~20% increase in LIGO horizon)  $\Rightarrow$  Significant contribution for O5 volume<0.3 Gpc<sup>3</sup>

• For  $r_{200}$ >0.3 and O5 volume >0.3 Gpc<sup>3</sup> ULTRASAT just follows BNS TOO for 2%  $H_0$  measurement.

- For  $r_{200}$ >0.3 and O5 volume >0.3 Gpc<sup>3</sup> ULTRASAT just follows BNS TOO for 2%  $H_0$  measurement.
- For  $r_{200}$ ~1 and O5 volume <0.3 Gpc<sup>3</sup> ULTRASAT (with major investment) can have a significant, ~40 extra events, contribution.

- For  $r_{200}$ >0.3 and O5 volume >0.3 Gpc<sup>3</sup> ULTRASAT just follows BNS TOO for 2%  $H_0$  measurement.
- For  $r_{200}$ ~1 and O5 volume <0.3 Gpc<sup>3</sup> ULTRASAT (with major investment) can have a significant, ~40 extra events, contribution.
- Otherwise, ULTRASAT cannot contribute significantly.

- For  $r_{200}$ >0.3 and O5 volume >0.3 Gpc<sup>3</sup> ULTRASAT just follows BNS TOO for 2%  $H_0$  measurement.
- For  $r_{200}$ ~1 and O5 volume <0.3 Gpc<sup>3</sup> ULTRASAT (with major investment) can have a significant, ~40 extra events, contribution.
- Otherwise, ULTRASAT cannot contribute significantly.
- How would we know kilonova properties (*L*,*T*, UV duration, possibly depend on BNS parameters) prior to O5?

- For  $r_{200}$ >0.3 and O5 volume >0.3 Gpc<sup>3</sup> ULTRASAT just follows BNS TOO for 2%  $H_0$  measurement.
- For  $r_{200}$ ~1 and O5 volume <0.3 Gpc<sup>3</sup> ULTRASAT (with major investment) can have a significant, ~40 extra events, contribution.
- Otherwise, ULTRASAT cannot contribute significantly.
- How would we know kilonova properties (*L*,*T*, UV duration, possibly depend on BNS parameters) prior to O5?
- Can we use single image to increase kilonova detection rate by  $(900/300)^{1/4} \sim 1.3?$