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Introduction

• Neutron star mergers are a potential site for the R-process, however observational
constrains are still lacking.

• UVOIR Observations of Kilonovae could reveal information on the nucleosynthesis.

• As the light curve is powered by deposition of radioactive decay products (mainly γ, e−),
understanding the energy deposition process is essential for modeling.

• In Ia SNe, t0 the time at which γ-ray energy start to escape deposition is a useful probe
of the ejecta.

• Overall, we aim toward a simple model of the γ-ray heating, which would enable future
observers to derive constrains from the light curve.
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γ-ray thermalization in a nutshell

γ-rays lose energy by:
• Photo-electric effect (PE): low energies (<few 100keV) and high Z .
• Compton scattering: intermediate energies (∼1MeV), roughly Z -independent.
• Pair-production (PP): high energies (> few MeV) and high Z .
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t0 in Ia SNe and KNe

• In Ia SNe, the Z of the ejecta is relatively low (Z <∼ 30):

PE is weak, Compton is dominant over a wide energy range.

• The γ-rays from 56Ni and 56Co ”see” energy deposition opacity due to Compton:

κγ,eff ≈ 0.025cm2 gr−1 (Swartz et al 1995, Jeffery 1999)

• For an ejecta with column density ⟨Σ⟩ ∼ M
v2t2

,

t0 =
√

κγ,eff ⟨Σ⟩t2︸ ︷︷ ︸
constant

→ probes the column density of the ejecta (∼ M/v2).

(e.g. Wygoda et al 2019)
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t0 in Ia SNe and KNe

In KNe, depending on initial conditions (mainly Ye), Z of the ejecta changes & reaches ∼70.

PE dominates and increases the opacity at <∼ 1MeV.

Also, heavier elements tend to emit softer γ-rays.

→ PE can cause κγ,eff to be larger and Ye-dependent - potential probe of the R-process.

(Hotokezaka & Nakar 2020, Barnes et al 2021)

Hotokezaka & Nakar 2020 used ⟨κγ(E )⟩ to find t0,

found κγ,eff ≈ 0.07cm2 gr−1for weak R-process, ≈ 0.4cm2 gr−1 for strong R-process.

Barnes et al 2021, used Monte-Carlo simulations, but saw ⟨κγ(E )⟩ up to ∼3cm2 gr−1in low-Ye .
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The γ-ray deposition in Kilonovae: Goals & Methods

Our aim: (i) Estimate the γ-ray energy deposition fraction fγ(t),

(ii) Provide an analytical approximation, fγ,eff(t).

fγ,eff should have a simple form of:

fγ,eff ≈

1 t ≪ t0(
t
t0

)−2
t ≫ t0.

To estimate t0:

(i) We use a semi-analytical solution to find fγ .

(ii) We set t0 such that it is at the ”knee” of fγ (fγ = 1− e−1).
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A Semi-Analytical solution to γ-ray deposition

Illustration of the method Ia SN toy model, toy06 (Blondin et al 2022)
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The method agrees with Monte-Carlo simulations up to ∼10% error.
→ < 10% error in the total (γ-rays + charged particles) energy deposition rate.
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A Semi-Analytical solution to γ-ray deposition

Illustration of the method KN toy model (Barnes & Kasen 2013)
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The method agrees with Monte-Carlo simulations up to ∼10% error.
→ < 10% error in the total (γ-rays + charged particles) energy deposition rate.
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The γ-ray deposition in Kilonovae: Results
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The Ye-dependence of κγ,eff, mainly due to the change in Z γ-ray deposition fractions:
Semi-Analytical (solid) and Analytical (dashed)

κγ,eff changes only by a factor ∼2 between low and high-Ye conditions.
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The γ-ray deposition in Kilonovae: Results

The thermalization of the γ-rays can be calculated using Ye-independent approximation,

κγ,eff ≈ 0.034cm2 gr−1, t0 ≈ 1day f
1
2
Σ

(
M

0.05M⊙

) 1
2 ( v

0.2c

)−1
,

where fΣ is a factor of order unity,

using interpolation found by the semi-analytical solution & motivated by earlier works in SNe:

fγ,eff(t) =
1

1 + (t/t0)2
.

(Sharon & Kushnir 2020)

This gives the total (γ-rays + charged particles) energy deposition rate with up to <∼ 20%
error.
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Summary

• A simple Ye-independent analytical tool is given for estimating the γ-ray thermalization.

• The γ-ray spectrum in KNe is dominated by ∼1 MeV photons.
Thus, κγ,eff is never much larger than the effective opacity due to Compton scattering.

• Earlier estimations greatly overestimated κγ,eff, since ⟨κγ(E )⟩ is a bad measure of κγ,eff.

• κγ,eff is largely insensitive to ejecta conditions, but t0 can probe M/v2 (if measured).

• The Semi-Analytical solution to the γ-ray deposition can replace expansive Monte-Carlo
simulations.
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Backup Slides



A Semi-Analytical solution to γ-ray deposition

The method agrees with Monte-Carlo simulations up to ∼10% error.
→ < 10% error in the total (γ-rays + charged particles) energy deposition rate.
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The γ-ray deposition in Kilonovae: Results
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