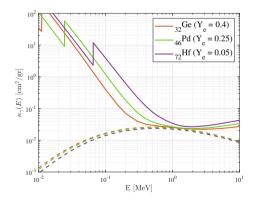
The Thermalization of γ -rays in Kilonovae

Or Guttman, Ben Shenhar, Arnab Sarkar and Eli Waxman

Weizmann Institute of Science

ULTRASAT Conference July 11, 2023


Introduction

- Neutron star mergers are a potential site for the R-process, however observational constrains are still lacking.
- UVOIR Observations of Kilonovae could reveal information on the nucleosynthesis.
- As the light curve is powered by deposition of radioactive decay products (mainly γ , e^-), understanding the energy deposition process is essential for modeling.
- In la SNe, t₀ the time at which γ-ray energy start to escape deposition is a useful probe of the ejecta.
- Overall, we aim toward a simple model of the γ-ray heating, which would enable future observers to derive constrains from the light curve.

$\gamma\text{-}\mathrm{ray}$ thermalization in a nutshell

 $\gamma\text{-rays}$ lose energy by:

- Photo-electric effect (PE): low energies (<few 100keV) and high Z.
- Compton scattering: intermediate energies (\sim 1MeV), roughly Z-independent.
- Pair-production (PP): high energies (> few MeV) and high Z.

t_0 in Ia SNe and KNe

In Ia SNe, the Z of the ejecta is relatively low (Z ≤ 30):
 PE is weak, Compton is dominant over a wide energy range.

• The γ -rays from ⁵⁶Ni and ⁵⁶Co "see" energy deposition opacity due to Compton: $\kappa_{\gamma,\text{eff}} \approx 0.025 \text{cm}^2 \,\text{gr}^{-1}$ (Swartz et al 1995, Jeffery 1999)

• For an ejecta with column density $\langle \Sigma \rangle \sim \frac{M}{\nu^2 t^2}$,

$$t_0 = \sqrt{\kappa_{\gamma,\text{eff}} \langle \Sigma \rangle t^2} \to \text{probes the column density of the ejecta } (\sim M/v^2).$$

(e.g. Wygoda et al 2019)

In KNe, depending on initial conditions (mainly Y_e), Z of the ejecta changes & reaches \sim 70. PE dominates and increases the opacity at \lesssim 1MeV.

Also, heavier elements tend to emit softer $\gamma\text{-rays}.$

 \rightarrow PE can cause $\kappa_{\gamma,\text{eff}}$ to be larger and Y_e -dependent - *potential probe of the R-process*.

(Hotokezaka & Nakar 2020, Barnes et al 2021)

Hotokezaka & Nakar 2020 used $\langle \kappa_{\gamma}(E) \rangle$ to find t_0 , found $\kappa_{\gamma,\text{eff}} \approx 0.07 \text{cm}^2 \text{ gr}^{-1}$ for weak R-process, $\approx 0.4 \text{cm}^2 \text{ gr}^{-1}$ for strong R-process.

Barnes et al 2021, used Monte-Carlo simulations, but saw $\langle \kappa_{\gamma}(E) \rangle$ up to \sim 3cm² gr⁻¹in low-Y_e.

The γ -ray deposition in Kilonovae: Goals & Methods

<u>Our aim</u>: (i) Estimate the γ -ray energy deposition fraction $f_{\gamma}(t)$, (ii) Provide an analytical approximation, $f_{\gamma,\text{eff}}(t)$.

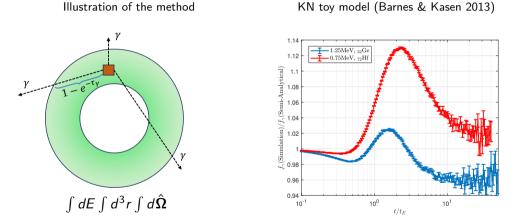
 $f_{\gamma,\text{eff}}$ should have a simple form of:

$$f_{\gamma, {
m eff}} pprox egin{cases} 1 & t \ll t_0 \ \left(rac{t}{t_0}
ight)^{-2} & t \gg t_0. \end{cases}$$

To estimate *t*₀:

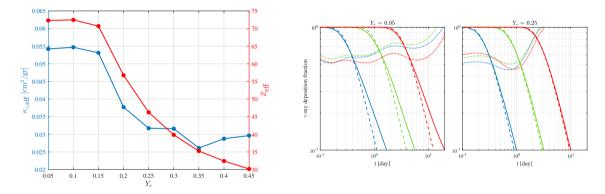
(i) We use a semi-analytical solution to find f_{γ} . (ii) We set t_0 such that it is at the "knee" of f_{γ} ($f_{\gamma} = 1 - e^{-1}$).

A Semi-Analytical solution to γ -ray deposition


Illustration of the method

with All isotones ositirons Domination 1.0 $f_{\gamma}(\text{Semi-Analytical})$ 1.06 1.05 1.04 1.03 $f_{\gamma}(Simulation)/$ 1.02 1.01 0.99 0.98 $\int dE \int d^3r \int d\hat{\Omega}$ 100 101 t/t_0

The method agrees with Monte-Carlo simulations up to \sim 10% error. \rightarrow < 10% error in the total (γ -rays + charged particles) energy deposition rate.


la SN toy model, toy06 (Blondin et al 2022)

A Semi-Analytical solution to γ -ray deposition

The method agrees with Monte-Carlo simulations up to \sim 10% error. \rightarrow < 10% error in the total (γ -rays + charged particles) energy deposition rate.

The γ -ray deposition in Kilonovae: Results

The Y_e -dependence of $\kappa_{\gamma,\text{eff}}$, mainly due to the change in Z

 γ -ray deposition fractions: Semi-Analytical (solid) and Analytical (dashed)

 $\kappa_{\gamma,\text{eff}}$ changes only by a factor ${\sim}2$ between low and high-Y_e conditions.

The γ -ray deposition in Kilonovae: Results

The thermalization of the γ -rays can be calculated using Y_e -independent approximation,

$$\kappa_{\gamma,\text{eff}} \approx 0.034 \text{cm}^2 \,\text{gr}^{-1}, \quad t_0 \approx 1 \text{day} \ f_{\Sigma}^{\frac{1}{2}} \left(\frac{M}{0.05 M_{\odot}}\right)^{\frac{1}{2}} \left(\frac{v}{0.2c}\right)^{-1},$$

where f_{Σ} is a factor of order unity,

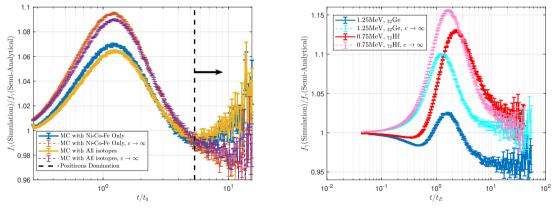
using interpolation found by the semi-analytical solution & motivated by earlier works in SNe:

$$f_{\gamma, ext{eff}}(t) = rac{1}{1+(t/t_0)^2}.$$

(Sharon & Kushnir 2020)

This gives the total (γ -rays + charged particles) energy deposition rate with up to $\lesssim 20\%$ error.

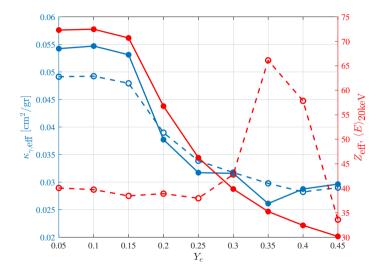
Summary


- A simple Y_e -independent analytical tool is given for estimating the γ -ray thermalization.
- The γ -ray spectrum in KNe is dominated by ~ 1 MeV photons. Thus, $\kappa_{\gamma,\text{eff}}$ is never much larger than the effective opacity due to Compton scattering.
- Earlier estimations greatly overestimated $\kappa_{\gamma,\text{eff}}$, since $\langle \kappa_{\gamma}(E) \rangle$ is a bad measure of $\kappa_{\gamma,\text{eff}}$.
- $\kappa_{\gamma,\text{eff}}$ is largely insensitive to ejecta conditions, but t_0 can probe M/v^2 (*if measured*).
- The Semi-Analytical solution to the $\gamma\text{-ray}$ deposition can replace expansive Monte-Carlo simulations.

Backup Slides

A Semi-Analytical solution to γ -ray deposition

The method agrees with Monte-Carlo simulations up to ${\sim}10\%$ error.


ightarrow < 10% error in the total (γ -rays + charged particles) energy deposition rate.

la SN toy model, toy06 (Blondin et al 2022)

KN toy model (Barnes & Kasen 2013)

The γ -ray deposition in Kilonovae: Results

