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•Initially for all decay products (excluding neutrinos)  

•Electron that is emitted immediately loses all its energy  Efficient Thermalization

tloss ≪ t → ·Qdep = ∑
μ=α,β,γ

·Qμ

≡

•But over time  

•Electron gradually loses its energy  Inefficient Thermalization

tloss ∼ t → ·Qdep < ∑
μ=α,β,γ

·Qμ

≡

•Interpreting kilonovae observations requires understanding the thermalization of decay products 

(for  days , -particles mostly escape, leaving -particles as main heating source)t ≳ 1 − 2 γ e, α

Thermalization
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Despite many complications and uncertainties -  

To find a simple and robust analytic description for  - 

inefficient thermalization timescales - for a wide range 
of ejecta parameters

te

Research Goal  
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1 ≤ s0 ≤ 102[kb/baryon] s0,avg ≈ 20 [kb/baryon]

0.05 ≤ Ye ≤ 0.45

10−3 ≤ ρt3 ≤ 102 (ρt3)0 =
0.025M⊙
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• Compute time-dependent energy released by electrons and s, including spectraα

• Define and calculate instantaneous energy deposition and full energy deposition of electrons

• Define and calculate  - inefficient thermalization timescales.  

• Using these, define interpolating functions for deposition.

te and tα



Electron Energy Losses

Electron Losses
• Time-dependent, mass-weighted composition: ( dE

dX )tot
= ∑

iso

AisoYiso( dE
dX )iso
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• We define  as the time for which: 

•
te

f e
tot(te) ≡ 1 − e−1

• Also calculated full, delayed energy deposition :  

•Where  is the electron distribution, dictated by:  

·Qdep(t) = ∫ dE
dE
dt

(E, t) ×
dN
dE

(E, t)

dN
dE

(E, t)
∂
∂t ( dN

dE ) = − ∇E(dN
dE ) + ·N(E, t)
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• , where  is the initial energy of beta electrons.te ∝ ((ρt3)E−1
i

ve

c
dE
dX )

1/2
Ei

•  order: 0th te,α ∝ (ρt3)1/2

•  is correct char. energy of  , not  < E−1/2 >−2 te < E >

• If  as often assumed, then < Eβ > ∝ t−c dlog(te)
dlog(ρt3)

≥ 1/2



te(ρt3)
• Broken power-law description: 

 

• Analytic estimate accurate to %, at 
worst

te = t0
( ρt3

(ρt3)0 )
a1

days for ρt3 < (ρt3)0

( ρt3

(ρt3)0 )
a2

days for ρt3 > (ρt3)0

∼ 20
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  Electron Characteristic Energy Release
•  is not < E−1/2

β >−2 ∝ t−c

• For  , rises for  

days.

0.15 ≤ Ye < E−1/2 >−2 t ≳ 15

• 94Os
t1/2≈6 yr

<E>=0.03MeV
94Ir

t1/2≈20 hr
<E>=1.09MeV

94Pt

• Example of “inverted decay-chain”

•  Other inverted chains active, 

, etc.A = 140,132,106

• Overall, 40 inverted chains with half-life 

 of parent isotope< 102 × t1/2
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• Different nuclear mass models may 

result in orders-of-magnitude 
differences in final ejecta 
composition

• Vary nuclear physics inputs:

• Every theoretical rate , 
where  (~70,000 
rates, ~90%)

λ → Cλ
C ∈ [10−2,102]

• Rerun nuclear networks

• Check for FRDM and UNEDF1 
mass-models.

•  remains robustte
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s0
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> 55); [Ye < 0.22,

s0

kb/baryon
< 55]

•  does not steadily decline over time - “inverted decay-chains”< E−1/2 >−2

• Interpolating Function for Thermalization (not discussed) - easy implementation in kilonovae 
calculations.

•  Formula for  can be used to further constrain  of ejecta based on kilonovae measurements, similar 

to Ia SNe.

te,α
M
v3



Thank you.


