```
11\sqsupset` WEIZMANN
M准 INSTITUTE
```


Analytic Description of Beta Decay Electron Thermalization in Kilonovae Ejecta

ULTRASAT collaboration workshop,
July 11-13, 2023

Ben Shenhar
Advisor: Prof. Eli Waxman
11.07 .2023

Kilonovae Modeling Challenge

$\sim 10^{6} \mathrm{~cm}, 1-10^{3} \mathrm{~ms}$	$M_{e j} \sim 10^{-2} M_{\text {tot }}$			$\sim 10^{15} \mathrm{~cm}$, weeks
Merger	Ejecta	R-process	Radioactive Plasma	Radiative Transfer
Strong Gravity, Nuclear Matter	Mass	Nuclear masses	Radioactive Decays	Atomic physics
General Relativistic Hydrodynamics, viscosity	Velocity	beta, alpha decays, fission	Particle "thermalization"	Opacities
Weak Interactions (neutrinos)	Electron Fraction			Radiation Approx.
Magnetic Fields				non-LTE effects

Kilonovae Modeling Challenge

$$
M_{e j} \sim 10^{-2} M_{t o t}
$$

Merger

Strong Gravity, Nuclear Matter

General Relativistic Hydrodynamics, viscosity

Weak Interactions (neutrinos)

Magnetic Fields

Nuclear masses

Velocity

Electron Fraction
$\sim 10^{15} \mathrm{~cm}$, weeks

Atomic physics

Opacities

Radiation Approx.
non-LTE effects

Kilonovae Radioactive Release

Kilonovae Radioactive Release

- Ia SNe - primary heating by: ${ }^{56} \mathrm{Ni} \rightarrow{ }^{56} \mathrm{Co} \rightarrow{ }^{56} \mathrm{Fe}$.
- $\sim \mathrm{MeV} \gamma$-rays and β^{+}.

Kilonovae Radioactive Release

- Ia SNe - primary heating by: ${ }^{56} \mathrm{Ni} \rightarrow{ }^{56} \mathrm{Co} \rightarrow{ }^{56} \mathrm{Fe}$.
- $\sim \mathrm{MeV} \gamma$-rays and β^{+}.
- Kilonovae - primary heating...?

Kilonovae Radioactive Release

- la SNe - primary heating by: ${ }^{56} \mathrm{Ni} \rightarrow{ }^{56} \mathrm{Co} \rightarrow{ }^{56} \mathrm{Fe}$.
- $\sim \mathrm{MeV} \gamma$-rays and β^{+}.
- Kilonovae - primary heating...?
- Dependent on:
- $Y_{e}=\frac{n_{p}}{n_{B}}$, neutron-richness
- $m_{e j}, v_{e j}$, ejecta profile
- Nuclear physics uncertainties

Kilonovae Radioactive Release

- Ia SNe - primary heating by: ${ }^{56} \mathrm{Ni} \rightarrow{ }^{56} \mathrm{Co} \rightarrow{ }^{56} \mathrm{Fe}$.
- $\sim \mathrm{MeV} \gamma$-rays and β^{+}.
- Kilonovae - primary heating...?
- Dependent on:
. $Y_{e}=\frac{n_{p}}{n_{B}}$, neutron-richness
- $m_{e j}, v_{e j}$, ejecta profile

Barnes et al., 2020

- Nuclear physics uncertainties

Thermalization

Thermalization

- $t_{\text {loss }}(E, t)$ - energy-loss timescale of electron.

Thermalization

- $t_{\text {loss }}(E, t)$ - energy-loss timescale of electron.
- Initially for all decay products (excluding neutrinos) $t_{\text {loss }} \ll t \rightarrow \dot{Q}_{d e p}=\sum_{\mu=\alpha, \beta, \gamma} \dot{Q}_{\mu}$
- Electron that is emitted immediately loses all its energy \equiv Efficient Thermalization

Thermalization

- $t_{\text {loss }}(E, t)$ - energy-loss timescale of electron.
- Initially for all decay products (excluding neutrinos) $t_{l o s s} \ll t \rightarrow \dot{Q}_{d e p}=\sum_{\mu=\alpha, \beta, \gamma} \dot{Q}_{\mu}$
- Electron that is emitted immediately loses all its energy \equiv Efficient Thermalization
. But over time $t_{\text {loss }} \sim t \rightarrow \dot{Q}_{d e p}<\sum_{\mu=\alpha, \beta, \gamma} \dot{Q}_{\mu}$
- Electron gradually loses its energy \equiv Inefficient Thermalization

Thermalization

- $t_{\text {loss }}(E, t)$ - energy-loss timescale of electron.
. Initially for all decay products (excluding neutrinos) $t_{\text {loss }} \ll t \rightarrow \dot{Q}_{d e p}=\sum_{\mu=\alpha, \beta, \gamma} \dot{Q}_{\mu}$
- Electron that is emitted immediately loses all its energy \equiv Efficient Thermalization
. But over time $t_{\text {loss }} \sim t \rightarrow \dot{Q}_{d e p}<\sum_{\mu=\alpha, \beta, \gamma} \dot{Q}_{\mu}$
- Electron gradually loses its energy \equiv Inefficient Thermalization
- Interpreting kilonovae observations requires understanding the thermalization of decay products (for $t \gtrsim 1-2$ days , γ-particles mostly escape, leaving e, α-particles as main heating source)

Research Goal

Research Goal

Despite many complications and uncertainties -
To find a simple and robust analytic description for $t_{e}-$ inefficient thermalization timescales - for a wide range of ejecta parameters

Outline of Our Work

Outline of Our Work

- Ran nuclear-reaction network SkyNet for different homologously expanding ejecta of uniform densities (for different initial TD properties).
- $1 \leq s_{0} \leq 10^{2}\left[k_{b} /\right.$ baryon], semi-linearly spaced. (from simulations, $s_{0, a v g} \approx 20$ [$k_{b} /$ baryon])
- $0.05 \leq Y_{e} \leq 0.45$, linearly spaced.
- $10^{-3} \leq \rho t^{3} \leq 10^{2}$ in units of $\left(\rho t^{3}\right)_{0}=\frac{0.025 M_{\odot}}{4 \pi(0.2 c)^{3}}$, logarithmically spaced.

Outline of Our Work

- Ran nuclear-reaction network SkyNet for different homologously expanding ejecta of uniform densities (for different initial TD properties).
- $1 \leq s_{0} \leq 10^{2}\left[k_{b} /\right.$ baryon $]$, semi-linearly spaced. (from simulations, $s_{0, a v g} \approx 20$ [$k_{b} /$ baryon $]$)
- $0.05 \leq Y_{e} \leq 0.45$, linearly spaced.
- $10^{-3} \leq \rho t^{3} \leq 10^{2}$ in units of $\left(\rho t^{3}\right)_{0}=\frac{0.025 M_{\odot}}{4 \pi(0.2 c)^{3}}$, logarithmically spaced.
- Compute time-dependent energy released by electrons and $\alpha \mathrm{s}$, including spectra

Outline of Our Work

- Ran nuclear-reaction network SkyNet for different homologously expanding ejecta of uniform densities (for different initial TD properties).
- $1 \leq s_{0} \leq 10^{2}\left[k_{b} /\right.$ baryon], semi-linearly spaced. (from simulations, $s_{0, a v g} \approx 20$ [$k_{b} /$ baryon $]$)
- $0.05 \leq Y_{e} \leq 0.45$, linearly spaced.
- $10^{-3} \leq \rho t^{3} \leq 10^{2}$ in units of $\left(\rho t^{3}\right)_{0}=\frac{0.025 M_{\odot}}{4 \pi(0.2 c)^{3}}$, logarithmically spaced.
- Compute time-dependent energy released by electrons and $\alpha \mathrm{s}$, including spectra
- Define and calculate instantaneous energy deposition and full energy deposition of electrons

Outline of Our Work

- Ran nuclear-reaction network SkyNet for different homologously expanding ejecta of uniform densities (for different initial TD properties).
- $1 \leq s_{0} \leq 10^{2}\left[k_{b} /\right.$ baryon], semi-linearly spaced. (from simulations, $s_{0, a v g} \approx 20$ [$k_{b} /$ baryon])
- $0.05 \leq Y_{e} \leq 0.45$, linearly spaced.
- $10^{-3} \leq \rho t^{3} \leq 10^{2}$ in units of $\left(\rho t^{3}\right)_{0}=\frac{0.025 M_{\odot}}{4 \pi(0.2 c)^{3}}$, logarithmically spaced.
- Compute time-dependent energy released by electrons and α s, including spectra
- Define and calculate instantaneous energy deposition and full energy deposition of electrons
- Define and calculate t_{e} and t_{α} - inefficient thermalization timescales.
- Using these, define interpolating functions for deposition.

Electron Energy Losses

- Time-dependent, mass-weighted composition: $\left(\frac{d E}{d X}\right)_{\text {tot }}=\sum_{i s o} A_{i s o} Y_{\text {iso }}\left(\frac{d E}{d X}\right)_{\text {iso }}$

Electron Losses

[^0] energies, ionization losses dominate.

Energy Deposition Description

Energy Deposition Description

- Fraction of energy instantaneously deposited by electron with initial E_{i} at time t is approximated as:
- $f_{d e p}^{e}\left(E_{i}, t\right)= \begin{cases}1 & \text { for } t_{l} \leq t \\ \frac{t}{t_{l}} & \text { for } t_{l} \geq t\end{cases}$
- Where $t_{l}\left(E_{i}, t\right)=E_{i}\left(\frac{d E}{d t}\right)^{-1}$ is the energy loss timescale, and $\frac{d E}{d t}=\rho v \frac{d E}{d X}$.

Energy Deposition Description

- Fraction of energy instantaneously deposited by electron with initial E_{i} at time t is approximated as:
- $f_{d e p}^{e}\left(E_{i}, t\right)= \begin{cases}1 & \text { for } t_{l} \leq t \\ \frac{t}{t_{l}} & \text { for } t_{l} \geq t\end{cases}$
- Where $t_{l}\left(E_{i}, t\right)=E_{i}\left(\frac{d E}{d t}\right)^{-1}$ is the energy loss timescale, and $\frac{d E}{d t}=\rho v \frac{d E}{d X}$.
- Total instantaneous deposition calculated as:
- $f_{\text {tot }}^{e}(t)=\frac{\dot{Q}_{d e p}^{e}}{\dot{Q}_{e}}=\frac{1}{\dot{Q}_{e}} \int f_{d e p}^{e}(E, t) \cdot E \frac{d \dot{N}_{e}(E, t)}{d E} d E$

Energy Deposition Description

- Fraction of energy instantaneously deposited by electron with initial E_{i} at time t is approximated as:
- $f_{d e p}^{e}\left(E_{i}, t\right)= \begin{cases}1 & \text { for } t_{l} \leq t \\ \frac{t}{t_{l}} & \text { for } t_{l} \geq t\end{cases}$
- Where $t_{l}\left(E_{i}, t\right)=E_{i}\left(\frac{d E}{d t}\right)^{-1}$ is the energy loss timescale, and $\frac{d E}{d t}=\rho v \frac{d E}{d X}$.
- Total instantaneous deposition calculated as:
- $f_{\text {tot }}^{e}(t)=\frac{\dot{Q}_{d e p}^{e}}{\dot{Q}_{e}}=\frac{1}{\dot{Q}_{e}} \int f_{d e p}^{e}(E, t) \cdot E \frac{d \dot{N}_{e}(E, t)}{d E} d E$
- We define t_{e} as the time for which:
- $f_{\text {tot }}^{e}\left(t_{e}\right) \equiv 1-e^{-1}$

Energy Deposition Description

- Fraction of energy instantaneously deposited by electron with initial E_{i} at time t is approximated as:
- $f_{d e p}^{e}\left(E_{i}, t\right)= \begin{cases}1 & \text { for } t_{l} \leq t \\ \frac{t}{t_{l}} & \text { for } t_{l} \geq t\end{cases}$
- Where $t_{l}\left(E_{i}, t\right)=E_{i}\left(\frac{d E}{d t}\right)^{-1}$ is the energy loss timescale, and $\frac{d E}{d t}=\rho v \frac{d E}{d X}$.
- Total instantaneous deposition calculated as:
- $f_{t o t}^{e}(t)=\frac{\dot{Q}_{d e p}^{e}}{\dot{Q}_{e}}=\frac{1}{\dot{Q}_{e}} \int f_{d e p}^{e}(E, t) \cdot E \frac{d \dot{N}_{e}(E, t)}{d E} d E$
- We define t_{e} as the time for which:
- $f_{\text {tot }}^{e}\left(t_{e}\right) \equiv 1-e^{-1}$
- Also calculated full, delayed energy deposition : $\dot{Q}_{d e p}(t)=\int d E \frac{d E}{d t}(E, t) \times \frac{d N}{d E}(E, t)$
-Where $\frac{d N}{d E}(E, t)$ is the electron distribution, dictated by: $\frac{\partial}{\partial t}\left(\frac{d N}{d E}\right)=-\nabla_{E}\left(\frac{d N}{d E}\right)+\dot{N}(E, t)$

$t_{e}\left(\rho t^{3}\right)$

$t_{e}\left(\rho t^{3}\right)$

- $t_{e} \propto\left(\left(\rho t^{3}\right) E_{i}^{-1} \frac{v_{e}}{c} \frac{d E}{d X}\right)^{1 / 2}$, where E_{i} is the initial energy of beta electrons.

$t_{e}\left(\rho t^{3}\right)$

- $t_{e} \propto\left(\left(\rho t^{3}\right) E_{i}^{-1} \frac{v_{e}}{c} \frac{d E}{d X}\right)^{1 / 2}$, where E_{i} is the initial energy of beta electrons.
- $0^{\text {th }}$ order: $t_{e, \alpha} \propto\left(\rho t^{3}\right)^{1 / 2}$

$t_{e}\left(\rho t^{3}\right)$

- $t_{e} \propto\left(\left(\rho t^{3}\right) E_{i}^{-1} \frac{v_{e}}{c} \frac{d E}{d X}\right)^{1 / 2}$, where E_{i} is the initial energy of beta electrons.
- $0^{\text {th }}$ order: $t_{e, \alpha} \propto\left(\rho t^{3}\right)^{1 / 2}$
- $\left\langle E^{-1 / 2}\right\rangle^{-2}$ is correct char. energy of t_{e}, not $\langle E\rangle$

$t_{e}\left(\rho t^{3}\right)$

- $t_{e} \propto\left(\left(\rho t^{3}\right) E_{i}^{-1} \frac{v_{e}}{c} \frac{d E}{d X}\right)^{1 / 2}$, where E_{i} is the initial energy of beta electrons.
- $0^{\text {th }}$ order: $t_{e, \alpha} \propto\left(\rho t^{3}\right)^{1 / 2}$
- $\left\langle E^{-1 / 2}\right\rangle^{-2}$ is correct char. energy of t_{e}, not $\langle E\rangle$
. If $<E_{\beta}>\propto t^{-c}$ as often assumed, then $\frac{d \log \left(t_{e}\right)}{d \log \left(\rho t^{3}\right)} \geq 1 / 2$

$t_{e}\left(\rho t^{3}\right)$

Region I: $Y_{e}<0.22$

- Broken power-law description:

$$
t_{e}=t_{0} \begin{cases}\left(\frac{\rho t^{3}}{\left(\rho t^{3}\right)_{0}}\right)^{a_{1}} \text { days } & \text { for } \rho t^{3}<\left(\rho t^{3}\right)_{0} \\ \left(\frac{\rho t^{3}}{\left(\rho t^{3}\right)_{0}}\right)^{a_{2}} \text { days } & \text { for } \rho t^{3}>\left(\rho t^{3}\right)_{0}\end{cases}
$$

- Analytic estimate accurate to $\sim 20 \%$, at worst

	Ejecta Parameters		Fitted Parameters		
	$Y_{\boldsymbol{e}}$	$s_{0}\left[k_{\boldsymbol{b}} /\right.$ baryon]	a_{1}	a_{2}	$t_{e, 0}$ [days]
Region I	<0.22	$\forall s_{0}$	0.5	0.37	19.5
Region II	>0.22	>55	0.5	0.42	19.4
Region III	>0.22	<55	0.5	0.5	16.3

Electron Characteristic Energy Release

Electron Characteristic Energy Release

- $\left\langle E_{\beta}^{-1 / 2}\right\rangle^{-2}$ is not $\propto t^{-c}$

Electron Characteristic Energy Release

- $\left\langle E_{\beta}^{-1 / 2}\right\rangle^{-2}$ is not $\propto t^{-c}$
- For $0.15 \leq Y_{e},\left\langle E^{-1 / 2}\right\rangle^{-2}$ rises for $t \gtrsim 15$ days.

Electron Characteristic Energy Release

- $\left\langle E_{\beta}^{-1 / 2}\right\rangle^{-2}$ is not $\propto t^{-c}$
- For $0.15 \leq Y_{e},\left\langle E^{-1 / 2}\right\rangle^{-2}$ rises for $t \gtrsim 15$ days.

Electron Characteristic Energy Release

- $\left\langle E_{\beta}^{-1 / 2}\right\rangle^{-2}$ is not $\propto t^{-c}$
- For $0.15 \leq Y_{e},\left\langle E^{-1 / 2}\right\rangle^{-2}$ rises for $t \gtrsim 15$ days.

- Example of "inverted decay-chain"

Electron Characteristic Energy Release

- $\left\langle E_{\beta}^{-1 / 2}\right\rangle^{-2}$ is not $\propto t^{-c}$
- For $0.15 \leq Y_{e},\left\langle E^{-1 / 2}\right\rangle^{-2}$ rises for $t \gtrsim 15$ days.
- ${ }^{94} \mathrm{Os} \underset{\langle E\rangle=0.03 \mathrm{MeV}}{\stackrel{t_{1 / 2} \approx 6 \mathrm{yr}}{ }{ }^{94} \mathrm{Ir} \xrightarrow[\langle E\rangle=1.09 \mathrm{MeV}]{t_{1 / 2} \approx 20 \mathrm{hr}}{ }^{94} \mathrm{Pt}}$
- Example of "inverted decay-chain"
- Other inverted chains active,
$A=140,132,106$, etc.

Electron Characteristic Energy Release

- $\left\langle E_{\beta}^{-1 / 2}\right\rangle^{-2}$ is not $\propto t^{-c}$
- For $0.15 \leq Y_{e},\left\langle E^{-1 / 2}\right\rangle^{-2}$ rises for $t \gtrsim 15$ days.
- ${ }^{94} \mathrm{Os} \underset{\langle E\rangle=0.03 \mathrm{MeV}}{t_{1 / 2} \approx 6 \mathrm{yr}}{ }^{94} \mathrm{Ir} \xrightarrow[\langle E\rangle=1.09 \mathrm{MeV}]{t_{1 / 2} \approx 20 \mathrm{hr}}{ }^{94} \mathrm{Pt}$
- Example of "inverted decay-chain"
- Other inverted chains active,
$A=140,132,106$, etc.
- Overall, 40 inverted chains with half-life
$<10^{2} \times t_{1 / 2}$ of parent isotope

Dependence on Nuclear Physics Uncertainties

Dependence on Nuclear Physics Uncertainties

- Different nuclear mass models may result in orders-of-magnitude differences in final ejecta composition

Dependence on Nuclear Physics Uncertainties

- Different nuclear mass models may result in orders-of-magnitude differences in final ejecta composition
- Vary nuclear physics inputs:

Dependence on Nuclear Physics Uncertainties

- Different nuclear mass models may result in orders-of-magnitude differences in final ejecta composition
- Vary nuclear physics inputs:
- Every theoretical rate $\lambda \rightarrow C \lambda$, where $C \in\left[10^{-2}, 10^{2}\right](\sim 70,000$ rates, ~90\%)

Dependence on Nuclear Physics Uncertainties

- Different nuclear mass models may result in orders-of-magnitude differences in final ejecta composition
- Vary nuclear physics inputs:
- Every theoretical rate $\lambda \rightarrow C \lambda$, where $C \in\left[10^{-2}, 10^{2}\right](\sim 70,000$ rates, ~90\%)
- Rerun nuclear networks

Dependence on Nuclear Physics Uncertainties

- Different nuclear mass models may result in orders-of-magnitude differences in final ejecta composition
- Vary nuclear physics inputs:
- Every theoretical rate $\lambda \rightarrow C \lambda$, where $C \in\left[10^{-2}, 10^{2}\right](\sim 70,000$ rates, ~90\%)
- Rerun nuclear networks

Dependence on Nuclear Physics Uncertainties

- Different nuclear mass models may result in orders-of-magnitude differences in final ejecta composition
- Vary nuclear physics inputs:
- Every theoretical rate $\lambda \rightarrow C \lambda$, where $C \in\left[10^{-2}, 10^{2}\right](\sim 70,000$ rates, ~90\%)
- Rerun nuclear networks
- Check for FRDM and UNEDF1 mass-models.

Dependence on Nuclear Physics Uncertainties

- Different nuclear mass models may result in orders-of-magnitude differences in final ejecta composition
- Vary nuclear physics inputs:
- Every theoretical rate $\lambda \rightarrow C \lambda$, where $C \in\left[10^{-2}, 10^{2}\right](\sim 70,000$ rates, ~90\%)
- Rerun nuclear networks
- Check for FRDM and UNEDF1 mass-models.

Figure 7: Histograms of $t_{e} / t_{e, n o m}$, where t_{e} is calculated 500 times for runs with different randomized reaction rates file. $\frac{\rho t^{3}}{\left(\rho t^{3}\right)_{0}}=1$ for all runs. Different panels show histograms for different values of Y_{e}. Mass model used is UNEDF1 [Kortelainen et al., 2012]. Mean is close to 1 for all. STD ≈ 0.1.

Key Takeaways

Key Takeaways

$t_{e}=t_{0}\left\{\begin{array}{l}\left(\frac{\rho t^{3}}{\left(\rho t^{3}\right)_{0}}\right)^{a_{1}} \text { days for } \rho t^{3}<\left(\rho t^{3}\right)_{0} \\ \left(\frac{\rho t^{3}}{\left(\rho t^{3}\right)_{0}}\right)^{a_{2}} \text { days for } \rho t^{3}>\left(\rho t^{3}\right)_{0}\end{array}\right.$ with small dep. on Y_{e}, s_{0}.

Key Takeaways

$t_{e}=t_{0}\left\{\begin{array}{l}\left(\frac{\rho t^{3}}{\left(\rho t^{3}\right)_{0}}\right)^{a_{1}} \text { days for } \rho t^{3}<\left(\rho t^{3}\right)_{0} \\ \left(\frac{\rho t^{3}}{\left(\rho t^{3}\right)_{0}}\right)^{a_{2}} \text { days for } \rho t^{3}>\left(\rho t^{3}\right)_{0}\end{array}\right.$ with small dep. on Y_{e}, s_{0}.

- $t_{0} \approx 16,(19),[19]$ days

Key Takeaways

$t_{e}=t_{0}\left\{\begin{array}{l}\left(\frac{\rho t^{3}}{\left(\rho t^{3}\right)_{0}}\right)^{a_{1}} \text { days for } \rho t^{3}<\left(\rho t^{3}\right)_{0} \\ \left(\frac{\rho t^{3}}{\left(\rho t^{3}\right)_{0}}\right)^{a_{2}} \text { days for } \rho t^{3}>\left(\rho t^{3}\right)_{0}\end{array}\right.$ with small dep. on Y_{e}, s_{0}.

- $t_{0} \approx 16,(19),[19]$ days
- $a_{1}=0.5, a_{\alpha} \approx 0.37,(0.42),[0.5]$

Key Takeaways

$t_{e}=t_{0}\left\{\begin{array}{l}\left(\frac{\rho t^{3}}{\left(\rho t^{3}\right)_{0}}\right)^{a_{1}} \text { days for } \rho t^{3}<\left(\rho t^{3}\right)_{0} \\ \left(\frac{\rho t^{3}}{\left(\rho t^{3}\right)_{0}}\right)^{a_{2}} \text { days for } \rho t^{3}>\left(\rho t^{3}\right)_{0}\end{array}\right.$ with small dep. on Y_{e}, s_{0}.

- $t_{0} \approx 16,(19),[19]$ days
- $a_{1}=0.5, a_{\alpha} \approx 0.37,(0.42),[0.5]$
- for $Y_{e}<0.22, \forall s_{0} ;\left(Y_{e}>0.22, \frac{s_{0}}{k_{b} / \text { baryon }}>55\right) ;\left[Y_{e}<0.22, \frac{s_{0}}{k_{b} / \text { baryon }}<55\right]$

Key Takeaways

$t_{e}=t_{0}\left\{\begin{array}{l}\left(\frac{\rho t^{3}}{\left(\rho t^{3}\right)_{0}}\right)^{a_{1}} \text { days for } \rho t^{3}<\left(\rho t^{3}\right)_{0} \\ \left(\frac{\rho t^{3}}{\left(\rho t^{3}\right)_{0}}\right)^{a_{2}} \text { days for } \rho t^{3}>\left(\rho t^{3}\right)_{0}\end{array}\right.$ with small dep. on Y_{e}, s_{0}.

- $t_{0} \approx 16,(19),[19]$ days
- $a_{1}=0.5, a_{\alpha} \approx 0.37,(0.42),[0.5]$
- for $Y_{e}<0.22, \forall s_{0} ;\left(Y_{e}>0.22, \frac{s_{0}}{k_{b} / \text { baryon }}>55\right) ;\left[Y_{e}<0.22, \frac{s_{0}}{k_{b} / \text { baryon }}<55\right]$
- $<E^{-1 / 2}>^{-2}$ does not steadily decline over time - "inverted decay-chains"

Key Takeaways

$t_{e}=t_{0}\left\{\begin{array}{l}\left(\frac{\rho t^{3}}{\left(\rho t^{3}\right)_{0}}\right)^{a_{1}} \text { days for } \rho t^{3}<\left(\rho t^{3}\right)_{0} \\ \left(\frac{\rho t^{3}}{\left(\rho t^{3}\right)_{0}}\right)^{a_{2}} \text { days for } \rho t^{3}>\left(\rho t^{3}\right)_{0}\end{array}\right.$ with small dep. on Y_{e}, s_{0}.

- $t_{0} \approx 16$, (19), [19] days
- $a_{1}=0.5, a_{\alpha} \approx 0.37,(0.42),[0.5]$
- for $Y_{e}<0.22, \forall s_{0} ;\left(Y_{e}>0.22, \frac{s_{0}}{k_{b} / \text { baryon }}>55\right) ;\left[Y_{e}<0.22, \frac{s_{0}}{k_{b} / \text { baryon }}<55\right]$
- $<E^{-1 / 2}>^{-2}$ does not steadily decline over time - "inverted decay-chains"
- Interpolating Function for Thermalization (not discussed) - easy implementation in kilonovae calculations.

Key Takeaways

- $t_{e}=t_{0}\left\{\begin{array}{l}\left(\frac{\rho t^{3}}{\left(\rho t^{3}\right)_{0}}\right)^{a_{1}} \text { days for } \rho t^{3}<\left(\rho t^{3}\right)_{0} \\ \left(\frac{\rho t^{3}}{\left(\rho t^{3}\right)_{0}}\right)^{a_{2}} \text { days for } \rho t^{3}>\left(\rho t^{3}\right)_{0}\end{array}\right.$ with small dep. on Y_{e}, s_{0}.
- $t_{0} \approx 16$, (19), [19] days
- $a_{1}=0.5, a_{\alpha} \approx 0.37,(0.42),[0.5]$
- for $Y_{e}<0.22, \forall s_{0} ;\left(Y_{e}>0.22, \frac{s_{0}}{k_{b} / \text { baryon }}>55\right) ;\left[Y_{e}<0.22, \frac{s_{0}}{k_{b} / \text { baryon }}<55\right]$
- $<E^{-1 / 2}>^{-2}$ does not steadily decline over time - "inverted decay-chains"
- Interpolating Function for Thermalization (not discussed) - easy implementation in kilonovae calculations.
- Formula for $t_{e, \alpha}$ can be used to further constrain $\frac{M}{v^{3}}$ of ejecta based on kilonovae measurements, similar to Ia SNe.

[^0]: Figure 1: Energy loss rate of electrons propagating in a singly ionized $\chi_{e}=1$ Xe plasma $(Z=54, A=131)$. We take $\hbar \omega_{p}=10^{-7} \mathrm{eV}$. Shaded area shows typical average initial energies of β-decay electrons. For most relevant

