



WEIZMANN INSTITUTE **OF SCIENCE** 

#### Analytic Description of Beta Decay Electron Thermalization in Kilonovae Ejecta

ULTRASAT collaboration workshop,

July 11-13, 2023

**Ben Shenhar** 

Advisor: Prof. Eli Waxman



#### Kilonovae Modeling Challenge



#### Kilonovae Modeling Challenge



- Ia SNe primary heating by:  ${}^{56}Ni \rightarrow {}^{56}Co \rightarrow {}^{56}Fe$ .
  - ~MeV  $\gamma$ -rays and  $\beta^+$ .

- Ia SNe primary heating by:  ${}^{56}Ni \rightarrow {}^{56}Co \rightarrow {}^{56}Fe$ .
  - ~MeV  $\gamma$ -rays and  $\beta^+$ .
- Kilonovae primary heating...?

- Ia SNe primary heating by:  ${}^{56}Ni \rightarrow {}^{56}Co \rightarrow {}^{56}Fe$ .
  - ~MeV  $\gamma$ -rays and  $\beta^+$ .
- Kilonovae primary heating...?
- Dependent on:

• 
$$Y_e = \frac{n_p}{n_B}$$
, neutron-richness

- $m_{ej}$ ,  $v_{ej}$ , ejecta profile
- Nuclear physics uncertainties

- Ia SNe primary heating by:  ${}^{56}Ni \rightarrow {}^{56}Co \rightarrow {}^{56}Fe$ .
  - ~MeV  $\gamma$ -rays and  $\beta^+$ .
- Kilonovae primary heating...?
- Dependent on:

• 
$$Y_e = \frac{n_p}{n_B}$$
, neutron-richness

- $m_{ej}, v_{ej}$ , ejecta profile
- Nuclear physics uncertainties

 $^{-1} g^{-1}$ ė<sub>abs</sub> (erg s<sup>-</sup>  $10^{9}$  $10^{7}$  $10^{1}$ ratio  $10^{0}$  $10^{-1}$ 



Barnes et al., 2020



•  $t_{loss}(E, t)$  - energy-loss timescale of electron.



- $t_{loss}(E, t)$  energy-loss timescale of electron.
- Initially for all decay products (excluding neutrinos)  $t_{loss} \ll t \rightarrow \dot{Q}_{dep} = \sum \dot{Q}_{\mu}$ 
  - Electron that is emitted **immediately** loses all its energy  $\equiv$  Efficient Thermalization





- $t_{loss}(E, t)$  energy-loss timescale of electron.
- Initially for all decay products (excluding neutrinos)  $t_{loss} \ll t \rightarrow \dot{Q}_{dep} = \sum \dot{Q}_{\mu}$ 
  - Electron that is emitted **immediately** loses all its energy  $\equiv$  Efficient Thermalization

But over time 
$$t_{loss} \sim t \rightarrow \dot{Q}_{dep} < \sum_{\mu=\alpha,\beta,\gamma} \dot{Q}_{\mu}$$

• Electron gradually loses its energy  $\equiv$  Inefficient Thermalization





- $t_{loss}(E, t)$  energy-loss timescale of electron.
- Initially for all decay products (excluding neutrinos)  $t_{loss} \ll t \rightarrow \dot{Q}_{dep} = \sum \dot{Q}_{\mu}$ 
  - Electron that is emitted **immediately** loses all its energy  $\equiv$  Efficient Thermalization

But over time 
$$t_{loss} \sim t \rightarrow \dot{Q}_{dep} < \sum_{\mu=\alpha,\beta,\gamma} \dot{Q}_{\mu}$$

- Electron gradually loses its energy  $\equiv$  Inefficient Thermalization
- Interpreting kilonovae observations requires understanding the **thermalization** of decay products (for  $t \gtrsim 1 - 2$  days,  $\gamma$ -particles mostly escape, leaving  $e, \alpha$ -particles as main heating source)





# Research Goal



# Research Goal

Despite many complications and uncertainties of ejecta parameters

#### To find a simple and robust analytic description for $t_{\rho}$ inefficient thermalization timescales - for a wide range







- Ran nuclear-reaction network *SkyNet* for different homologously expanding ejecta of uniform densities (for different initial TD properties).
  - $1 \le s_0 \le 10^2 [k_b/\text{baryon}]$ , semi-linearly spaced. (from simulations,  $s_{0,avg} \approx 20 [k_b/\text{baryon}]$ )
  - $0.05 \le Y_e \le 0.45$ , linearly spaced.

• 
$$10^{-3} \le \rho t^3 \le 10^2$$
 in units of  $(\rho t^3)_0 = \frac{0}{4\pi}$ 

 $\frac{0.025M_{\odot}}{4\pi(0.2c)^3}$ , logarithmically spaced.



- Ran nuclear-reaction network *SkyNet* for different homologously expanding ejecta of uniform densities (for different initial TD properties).
  - $1 \le s_0 \le 10^2 [k_b/\text{baryon}]$ , semi-linearly spaced. (from simulations,  $s_{0,avg} \approx 20 [k_b/\text{baryon}]$ )
  - $0.05 \le Y_e \le 0.45$ , linearly spaced.

• 
$$10^{-3} \le \rho t^3 \le 10^2$$
 in units of  $(\rho t^3)_0 = \frac{0}{4}$ 

- Compute time-dependent energy released by electrons and  $\alpha$ s, including spectra
- $\frac{0.025M_{\odot}}{4\pi(0.2c)^3}$ , logarithmically spaced.



- Ran nuclear-reaction network *SkyNet* for different homologously expanding ejecta of uniform densities (for different initial TD properties).
  - $1 \le s_0 \le 10^2 [k_b/\text{baryon}]$ , semi-linearly spaced. (from simulations,  $s_{0,avg} \approx 20 [k_b/\text{baryon}]$ )
  - $0.05 \le Y_e \le 0.45$ , linearly spaced.

• 
$$10^{-3} \le \rho t^3 \le 10^2$$
 in units of  $(\rho t^3)_0 = \frac{0}{4}$ 

- Compute time-dependent energy released by electrons and  $\alpha$ s, including spectra
- Define and calculate instantaneous energy deposition and full energy deposition of electrons
- $\frac{0.025M_{\odot}}{4\pi(0.2c)^3}$ , logarithmically spaced.



- Ran nuclear-reaction network *SkyNet* for different homologously expanding ejecta of uniform densities (for different initial TD properties).
  - $1 \le s_0 \le 10^2 [k_b/\text{baryon}]$ , semi-linearly spaced. (from simulations,  $s_{0,avg} \approx 20 [k_b/\text{baryon}]$ )
  - $0.05 \le Y_e \le 0.45$ , linearly spaced.

• 
$$10^{-3} \le \rho t^3 \le 10^2$$
 in units of  $(\rho t^3)_0 = \frac{0}{4\pi}$ 

- Compute time-dependent energy released by electrons and  $\alpha$ s, including spectra
- Define and calculate instantaneous energy deposition and full energy deposition of electrons
- Define and calculate  $t_e$  and  $t_{\alpha}$  inefficient thermalization timescales.
  - Using these, define interpolating functions for deposition.

 $\frac{0.025M_{\odot}}{4\pi(0.2c)^3}$ , logarithmically spaced.



# Electron Energy Losses

#### **Electron Losses**



Figure 1: Energy loss rate of electrons propagating in a singly ionized  $\chi_e = 1$  Xe plasma (Z = 54, A = 131). We take  $\hbar \omega_p = 10^{-7} eV$ . Shaded area shows typical average initial energies of  $\beta$ -decay electrons. For most relevant energies, ionization losses dominate.

• Time-dependent, mass-weighted composition:  $\left(\frac{dE}{dX}\right)_{tot} = \sum_{iso} A_{iso} Y_{iso} \left(\frac{dE}{dX}\right)_{iso}$ 





• Fraction of energy instantaneously deposited by electron with initial  $E_i$  at time t is approximated as:

• 
$$f^{e}_{dep}(E_{i}, t) = \begin{cases} 1 & \text{for } t_{l} \leq t \\ \frac{t}{t_{l}} & \text{for } t_{l} \geq t \end{cases}$$

• Where  $t_l(E_i, t) = E_i \left(\frac{dE}{dt}\right)^{-1}$  is the energy loss timescale, and  $\frac{dE}{dt} = \rho v \frac{dE}{dX}$ .



• Fraction of energy instantaneously deposited by electron with initial  $E_i$  at time t is approximated as:

• 
$$f^{e}_{dep}(E_{i}, t) = \begin{cases} 1 & \text{for } t_{l} \leq t \\ \frac{t}{t_{l}} & \text{for } t_{l} \geq t \end{cases}$$

• Where  $t_l(E_i, t) = E_i \left(\frac{dE}{dt}\right)^{-1}$  is the energy loss timescale, and  $\frac{dE}{dt} = \rho v \frac{dE}{dX}$ .

• Total instantaneous deposition calculated as:

• 
$$f_{tot}^e(t) = \frac{\dot{Q}_{dep}^e}{\dot{Q}_e} = \frac{1}{\dot{Q}_e} \int f_{dep}^e(E,t) \cdot E \frac{d\dot{N}_e(E,t)}{dE} dE$$



• Fraction of energy instantaneously deposited by electron with initial  $E_i$  at time t is approximated as:

• 
$$f^{e}_{dep}(E_{i}, t) = \begin{cases} 1 & \text{for } t_{l} \leq t \\ \frac{t}{t_{l}} & \text{for } t_{l} \geq t \end{cases}$$

• Where  $t_l(E_i, t) = E_i \left(\frac{dE}{dt}\right)^{-1}$  is the energy loss timescale, and  $\frac{dE}{dt} = \rho v \frac{dE}{dX}$ .

• Total instantaneous deposition calculated as:

• 
$$f_{tot}^e(t) = \frac{\dot{Q}_{dep}^e}{\dot{Q}_e} = \frac{1}{\dot{Q}_e} \int f_{dep}^e(E,t) \cdot E \frac{d\dot{N}_e(E,t)}{dE} dE$$

• We define  $t_{\rho}$  as the time for which:

• 
$$f_{tot}^e(t_e) \equiv 1 - e^{-1}$$



Fraction of energy instantaneously deposited by electron with initial  $E_i$  at time t is approximated as: •

• 
$$f^{e}_{dep}(E_{i}, t) = \begin{cases} 1 & \text{for } t_{l} \leq t \\ \frac{t}{t_{l}} & \text{for } t_{l} \geq t \end{cases}$$

• Where  $t_l(E_i, t) = E_i \left(\frac{dE}{dt}\right)^{-1}$  is the energy loss timescale, and

• Total instantaneous deposition calculated as:

• 
$$f_{tot}^e(t) = \frac{\dot{Q}_{dep}^e}{\dot{Q}_e} = \frac{1}{\dot{Q}_e} \int f_{dep}^e(E,t) \cdot E \frac{d\dot{N}_e(E,t)}{dE} dE$$

- We define  $t_{\rho}$  as the time for which:
  - $f_{tot}^{e}(t_{e}) \equiv 1 e^{-1}$
- Also calculated full, delayed energy deposition :  $\dot{Q}_{dep}(t) = dI$

•Where  $\frac{dN}{dE}(E, t)$  is the electron distribution, dictated by:  $\frac{\partial}{\partial t}$ 

$$\operatorname{nd} \frac{dE}{dt} = \rho v \frac{dE}{dX}.$$

$$E\frac{dE}{dt}(E,t) \times \frac{dN}{dE}(E,t)$$
$$\left(\frac{dN}{dE}\right) = -\nabla_E \left(\frac{dN}{dE}\right) + \dot{N}(E,t)$$



 $t_e(\rho t^3)$ 



 $t_e(\rho t^3)$ 

# • $t_e \propto \left( (\rho t^3) E_i^{-1} \frac{v_e}{c} \frac{dE}{dX} \right)^{1/2}$ , where $E_i$ is the initial energy of beta electrons.



 $t_e(\rho t^3)$ 

•  $t_e \propto \left( (\rho t^3) E_i^{-1} \frac{v_e}{c} \frac{dE}{dX} \right)^{1/2}$ , where  $E_i$  is the initial energy of beta electrons. •  $0^{\text{th}}$  order:  $t_{e,\alpha} \propto (\rho t^3)^{1/2}$ 



 $t_e(\rho t^3)$ 

- $t_e \propto \left( (\rho t^3) E_i^{-1} \frac{v_e}{c} \frac{dE}{dX} \right)^{1/2}$ , where  $E_i$  is the initial energy of beta electrons.
  - 0<sup>th</sup> order:  $t_{e,\alpha} \propto (\rho t^3)^{1/2}$
  - $< E^{-1/2} > ^{-2}$  is correct char. energy of  $t_e$ , not < E >



 $t_{\rho}(\rho t^{3})$ 

- $t_e \propto \left( (\rho t^3) E_i^{-1} \frac{v_e}{c} \frac{dE}{dX} \right)^{1/2}$ , where  $E_i$  is the initial energy of beta electrons.
  - 0<sup>th</sup> order:  $t_{e,\alpha} \propto (\rho t^3)^{1/2}$
  - $< E^{-1/2} >^{-2}$  is correct char. energy of  $t_e$ , not < E >

• If  $\langle E_{\beta} \rangle \propto t^{-c}$  as often assumed, then  $\frac{d\log(t_e)}{d\log(\rho t^3)} \ge 1/2$ 



 $t_e(\rho t^3)$ 



• Broken power-law description:

$$t_e = t_0 \begin{cases} \left(\frac{\rho t^3}{(\rho t^3)_0}\right)^{a_1} \text{days} & \text{for } \rho t^3 < (\rho t^3)_0 \\ \left(\frac{\rho t^3}{(\rho t^3)_0}\right)^{a_2} \text{days} & \text{for } \rho t^3 > (\rho t^3)_0 \end{cases}$$

- Analytic estimate accurate to  $\sim 20\%$ , at worst

|            | Ejecta Parameters |                           | Fitted Parameters |       |                  |
|------------|-------------------|---------------------------|-------------------|-------|------------------|
|            | Y <sub>e</sub>    | $s_0 [k_b/\text{baryon}]$ | $a_1$             | $a_2$ | $t_{e,0}$ [days] |
| Region I   | < 0.22            | $\forall s_0$             | 0.5               | 0.37  | 19.5             |
| Region II  | > 0.22            | > 55                      | 0.5               | 0.42  | 19.4             |
| Region III | > 0.22            | < 55                      | 0.5               | 0.5   | 16.3             |



•  $< E_{\beta}^{-1/2} >^{-2} \text{ is not } \propto t^{-c}$ 



- $< E_{\beta}^{-1/2} >^{-2} \text{ is not } \propto t^{-c}$
- For  $0.15 \le Y_e$ ,  $< E^{-1/2} >^{-2}$  rises for  $t \gtrsim 15$  days.



• 
$$< E_{\beta}^{-1/2} >^{-2} \text{ is not } \propto t^{-c}$$

• For  $0.15 \le Y_e$ ,  $< E^{-1/2} >^{-2}$  rises for  $t \gtrsim 15$  days.

• <sup>94</sup>Os 
$$\xrightarrow{t_{1/2} \approx 6}$$
 yr  $\xrightarrow{94}$  Ir  $\xrightarrow{t_{1/2} \approx 20}$  hr  $\xrightarrow{94}$  Pt   
< $E > = 0.03$  MeV  $\xrightarrow{94}$  Ir  $\xrightarrow{t_{1/2} \approx 20}$  hr  $\xrightarrow{94}$  Pt



# Electron Characteristic Energy Release

• 
$$< E_{\beta}^{-1/2} >^{-2} \text{ is not } \propto t^{-c}$$

• For  $0.15 \le Y_e$ ,  $< E^{-1/2} >^{-2}$  rises for  $t \gtrsim 15$  days.

• <sup>94</sup>Os 
$$\xrightarrow{t_{1/2} \approx 6} \text{yr} \xrightarrow{94} \text{Ir} \xrightarrow{t_{1/2} \approx 20} \text{hr} \xrightarrow{94} \text{Pt}$$
  
 $< E >= 0.03 \text{MeV}$   $\stackrel{94}{\sim} \text{Ir} \xrightarrow{t_{1/2} \approx 20} \text{hr} \xrightarrow{94} \text{Pt}$ 

• Example of "inverted decay-chain"



# Electron Characteristic Energy Release

• 
$$< E_{\beta}^{-1/2} >^{-2} \text{ is not } \propto t^{-c}$$

• For  $0.15 \le Y_e$ ,  $< E^{-1/2} >^{-2}$  rises for  $t \gtrsim 15$  days.

• <sup>94</sup>Os 
$$\xrightarrow{t_{1/2} \approx 6} \text{yr} \xrightarrow{94} \text{Ir} \xrightarrow{t_{1/2} \approx 20} \text{hr} \xrightarrow{94} \text{Pt}$$
  
 $< E >= 0.03 \text{MeV}$   $\stackrel{94}{\sim} \text{Ir} \xrightarrow{t_{1/2} \approx 20} \text{hr} \xrightarrow{94} \text{Pt}$ 

- Example of "inverted decay-chain"
- Other inverted chains active, A = 140,132,106, etc.



# Electron Characteristic Energy Release

• 
$$< E_{\beta}^{-1/2} >^{-2} \text{ is not } \propto t^{-c}$$

• For  $0.15 \le Y_e$ ,  $< E^{-1/2} >^{-2}$  rises for  $t \gtrsim 15$  days.

• <sup>94</sup>Os 
$$\xrightarrow{t_{1/2} \approx 6}$$
 yr  $\xrightarrow{94}$  Ir  $\xrightarrow{t_{1/2} \approx 20}$  hr  $\xrightarrow{94}$  Pt   
< $E > = 0.03$  MeV  $\overset{94}{=}$  Ir  $\xrightarrow{t_{1/2} \approx 20}$  hr  $\xrightarrow{94}$  Pt

- Example of "inverted decay-chain"
- Other inverted chains active,

A = 140, 132, 106,etc.

• Overall, 40 inverted chains with half-life  $< 10^2 \times t_{1/2}$  of parent isotope





 Different nuclear mass models may result in orders-of-magnitude differences in final ejecta composition



- Different nuclear mass models may result in orders-of-magnitude differences in final ejecta composition
- Vary nuclear physics inputs:



- Different nuclear mass models may result in orders-of-magnitude differences in final ejecta composition
- Vary nuclear physics inputs:
  - Every theoretical rate  $\lambda \rightarrow C\lambda$ , where  $C \in [10^{-2}, 10^2]$  (~70,000 rates, ~90%)



- Different nuclear mass models may result in orders-of-magnitude differences in final ejecta composition
- Vary nuclear physics inputs:
  - Every theoretical rate  $\lambda \rightarrow C\lambda$ , where  $C \in [10^{-2}, 10^2]$  (~70,000 rates, ~90%)
  - Rerun nuclear networks



- Different nuclear mass models may result in orders-of-magnitude differences in final ejecta composition
- Vary nuclear physics inputs:
  - Every theoretical rate  $\lambda \to C\lambda$ , where  $C \in [10^{-2}, 10^2]$  (~70,000 rates, ~90%)
  - Rerun nuclear networks



UNEDF1 [Kortelainen et al., 2012]. Mean is close to 1 for all. STD  $\approx 0.1$ .

- Different nuclear mass models may result in orders-of-magnitude differences in final ejecta composition
- Vary nuclear physics inputs:
  - Every theoretical rate  $\lambda \to C\lambda$ , where  $C \in [10^{-2}, 10^2]$  (~70,000 rates, ~90%)
  - Rerun nuclear networks
  - Check for FRDM and UNEDF1 mass-models.



UNEDF1 [Kortelainen et al., 2012]. Mean is close to 1 for all. STD  $\approx 0.1$ .

- Different nuclear mass models may result in orders-of-magnitude differences in final ejecta composition
- Vary nuclear physics inputs:
  - Every theoretical rate  $\lambda \to C\lambda$ , where  $C \in [10^{-2}, 10^2]$  (~70,000 rates, ~90%)
  - Rerun nuclear networks
  - Check for FRDM and UNEDF1 mass-models.
- $t_{\rho}$  remains robust



UNEDF1 [Kortelainen et al., 2012]. Mean is close to 1 for all. STD  $\approx 0.1$ .



• 
$$t_e = t_0 \begin{cases} \left(\frac{\rho t^3}{(\rho t^3)_0}\right)^{a_1} \text{days for } \rho t^3 < (\rho t^3)_0 \\ \left(\frac{\rho t^3}{(\rho t^3)_0}\right)^{a_2} \text{days for } \rho t^3 > (\rho t^3)_0 \end{cases}$$
 with



 $t_e = t_0 \begin{cases} \left(\frac{\rho t^3}{(\rho t^3)_0}\right)^{a_1} \text{days for } \rho t^3 < (\rho t^3)_0 \\ \left(\frac{\rho t^3}{(\rho t^3)_0}\right)^{a_2} \text{days for } \rho t^3 > (\rho t^3)_0 \end{cases} \text{ with small dep. on } Y_e, s_0.$ 

•  $t_0 \approx 16$ , (19), [19] days



• 
$$t_e = t_0 \begin{cases} \left(\frac{\rho t^3}{(\rho t^3)_0}\right)^{a_1} \text{days for } \rho t^3 < (\rho t^3)_0 \\ \left(\frac{\rho t^3}{(\rho t^3)_0}\right)^{a_2} \text{days for } \rho t^3 > (\rho t^3)_0 \end{cases}$$
 with

•  $t_0 \approx 16$ , (19), [19] days

•  $a_1 = 0.5, a_\alpha \approx 0.37, (0.42), [0.5]$ 



• 
$$t_e = t_0 \begin{cases} \left(\frac{\rho t^3}{(\rho t^3)_0}\right)^{a_1} \text{days for } \rho t^3 < (\rho t^3)_0 \\ \left(\frac{\rho t^3}{(\rho t^3)_0}\right)^{a_2} \text{days for } \rho t^3 > (\rho t^3)_0 \end{cases}$$
 with

•  $t_0 \approx 16$ , (19), [19] days

•  $a_1 = 0.5, a_\alpha \approx 0.37, (0.42), [0.5]$ 

• for  $Y_e < 0.22, \forall s_0$ ;  $(Y_e > 0.22, \frac{s_0}{k_b/\text{baryon}} > 55)$ ;  $[Y_e < 0.22, \frac{s_0}{k_b/\text{baryon}} < 55]$ 



• 
$$t_e = t_0 \begin{cases} \left(\frac{\rho t^3}{(\rho t^3)_0}\right)^{a_1} \text{days for } \rho t^3 < (\rho t^3)_0 \\ \left(\frac{\rho t^3}{(\rho t^3)_0}\right)^{a_2} \text{days for } \rho t^3 > (\rho t^3)_0 \end{cases}$$
 with

•  $t_0 \approx 16$ , (19), [19] days

• 
$$a_1 = 0.5, a_\alpha \approx 0.37, (0.42), [0.5]$$

• for  $Y_e < 0.22, \forall s_0$ ;  $(Y_e > 0.22, \frac{s_0}{k_b/\text{baryon}} > 3$ 

•  $\langle E^{-1/2} \rangle^{-2}$  does not steadily decline over time - "inverted decay-chains"

55); 
$$[Y_e < 0.22, \frac{s_0}{k_b/\text{baryon}} < 55]$$



• 
$$t_e = t_0 \begin{cases} \left(\frac{\rho t^3}{(\rho t^3)_0}\right)^{a_1} \text{days for } \rho t^3 < (\rho t^3)_0 \\ \left(\frac{\rho t^3}{(\rho t^3)_0}\right)^{a_2} \text{days for } \rho t^3 > (\rho t^3)_0 \end{cases}$$
 with

•  $t_0 \approx 16$ , (19), [19] days

• 
$$a_1 = 0.5, a_\alpha \approx 0.37, (0.42), [0.5]$$

• for  $Y_e < 0.22, \forall s_0$ ;  $(Y_e > 0.22, \frac{s_0}{k_b/\text{baryon}} > 1)$ 

- $\langle E^{-1/2} \rangle^{-2}$  does not steadily decline over time "inverted decay-chains"
- Interpolating Function for Thermalization (not discussed) easy implementation in kilonovae calculations.

55); 
$$[Y_e < 0.22, \frac{s_0}{k_b/\text{baryon}} < 55]$$



• 
$$t_e = t_0 \begin{cases} \left(\frac{\rho t^3}{(\rho t^3)_0}\right)^{a_1} \text{days for } \rho t^3 < (\rho t^3)_0 \\ \left(\frac{\rho t^3}{(\rho t^3)_0}\right)^{a_2} \text{days for } \rho t^3 > (\rho t^3)_0 \end{cases}$$
 with

•  $t_0 \approx 16$ , (19), [19] days

• 
$$a_1 = 0.5, a_\alpha \approx 0.37, (0.42), [0.5]$$

• for 
$$Y_e < 0.22, \forall s_0$$
;  $(Y_e > 0.22, \frac{s_0}{k_b/\text{baryon}} > 55)$ ;  $[Y_e < 0.22, \frac{s_0}{k_b/\text{baryon}} < 55]$ 

- $\langle E^{-1/2} \rangle^{-2}$  does not steadily decline over time "inverted decay-chains"
- Interpolating Function for Thermalization (not discussed) easy implementation in kilonovae calculations.
- to la SNe.

small dep. on  $Y_e, s_0$ .

• Formula for  $t_{e,\alpha}$  can be used to further constrain  $\frac{M}{v^3}$  of ejecta based on kilonovae measurements, similar



