ULTRASAT: A Wide-Field UV Space Telescope

Revolutionizing our view of the transient Universe

PI: E. Waxman (WIS)
Program Manager: U. Netzer (ISA/WIS)
Deputy PI: A. Gal-Yam (WIS)
Camera PI: D. Berge (DESY)
Project Scientist: Y. Shvartzvald (WIS)
Science Lead: E. Ofek (WIS)
Payload Lead: S. Ben-Ami (WIS)
Technology Lead: O. Lapid (WIS)
System Engineer: Y. Yaniv (WIS)
Contracts/Finance: O. Alkaslasy (WIS)
SOC infrastructure: L. Ayubi (WIS)
SOC Software: C. Tishler (WIS)
Outreach: D. Polishook (WIS)
Admin: R. Baram (WIS)
Fin/Admin oversight: H. Atsits (WIS)

Funding partners
- ISA
- WIS
- DESY
- NASA

Industry partners
- IAI
- Ellop
- Tower
The study of Transient Cosmic Phenomena is taking Center Stage

An exciting frontier, many fundamental open questions

<table>
<thead>
<tr>
<th>Sources</th>
<th>Open questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Collisions and mergers of stars</td>
<td>- Where did the heavy elements, from Iron to Gold and Uranium, form?</td>
</tr>
<tr>
<td></td>
<td>- How do black holes form?</td>
</tr>
<tr>
<td></td>
<td>- What is the current expansion rate of the Universe?</td>
</tr>
<tr>
<td>Explosive deaths of massive stars</td>
<td>- How do massive stars explode and affect their environment?</td>
</tr>
<tr>
<td>Tidal disruption of stars by super-massive black holes (SMBH)</td>
<td>- What is the SMBH “demographics”?</td>
</tr>
<tr>
<td></td>
<td>- How do they affect their environment?</td>
</tr>
<tr>
<td></td>
<td>- How is mass accreted onto BH?</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Why now?

Technology enables telescopes with very large fields of view, allowing a systematic study of transient events.
ULTRASAT will be unique and superior to all other missions

- ULTRASAT’s Unique capabilities
 - Very large (200 deg²) field of view
 - High UV (220-280nm) sensitivity: $f = 1.5 \times 10^{-3} \text{ ph/cm}^2 \text{ s} \ (900\text{s}, 5\sigma)$
 $[m = -2.5 \log_{10}(f/f_0) = 22.4]$
 - Geo-stationary orbit

- UV advantages
 - Low sky background
 - Strong signals from hot sources
 - Unique information

- Transient detection rates of leading surveys

- Monitor an unprecedentedly large volume of the Universe
- New window in wavelength (NUV) and in cadence (min - mon).
- Real-time alerts to ground/space-based telescopes, initiate world-wide follow-ups.
ULTRASAT: Science highlights

<table>
<thead>
<tr>
<th>Source Type</th>
<th># Events per 3 yr mission</th>
<th>Science Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supernovae</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shock break-out and Early (shock cooling) of core collapse SNe</td>
<td>>40 >500</td>
<td>Understand the explosive death of massive stars</td>
</tr>
<tr>
<td>Superluminous SNe</td>
<td>>250</td>
<td>Early evolution, shock cooling emission</td>
</tr>
<tr>
<td>Type Ia SNe</td>
<td>>40</td>
<td>Discriminate between SD and DD progenitors</td>
</tr>
<tr>
<td>Compact Object Transients</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emission from Gravitational Wave events: NS-NS and NS-BH</td>
<td>~25</td>
<td>Constrain the physics of the sources of gravitational waves</td>
</tr>
<tr>
<td>Cataclysmic variables</td>
<td>>25</td>
<td>Accretion and outburst physics</td>
</tr>
<tr>
<td>Tidal disruption of stars by black holes</td>
<td>>250</td>
<td>Accretion physics, black hole demographics</td>
</tr>
<tr>
<td>Quasars and Active Galactic Nuclei</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuous UV lightcurves</td>
<td>>7500</td>
<td>Accretion physics, BLR Reverberation mapping</td>
</tr>
<tr>
<td>Stars</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M star flares</td>
<td>>4×10^5</td>
<td>Planet habitability, magnetospheres</td>
</tr>
<tr>
<td>RR Lyrae</td>
<td>>1000</td>
<td>Pulsation physics</td>
</tr>
<tr>
<td>Nonradial hot pulsators, e.g., α Cyg, δ Scuti, SX Phe, β Cep etc. types</td>
<td>>250</td>
<td>Asteroseismology</td>
</tr>
<tr>
<td>Eclipsing binaries</td>
<td>>400</td>
<td>Chromosphere and eclipse mapping</td>
</tr>
<tr>
<td>Galaxies and Clusters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Sky Survey – galaxies</td>
<td>>10^8</td>
<td>Galaxy Evolution, star formation rate</td>
</tr>
</tbody>
</table>
Key Science Goal 1: Mergers of Neutron Stars
The evolution of Massive stars: Some open questions

Massive Stars
\[M \sim 10 \times M_{\text{sun}} \]

Burn H \rightarrow He \rightarrow C/O \rightarrow Si \rightarrow Fe

- Once nuclear energy source exhausted, collapse and explode as Supernova- How?
- Where were the elements beyond Fe produced?

Nuclear binding energy

“Dead” remnants of massive stars

- Neutron Star
 - \[1 \ M_{\text{sun}} \]
 - 10 km
 - \[10^{14} \text{g/cc} \]

- Black Hole
 - \[1 \ M_{\text{sun}} \]
 - 3 km
Merging Binary Neutron Stars / Black Holes

- Most stars “live” in binaries

- Massive star binaries may lead to the formation of binary Neutron Star / Black Hole systems

- “Tight” NS/BH binaries, separation < 1 Million km, can merge by emitting Gravitational Waves (GW).

- GW Detection- A fundamental test of GR (1916)
- 2016: LIGO detects a 2x 30 solar mass BH binary merger. Distance ~ 1 Billion light years
Detecting GW and light from NS-NS/BH mergers

- Nuclear density radioactive material torn and ejected at close to light speed. May be the source of heavy, “rapid neutron capture”, elements beyond Iron.

- Detecting light from radioactive material following GW is (one of) the major goals of astronomy in the coming decade:
 - Identify the origin of heavy elements
 - Study the properties of material at nuclear density
 - Accurately localize the merger, identify host galaxy → Measure the current expansion rate H_0 of the Universe
 - Identify environment → Constrain progenitor system
ULTRASAT Key Science Goal 1: GW sources

- Starting early 2025, GW detectors will improve detection horizon to ~ 1 Billion light years, provide ~ 10 NS-NS merger events per year, with ~100 squared degree error box. (Until then - a few in total.)

- EM detection- ULTRASAT:
 - Instantaneous >50% of sky in <15 min. (8 times better than ground based).
 - GW error box in a single image.
 - Sensitive out to ~ 1 Billion light years.

- EM detection in other bands-challenging:
 - X-rays: likely 1:100 (beamed).
 - Radio: ~1yr delay

Bright, Early (hr) UV emission expected
ULTRASAT Key Science Goal 1: GW sources

- Starting early 2025, GW detectors will improve detection horizon to ~1 Billion light years, provide ~10 NS-NS merger events per year, with ~100 squared degree error box. (Until then - a few in total.)

- EM detection - ULTRASAT:
 - Instantaneous >50% of sky in <15 min. (8 times better than ground based).
 - GW error box in a single image.
 - Sensitive out to ~1 Billion light years.

- EM detection in other bands - challenging:
 - X-rays: likely 1:100 (beamed).
 - Radio: ~1yr delay

Must be in space by 2025
First detection of GW from a NS merger [2017]

- Very nearby, 120 M light-yrs. Light detected after 0.5 day, Very UV bright

- ULTRASAT is far superior to other searches:
 - GW error box covered in single image, vs search over ~10^3 galaxies at 1B light-yrs.
 - EM detection in other bands-challenging. X, γ: GW170817 NOT detectable 200M l-yrs.
 - IR, Radio: Challenging and late detection.

- Heavy elements beyond Iron – produced.
 - How heavy (Germanium or Gold) – uncertain.
 - More detections, with earlier light detection, are required.
 - Early UV has unique discriminating power.
First detection of GW from a NS merger [2017]

- Very nearby, 120 M light-yrs. Light detected after 0.5 day, Very UV bright

- ULTRASAT is far superior to other searches:
 - GW error box covered in single image, vs search over $\sim 10^3$ galaxies at 1B light-yrs.
 - EM detection in other bands-challenging. X, γ: GW170817 NOT detectable 200M l-yrs. IR, Radio: Challenging and late detection.

- Heavy elements beyond Iron – produced.
 - How heavy (Germanium or Gold) – uncertain.
 - More detections, with earlier light detection, are required.
 - Early UV has unique discriminating power.

Strong support to ULTRASAT
Key science goal 2: Deaths of Massive stars

- Supernova mechanism not understood.
- Key to progress:
 - Identify the “initial conditions”, which stars explode as which SNe?
 - So far- a handful of associations: pre- vs post- explosion high-res. galaxy images

- An alternative- Early, <1d, UV emission carries unique signatures of the progenitor (“erased” at later time):
 - Progenitor type (size, envelope composition),
 - Explosion properties,
 - Pre-explosion evolution.
SN explosions: ULTRASAT’s uniqueness

ULTRASAT
- High quality early UV data,
 Rapid alerts for follow-ups.
- Determine progenitor and environment
 properties for all, including rare, SN types.

[Image]

Current data

ULTRASAT data
(simulated)

[Graphs and diagrams]

[Ganot et al. 16]

[Rubin et al. 16]
Science goal: Planet habitability

- UV flares and Coronal Mass ejections around prime candidate stars for terrestrial planet searches (M-dwarfs/young Solar analogues)
 - Severely limit habitability,
 - May allow prebiotic chemistry,
 - May produce false positive biomarker signatures
 \(\text{(O}_3 \text{ from photo-dissociation of H}_2\text{O & CO}_2) \).

- Flares dominate UV output. Flare rates unknown.

- ULTRASAT will monitor \(~10^6\) stars
 - Determine NUV flare frequency and luminosity distribution
 as functions of both spectral subclass and stellar rotation period,
 - Determine best habitable planet candidates (e.g., from TESS)
 for expensive spectroscopic bio-marker searches, e.g. by JWST.
ULTRASAT: Implementation & Collaboration

Spacecraft: IAI

Telescope: Elop/Elbit

Hosted launch to GEO (GTO): NASA
Launch Q4 2024, >3 year science mission

Dimentions: 1.5 x 1.1 x 3.0 (m³)
Power: 300 W
Mass: 400 + 500 (Prop) kg

Focal Plane Array ("Camera"): DESY/Helmholtz
Sensor: Tower

Ø 670 mm
~ 1600 mm
ULTRASAT: Mission profile

- **ALL SKY SURVEY**
 - 3hr/day during the first 6 months
 - 7x deeper than state-of-the art (GALEX) (23 AB limiting mag @ |b|>30°)

- **LONG STARES**
 - 2 directions near the Ecliptic poles, minimize Galactic extinction and zodiac bgnd
 - Real-time data download and analysis
 - Alerts within 15min of observations

- **Targets of Opportunity (ToO’s)**
 - Instantaneous >50% of the sky in <15 min for >3 h
 - No limit on ToO number, except for max 75 with negative power balance (~15%)
 - Continuous transmission to the ground
Spacecraft & Telescope
S/C Configuration

S/C Overview

- Sun Sensors
- Telescope
- Solar Panel
- Propulsion System
- LHP Radiator
- BUS Structure
- Helium Tank
- Payload Structure
- Star Trackers
- Baffle + TCD
- OMNI Tx and Rx (X2)
- APM1
- APM2
Telescope & Camera Requirements

- 220-280nm Sensitivity 1.5x10^{-3} ph/cm^2s (900s, 5\sigma)
 Over a field of view of 170 deg^2

- Translates to requirements* on
 Optics - FOV 170 deg^2
 - PSF (Point Spread Function) < 15”
 - Out-of-band suppression <4x10^{-3}
 Detector - QE 70%
 - Dark current < 0.03 e^-/s (cool to 200 °K)
 - Read noise < 3.5 e^-
 Baffle - Stray light suppression < 2 \times 10^{-11}
 - Cosmic-ray e^- suppression (Cerenkov) < 0.15

*Partial list
Telescope: Main Components

- Baffle
- Schmidt Corrector
 - Reduce Spherical aberration
 - 33 cm clear aperture
 - Fused Silica & CaF$_2$ (tandem)
- Mirror
 - 50 cm
- Field Flattener lens
 - Reduces Field Curvature
- Detector Assembly

- Added after PDR
 - Out-of-band filter at FF
 - Focus mechanism at FF
Telescope: Main Components

- Baffle
- Schmidt Corrector
 - Reduce Spherical aberration
 - 33 cm clear aperture
 - Fused Silica & CaF$_2$ (tandem)
- Mirror
 - 50 cm
- Field Flattener lens
 - Reduces Field Curvature
- Detector Assembly

- Added after PDR
 - Out-of-band filter at FF
 - Focus mechanism at FF

1st CaF$_2$ Blank

Hellma Materials
Effective PSF (model): Meets requirements

Source: Blackbody T=20,000 [K]
Optics coatings & Filters (Measured): Meets out-of-band attenuation requirements
Focal Plane array: Main characteristics

- BSI CMOS from TowerJazz (4 tiles aligned to < 50 μm)
- High UV QE using high-K dielectric coating, optimized anti-reflection coating
- Ramon Space support for space qualified design (e.g., radiation hardness)

<table>
<thead>
<tr>
<th>Sensor main Specs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photosensitive surface</td>
</tr>
<tr>
<td>Pixel size</td>
</tr>
<tr>
<td>Operation waveband</td>
</tr>
<tr>
<td>Mean QE in Operation band</td>
</tr>
<tr>
<td>Operation temperature</td>
</tr>
<tr>
<td>Dark current @ 200 °K</td>
</tr>
<tr>
<td>Readout mode</td>
</tr>
<tr>
<td>Readout time</td>
</tr>
<tr>
<td>Readout noise @ High-gain</td>
</tr>
<tr>
<td>Electronic cross-Talk</td>
</tr>
<tr>
<td>Pixel sampling scheme</td>
</tr>
<tr>
<td>Low-gain Well capacity</td>
</tr>
<tr>
<td>High-gain Well capacity</td>
</tr>
<tr>
<td>Bits per Pixel – total (data only)</td>
</tr>
</tbody>
</table>
“Scouts” QE (Measured): Meets requirements
Sensitivity: Meets requirements

$\mathcal{f} = 1.5 \times 10^{-3} \text{ ph/cm}^2 \text{ s} \ (900\text{s}, \ 5\sigma)$

$m = -2.5 \log_{10}(\mathcal{f}/\mathcal{f}_0) = 22.4$

- Optics: Model
 Will be measured on ground

- Coatings, filters, QE: Measured
 (samples & scouts)
Ground station
and
Science Operation Center (SOC)
Purpose:
➢ The ULTRASAT Science Operation Center (SOC) will support all scientific aspects of the ULTRASAT mission

Objectives:
➢ Observation operations (Plan and schedule, ToOs, Decontamination)
➢ Interface to IAI Ground Control Segment
➢ Image and Data processing
➢ Scientific Data Products archiving
➢ Ultrasat Alerts generation
➢ Data Accessibility (multiple products, access methods and permissions, WEB)
➢ External Interface to DESY/LSST/NASA etc.
SOC Architecture
Science Operation Center

Location:
- The SOC will be located at WIS
 - Start operations in the current building
 - New building: Dedicated area, including visiting auditorium
- Planning and development phase initiated

SOC development project:
- Top-level requirements and development plan were defined
- Image processing development on-going
Supporting the ULTRASAT Mission
WIS ground-based optical follow up programs
Supporting the ULTRASAT Mission
WIS Observatory in Neot Semadar

LAST - The Large Array Survey
Telescopes: Photometry

<table>
<thead>
<tr>
<th># of Telescopes x Aperture</th>
<th>48 x 11”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optration Band</td>
<td>Visible: 400 – 850nm</td>
</tr>
<tr>
<td>FoV – Aperture:</td>
<td>7.4 sq. degrees / 1.5m</td>
</tr>
<tr>
<td>Narrow Field of View</td>
<td></td>
</tr>
<tr>
<td>FoV – Aperture:</td>
<td>~355 sq. degrees / 28cm</td>
</tr>
<tr>
<td>Max Field of View</td>
<td></td>
</tr>
<tr>
<td>Exposure Time</td>
<td>15sec</td>
</tr>
</tbody>
</table>

LAST Spec: Spectroscopy

<table>
<thead>
<tr>
<th># of Telescopes x Aperture</th>
<th>18 x 24”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optration Band</td>
<td>Visible: 400 – 850nm</td>
</tr>
<tr>
<td>Effective Aperture</td>
<td>2.5 m</td>
</tr>
<tr>
<td>Low Spectral Resolution</td>
<td>(\Delta \lambda = 20\text{Å}) ((1000 \text{ km s}^{-1}))</td>
</tr>
<tr>
<td>High Spectral Resolution</td>
<td>(\Delta \lambda = 0.25\text{Å}) ((15 \text{ km s}^{-1}))</td>
</tr>
</tbody>
</table>
Supporting the ULTRASAT Mission
Spectroscopy @ Chile

SOXs

Spectroscopy at Magellan: G-CLEF

<table>
<thead>
<tr>
<th>Telescope</th>
<th>ESO 3.8m</th>
<th>6.5 m Magellan Clay</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Technology Telescope</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operation Band</td>
<td>VIS-NIR: 360nm − 2.1µm</td>
<td>VIS-NIR: 350nm − 950nm</td>
</tr>
<tr>
<td>Spectral Resolution</td>
<td>Δλ = 20Å (1000 km s⁻¹)</td>
<td>Δλ = 0.04Å (2.2 km s⁻¹)</td>
</tr>
</tbody>
</table>
Program management
Implementation Organization

(*) Steering committee: ISA, WIS, HH/DESY, PI

Science Board
Mission PI
Working groups 1-12

Outreach Program

Science Operation Center

Executive board
ISA, WIS, DESY
Program Office
Manager- Udi Netzer

DESY
Elbit/ELOP
IAI/Mabat
Launch NASA (TBD)

TowerJazz

(*) All future Agencies providing substantial support will be part of the Steering Committee.
<table>
<thead>
<tr>
<th>Topic</th>
<th>Subsystem</th>
<th>When</th>
</tr>
</thead>
<tbody>
<tr>
<td>TowerJazz - Detector supplier</td>
<td>Camera</td>
<td>March 2020</td>
</tr>
<tr>
<td>Focus mechanism</td>
<td>Telescope</td>
<td>March 2020</td>
</tr>
<tr>
<td>Direct to GEO → GTO</td>
<td>Spacecraft / Launcher</td>
<td>July 2020</td>
</tr>
<tr>
<td>CaF2 lenses</td>
<td>Telescope</td>
<td>October 2020</td>
</tr>
<tr>
<td>G5 optical model</td>
<td>Telescope</td>
<td>October 2020</td>
</tr>
<tr>
<td>Propulsion system</td>
<td>Spacecraft</td>
<td>November 2020</td>
</tr>
<tr>
<td>UV ARC selection</td>
<td>Camera</td>
<td>February 2021</td>
</tr>
<tr>
<td>Model plan (EM, EQM, PFM)</td>
<td>Camera/Telescope/Spacecraft</td>
<td>February 2021</td>
</tr>
<tr>
<td>Wafer post processing and die packaging</td>
<td>Camera</td>
<td>February 2021</td>
</tr>
<tr>
<td>Filter addition</td>
<td>Telescope</td>
<td>June 2021</td>
</tr>
</tbody>
</table>
Major Project Decisions Since Kickoff (Sep 19)

<table>
<thead>
<tr>
<th>Topic</th>
<th>Subsystem</th>
<th>When</th>
</tr>
</thead>
<tbody>
<tr>
<td>TowerJazz - Detector supplier</td>
<td>Camera</td>
<td>March 2020</td>
</tr>
<tr>
<td>Focus mechanism</td>
<td>Telescope</td>
<td>March 2020</td>
</tr>
<tr>
<td>Direct to GEO → GTO</td>
<td>Spacecraft / Launcher</td>
<td>July 2020</td>
</tr>
<tr>
<td>CaF2 lenses</td>
<td>Telescope</td>
<td>October 2020</td>
</tr>
<tr>
<td>G5 optical model</td>
<td>Telescope</td>
<td>October 2020</td>
</tr>
<tr>
<td>Propulsion system</td>
<td>Spacecraft</td>
<td>November 2020</td>
</tr>
<tr>
<td>UV ARC selection</td>
<td>Camera</td>
<td>February 2021</td>
</tr>
<tr>
<td>Model plan (EM, EQM, PFM)</td>
<td>Camera/Telescope/Spacecraft</td>
<td>February 2021</td>
</tr>
<tr>
<td>Wafer post processing and die</td>
<td>Camera</td>
<td>February 2021</td>
</tr>
<tr>
<td>packaging</td>
<td>Telescope</td>
<td>June 2021</td>
</tr>
</tbody>
</table>

Budget & Timeline impact

- **Direct to GEO → GTO**
 - Cost increase (propulsion system & re-design). Risk identified, partners committed to extra-cost at kickoff.
 - 6 Month launch delay- does not affect arrival time at GEO slot.

- **Filter addition**
 - Approx. 2 mon delay.
Program Timeline

<table>
<thead>
<tr>
<th>Mile Stone</th>
<th>ARO + Month</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kick off</td>
<td>0 (23 September 2019)</td>
<td>“Q4” 2019</td>
</tr>
<tr>
<td>SRR</td>
<td>3</td>
<td>Q1 2020</td>
</tr>
<tr>
<td>SDR</td>
<td>6</td>
<td>Q2 2020</td>
</tr>
<tr>
<td>PDR</td>
<td>16</td>
<td>Q1 2021</td>
</tr>
<tr>
<td>CDR</td>
<td>27</td>
<td>Q4 2021</td>
</tr>
<tr>
<td>Supply of Camera</td>
<td>39</td>
<td>Q4 2022</td>
</tr>
<tr>
<td>Supply of Payload</td>
<td>49</td>
<td>Q4 2023</td>
</tr>
<tr>
<td>DRB</td>
<td>59</td>
<td>Q3 2024</td>
</tr>
<tr>
<td>Launch</td>
<td>63</td>
<td>Q4 2024</td>
</tr>
</tbody>
</table>
Financing Principles

- ISA: 2/3 of S/C and Payload, Operational costs, outreach program
- WIS: 1/3 of S/C and Payload, Scientific mission, Data Center, Program Management, outreach, education program
- DESY: Camera, Scientific participation
- NASA: Launcher, Scientific participation

- Program overall cost approx. $105M
Risks

• Challenging time line
• Complex Interfaces
• Contamination prevention and control
Outreach & Education
High-school physics students:
• In collaboration with Schwartz/Reisman Science Education Center
• A dedicated “30% program” for matriculation exams in physics:
 ➢ “hands-on” work with data - understanding and explaining the observed universe
 ➢ Science questions studied by ULTRASAT (e.g., the Universe expansion rate)
• Two pilot programs - fall semester of 2021

Public outreach - young students and general public (jointly with ISA):
• In collaboration with Davidson Institute of Science Education as a “flagship project”
• Preliminary program includes, e.g.:
 ➢ Visits at the Science Operation Center
 ➢ Scientists on-line, teaching the teachers, “theater” productions-podcasts, Youtube short videos
 ➢ Small scale traveling exhibition to be presented in malls/schools/community centers
A Science Driven Collaboration

- 12 Science Working Groups - WG members receive real time data access
 Open to all (and already including most) Israeli astronomers

- NASA Launch contribution-
 Science return: 8 US PIs (NASA funded) in WG’s

- DESY Camera contribution-
 Science return: 3 DESY PIs in WG’s

- LSST collaboration – advanced negotiations
 - Joint LSST/ULTRASAT alerts
 - Real time access to LSST data for Israeli astronomers
 Science return: US PIs in WG’s
ULTRASAT: Impact

- Provide groundbreaking high profile science with a small, affordable satellite.

- Put Israel at the forefront of Observational Astrophysics.

- Put Israeli industry at the forefront of a global movement to explore the Universe with small, affordable satellites.

- Enhance international collaborations with leading Agencies and Industries. NASA are joining an Israeli led Science project.

- Draw Israeli students to science and technology studies. Education & Outreach program in construction.
Backup
Why now?

Technology enables telescopes with very large fields of view, allowing a systematic study of transient events.

- Optical (LSST), Radio (LOFAR, SKA)
- X/γ-ray (Fermi, AstroSat, SVOM; HAWC, CTA, LHAASO)
- Gravitational Waves (LIGO, Virgo)
- ν (IceCube, KM3NeT)

• Missing: UV
Gravitational Waves

Electro-Magnetic Transmitter
Accelerating electric charge (dipole) \(\rightarrow \) EM Wave

Receiver
Accelerating electric charge

Gravitational “Transmitter”
Accelerating mass (Quadrupole) \(\rightarrow \) GW

Gravitational Antenna
Accelerating mass
Detecting Gravitational Waves: The Challenge

- Predicted by Einstein’s theory of gravity in 1916
- Challenge: \(\frac{dL}{L} = 10^{-21} \)
First direct detection of Gravitational Waves [2016]

• 2016:
 LIGO detects a 2x 30 solar mass BH binary merger.
 Distance ~ 1 Billion light years
 \[h = \frac{dL}{L} \approx \frac{R_s}{d} = 10^{-21} \frac{M/10M_{Sun}}{d/1G \text{ light-yr}} \]
 \[f \approx \frac{c}{2\pi R_s} = 1 \frac{1}{M/10M_{Sun}} \text{ kHz} \]

• 2017 Physics Nobel Prize (Weiss, Barish, Thorne).
GW detector network timeline

LIGO
- O1: 80 Mpc
- O2: 100 Mpc
- O3: 105-130 Mpc
- O4: 160-190 Mpc
- O5: Target 330 Mpc

Virgo
- O1: 30 Mpc
- O2: 50 Mpc
- O3: 90-120 Mpc
- O4: 150-260 Mpc

KAGRA
- O1: 8-25 Mpc
- O2: 25-130 Mpc
- O3: 130+ Mpc

LIGO-India
- O5: Target 330 Mpc
Key science goal 2: Deaths of Massive stars

• Early UV/opt.: status.
 - A handful of (late, low-quality) RSG explosions.
 - Space UV (lucky) detection of 1 SN Ib: R=10^{11}\text{cm}; \text{He} + \text{C/O} \text{envelope}; \text{E/M}
 - A handful of type Ia non detections: R_* < 4\times10^{9}\text{cm} \rightarrow \text{White Dwarfs.}

• Current data
 - Validate models,
 - Direct constraints on compact progenitors,
 - Demonstrate potential.

• ULTRASAT:
 - >100/yr, <1d, high quality UV,
 Map all (including rare) SN types.
 - Rapid alerts for follow-ups.

[Bloom et al. 11, Maoz et al. 14]

[Ganot et al. 16]

[Bloom et al. 11, Maoz et al. 14]
SN explosions: ULTRASAT’s uniqueness

ULTRASAT is an order of magnitude more powerful discovery machine than any other survey

ULTRASAT will map all (including rare) SN types

Why UV?

$\text{t} \ (T=1 \ eV) \rightarrow R_*$

Recombination at $T < 1 \ eV$

\rightarrow no optical peak, structure degeneracy

[Rubin et al. 16]
S/C Configuration

- Baffle
- 200K radiator
- Lightband interface
- Tank

- Cover
- Omni Ant
- Sun Sensor
- Solar Array
- Ant Gimbal + HGA
ULTRASAT Optical Design Guidelines

• Challenges:
 o Limited materials with high transmission in the UV, namely CaF₂, Fused Silica and Sapphire.
 o High slope of dispersion curve at shorter wavelengths.

• A modified Schmidt telescope:
 o CaF₂ and Fused silica work in tandem to minimize chromatic aberrations.
 o Meniscus corrector plates before telescope pupil to balance aberrations across the FoV.
 o A Field Flattener pair to correct primary mirror focal plane curvature.

• Sapphire Filter
 o High rejection of out-of-band wavelength requires >1000 layers.
 o Requires a stiff substrate to avoid stresses (i.e., localized changes in the wavefront).
 o Use of high index of refraction sub-micron layers of HfO₂ annealed at high temperatures.
 o Unique cut along the crystal to minimize Birefringence takes into account the telescope fast beam.
Design Considerations

• Short Focal Depth
 o A theoretical 20 um
 o High Stability needed

• Thermal Gradients
 o First lens exposed to outer space
 o Thermal analysis accuracy

• Focus Mechanism
 o FF vs Mirror

• Contamination
 o Particular and molecular
 o High absorption coefficient
Camera components

- Sensor
- Flex cables
- Package
- Heat spreader
- Mounting interface
- Spider
- Bolts
- Heat pipe
- DA box

ULTRASAT
Ultraviolet Transient Astronomy Satellite

6/17/2021 Project Status Overview
Camera time line

- **11/2018**: ‘Can DESY do a UV space camera?’
- **07/2019**: ‘Yes we can!’ – budget secured
- **09/2019**: Program Kick off
- **01/2020**: System Requirements Review
- **03/2020**: System Design Review
- **12/2020**: Preliminary Design Review
- **01/2021**: Prototypes characterized (ARC selection), sensor designed and in production.

- Team of 11 FTE in full swing
- Space expertise build-up with new hires, DLR cooperation, external international advisory board
- Time line in particular in Corona times the single most challenging aspect!

Test sensor at the optical-lab
Anti-reflection coatings (ARC) for QE optimization
Chromatic PSF
Effective PSF
Ground Station

- Terminal @ IAI/MBT GEO Ground Station
 - Command & Control, Telemetry Processing
 - Immediate ToO tasking
 - Receive imagery data, deliver to WIS (SOC)
- High-rate Ku communication
- Perform ranging for orbit determination

5Mbps Downlink (5-10 MHz) Ku Band

Mission Planning

Telemetry

Image Reception

Comm

Downlink data

CMD

Raw Image

Tasking

SOC