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A general methodology that allows the estimation of maximum rates of enzymatic reactions is
described, For a typical mechanism of an enzymatic reaction, the rate is a function of kinetic
parameters which are unknown but required to obey certain constraints. Specifically, the ratio of
forward to backward rate constants must be consistent with the equilibrium constant, and the rate of
each bimolecular reaction-step must be less than the rate of collision of the two reactant species. If
additional information is available on the reaction rate, more constraints can be introduced. By
maximizing the rate expression with respect to the kinetic parameters, subject to all applicable
constraints, a first-principles upper bound is obtained for the reaction rate. If the reaction rate is
actually known, the methodology can alternatively estimate an extremum for the concentration of the
enzyme, a substrate, or a product. Simple thermodynamic arguments could also provide bounds for
concentrations or the direction (but not the magnitude) of the rate, by examining only the overall
transformation of reactants to products and completely ignoring the mechanism. The collision-limit
treatment proposed here exploits basic internal characteristics of enzymatic reaction mechanisms to
predict better bounds for the concentrations and the thermodynamically allowable maximum
magnitude of the rate.

KEYWORDS Enzymatic reactions Upper bounds Rates.

1. INTRODUCTION

Enzymatic reaction mechanisms involve attachment of the reactants (substrates)
to the enzyme, transformation of the reactants to products, and finally detach-
ment of the products. Because the mechanisms must involve the attachment of
the reactants on the enzyme, it is frequently mentioned in the literature that the
rate of a single-reactant irreversible enzymatic reaction has an upper bound,
equal to the rate of encounters or collisionsi between the enzyme and the
substrate (Hammes and Schimmel, 1970; Fersht, 1977; Hiromi, 1979):

Tmax = ke!olal[A] (l)

t Current Affiliation: Systems Research Center and Chemical Engineering Program, A.V. Williams
Bldg., University of Maryland, College Park, Maryland 20742.

1 The term collision customarily refers to gases, while the term encounter is more appropriate for
liquids; here, we will use the two terms interchangeably. We will avoid the term diffusion, which is
often used for this situation in the literature, because it may give the erroneous impression that there
are macroscopic concentration gradients in the system.
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where e, is the concentration of the enzyme (excluding any amounts that are
deactivated or inhibited), [A] is the concentration of the substrate, and & is the
bimolecular collision parameter. Maximum values for k are reported as roughly
10°M™'s™

Naturally, most enzymatic reactions cannot attain this rate, because they are
limited by additional substrates, dissociation of the products from the enzyme,
and, most importantly, slow intramolecular rearrangements  within one or more
substrate-enzyme complexes. Equation (1) yields nonetheless a valid (conserva-
tive) upper bound for all enzymatic reaction rates. This upper bound is a
theoretical and unattainable maximum for most enzymatic réactions, but it could
be achieved by the most efficient enzymes under optimal conditions. This
maximum has been used in the evaluation of enzyme efficiency (Albery and
Knowles, 1976), defined as the ratio of the observed rate to the maximum
collision rate of Eq. (1). It was demonstrated that there are enzymes which do
attain the upper bound, i.e., their intramolecular rearrangements are so efficient
that rates are limited only by collisions.

Theoretical maximum rates are conceptually similar to theoretical maximum
yields of pathways. The maximum yields are often unattainable, because their
derivation neglects important mechanisms regulating the flux through various
pathways. However, they provide a sound upper limit and a useful reference
point in the analysis of real processes and proposed improvements to them.

Deficiencies of the Simple Upper-Bound Expression

In all of the previous work, the maximum rate is simply viewed as equal to the
rate of encounter of the enzyme with a substrate. Thus, the maximum rate is
essentially derived from only one particular step of the reaction mechanism.
Additional constraints, stemming from a more detailed picture of the reaction
mechanism or from the reversibility of the reaction, are not employed. An
enzymatic reaction with many substrates and products should theoretically have a
slower rate, because the enzyme must encounter each of the substrates (often in a
predefined sequence) before the reaction can be completed. The effect of
multiple substrates and products on the reaction rate is not reflected in Eq. (1).

An’ enzymatic reaction that approaches equilibrium becomes  progressively
slower’and its rate becomes zero at equilibrium. Equation (1) does not take into
a¢count the displacement of the reaction from equilibrium. The equation predicts
for a reaction that is very close to equilibrium the same high rate it would predict
for an irreversible reaction. In fact, Eq. (1) neglects thermodynamics to the point
that it would provide a high maximum rate even for reactions that are
thermodynamically infeasible.

Predictions from Thermodynamzcs

Simple thermodynamic analysus alone (specifically, a comparison between the
mass-action ratio and the equilibrium constant) can predlct whether a reaction.is
feasible or not. Unfortunately, it can say nothing about the maximum permissible
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rate at which the enzymatic reaction could take place. Thus, it suffers from a
shortcoming similar to the pure collision-limit estimation of Eq. (1). While it
provides the correct answer about the feasibility of the enzymatic reaction, it
provides no means to quantify the fact that as the reaction approaches
equilibrium (and becomes less favored thermodynamically) it must take place at
slower rates.

Figure 1(a) shows the thermodynamic rate-prediction as a function of the
thermodynamic driving force, i.e., the displacement of the reaction from
equilibrium. This displacement is represented by 1— Q/K, where Q is the
mass-action ratio and X, is the equilibrium constant of the enzymatic reaction.
When 1 - Q/K, >0 the reaction is feasible. When 1 — Q/K, <0 the reaction is
infeasible; in fact, the reverse reaction takes place, causing the negative rate
depicted in the Figure 1(a). The collision-limit of Eq. (1), taken literally,
produces a flat rate profile, shown in Figure 1(b); the rate value depends only on
the substrate that was used in Eq. (1).

A simple combination of thermodynamic and collision-limit considerations is
shown in Figure 2(a). It is achieved by calculating separately the maximum rate
for the reverse reaction, and using that rate when the forward reaction is
infeasible. This is not a satisfactory solution because the reaction takes place in
both (forward and backward) directions at all times; it does not merely switch
from one direction to the other at one particular point. Only the ner rate
happends to change sign when the mass-action ratio is equal to the equilibrium
constant (i.e., when the driving force goes through zero). If the reaction
mechanism is fixed, a single rate expression should be valid on both sides of the
equilibrium. The expression should predict positive rate when, overall, the
forward reaction is thermodynamically favored and negative rate when the
backward reaction is favored. However, the transition from one region to the

(a)
®) ! f

FIGURE 1 The maximum rate of an enzymatic reaction as a function of the displacement from
equilibrium, 1~ Q/K,, where Q ‘is the mass action ratio and K, is the equilibrium constant. The
horizontal axis is assumed to denote variations in K_ rather than concentrations. {a) Simple
thermodynamic arguments provide the sign of the rate, but no information about its magnitude; in
effect, the maximum rate is infinitely large. (b) The collision limit between the enzyme E and one
substrate § yields a fixed maximum rate, independent from thermodynamic requirements.
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FIGURE 2 The maximum rate of an enzymatic reaction as a function of the displacement from
equilibrium. (a) A simple combination of thermodynamics and collision limits (between the enzyme E
and a substrate S or a product P) yields a maximum rate with a finite jump at equilibrium. (b) The
maximum rate curve should make a smooth transition at equilibrium, while far from equilibrium it
should still take into account the presence of other substrates and products which restrict the
maximum rate of reaction.

other should be smooth. Figure 2(b) shows a rate curve that has the desired
characteristics.

Note that Eq. (1) implies that only one substrate affects the maximum rate. In
reality, each substrate and product reduces the maximum rate, because it inserts
additional steps in the chain of the enzymatic reaction mechanism, slowing the
reaction down—especially since the extra steps are bimolecular and prone to the
collision-limitations suggested by Eq. (1). Thus, as shown in Figure 2(b), the rate
should be lower than the simple prediction of Eq. (1), even very far from
equilibrium.

The work presented here

In this work the estimation of maximum rates is extended to multi-substrate,
multi-product reactions, reversible or irreversible, in a thermodynamically
consistent way. The result is a general methodology that allows the estimation of
an upper bound for the rate of any enzymatic reaction (Mavrovouniotis, 1988).
This technique presented here assumes a typical fast mechanism for the reaction,
with constraints imposed on the kinetic parameters. The constraints require that
kinetic parameters be consistent with the equilibrium constant, and that the rate
of each bimolecular step be smaller than the collision rate of the species
participating in the step. The kinetic parameters are then determined so that the
constraints are satisfied and the rate is maximized.

If the actual reaction rate is known, the method can be inverted and used to
estimate a bound on the concentration of a reactant or a product. Without the
technique presented in this paper, concentration bounds could be estimated
through exclusively thermodynamic arguments (i.e., comparison of the mass-
action ratio to the equilibrium constant), using the sign of the reaction rate and
neglecting its magnitude. An upper bound for a reactant concentration can also
be estimated from Eq. (1), regardless of the proximity of the reaction to
equilibrium. With the technique presented here, however, the concentration
bounds will account for both thermodynamic and collision limitations, and they
will always be tighter. The comparison of actual reaction rates to upper bounds,
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carried out by Albery and Knowles (1976), using only Eq. (1), demonstrated that
there exist enzymes which attain the upper bound; the technique proposed here
tightens the upper bounds, producing more realistic results. Simple thermo-
dynamic analysis examines only the reactants and products of a transformation.
The presented approach is, conceptually, an extension of thermodynamic analysis
to account for the character of enzymatic-reaction mechanisms. However, it
depends only on general characteristics and not specific details of the actual
reaction mechanism.

Following a more precise statement of the problem addressed, along with
necessary assumptions, the problem is recast in terms of dimensionless quantities,
and solved for several reaction schemes. Typical values for collision parameters
are then estimated, along with ranges for the dimensionless quantities. Simple
numerical examples are finally discussed in order to demonstrate the principles
involved and present other potential applications and future directions.

Significance

The significance of this method lies in that it extends the thermodynamic
analysis of enzymatic reactions to account for constraints imposed by the nature
of enzymatic reaction mechanisms. Since collision limitations are derived from
general enzymatic reaction mechanisms, the results do not depend on any
characteristics of the particular enzyme.

The technique allows the estimation of bounds for parameters related to
reaction kinetics, such as rates and concentrations, for which actual experimental
data are often not available. It is equally applicable to enzymatic steps of
intracellnlar biochemical pathways and extracellnlar enzymatic transformations.
Although it is implied that the enzyme catalyzing the reaction is a known, existing
enzyme, the method can also be used when an enzyme is sought to carry out a
certain transformation; if the method determines that, under given conditions,
the transformation cannot take place with the desired rate, then it can be a priori
concluded that no suitable enzyme exists, i.e., the transformation is not a single
feasible enzymatic reaction.

2. PROBLEM AND ASSUMPTIONS

For a given enzymatic reaction, it is assumed that the following are known:

* The order of substrate binding,

* the order of product release from the enzyme,
¢ the equilibrium constant K.,

e the enzyme concentration e, and

* the substrate and product concentrations.

It is further assumed that the conditions of the reaction correspond to an aqueous
solution with no macroscopic concentration gradients, and that the enzyme works
alone, instead of being part of a multi-enzyme complex. Under these assump-
tions, the objective is to find the maximum rate of the reaction under steady-state
conditions.
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The reaction attains its maximum rate when its only limitation is the
physicochemical collision of the species. The biochemical literature usually refers
to this as “diffusion limitation”, but the term “collision limitation” will be used in
this paper, because ‘“‘diffusion” implies macroscopic concentration gradients
which are not considered here. The steps of dissociation, intramolecular rearran-
gement, and rearrangement within an enzyme-substrate complex can take place
instantaneously. This is justified since the characteristic rate constants can be as
high as 10's™' for dissociation (Fersht, 1977), 10'2s™! for intramolecular
rearrangement (Fersht, 1977), but only 10°s™' for a bimolecular collision. The
last result can be obtained from Eq. (1) for [A]=1mM and k =10°M~'s™.

An additional assumption is that the species that bind to the enzyme come from
the bulk of the solution and not from another site on the enzyme. Thus, H*,
OH™, and H,0 should not participate in the reaction mechanism, as they may be
supplied by other sites of the enzyme or a metabolite. This is not a restrictive
assumption, but rather a guideline in the use of the methodology: Whenever such
species do occur, they are assumed to bind instantaneously, and the correspond-
ing steps must be excluded from the mechanism.

3. TREATMENT OF A TWO-REACTANT TWO-PRODUCT ORDERED
MECHANISM

Derivation of the Rate Equation

The methodology for obtaining a maximum rate is illustrated here for a particular
reaction mechanism. An ordered mechanism with two reactants A and B and two
products P and Q has the form indicated in Figure 3. The rate of the reaction at

k
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FIGURE 3 The general ordered mechanism for a two-reactant two-product enzymatic reaction.
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steady state, r, can be determined from the system:

r=k[E][A] - k-,[EA] @
r=k;[EA][B] - k_,[EAB] &)
r=k;]EAB] - k_j|EQI[P] )
r=kJ{EQ] - k-J{ENQ] )
eow = [E] + [EA] + [EAB] +[EQ] (6)

Since the concentrations of multi-species complexes will not be considered again,
it is convenient to drop the brackets from concentrations. As a function of A, B,
P, Q, e, and the kinetic parameters, the rate is expressed as:

r = e,owm(kikoksksAB — k_yk_,k_3k_,PQ)D™! @
where
D =k_sk_3k,BPQ + k_sk_sk_PQ +k_sk_sk_oPQ+k_sk,k;BQ
+k_yk_1ksQ+k_sk_2k_1Q+k_3kikoABP + k_3k_ kAP + k_3k_ k_, P
+ k ko kyAB + ki koksAB + kokaskyB + ki ksksA + k_ Kk kyA
+ k_iksky+ k_yk 1k, (8)

Introduction of Constraints

There are two kinds of constraints that can be imposed on the kinetic parameters.
The first is that the ratio of the forward rate constants to the backward rate
constants must be equal to the equilibrium constant:

Kc = (k1k2k3k4)(k_|k_2k._3k_4)_1 (9)

The second limitation applies only to (forward or backward) bimolecular steps.
Since a collision is required for the two reacting species to form a complex, the
rate of each bimolecular step cannot exceed the rate of collision of the two
species in the aqueous solution. In effect:

k,<b, for i=1,2, -3, -4 (10)

where b; is the collision-determined upper bound for the rate constant k;. Under
the constraints (9) and (10), the objective is to find values for k; (for i = £1, £2,
43, and %4) so that the rate r in Egs. (7) and (8) is maximized.

Note that k; are not necessarily intrinsic reaction rate constants, since they may
be limited by a physical process such as the collision of the species. Despite this
partly phenomenological character of the k; parameters the equilibrium relation
(9) must still be satisfied because the collision rate constants do not depend on the
concentrations.
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Solution of the Optimization Problem
The mathematical solution of the problem is simplified through the introduction
of the parameters:

m;=kifk_; for i=1,2,3,4 11)
and substitution of the kinetic parameters k_,, k_,, k3, and k, in the rate
expression as follows:

k_i=ki/m, (12)
k_;=ky/m; (13)
ky=k_sm; (14)
ka=k_,m, (15)
The equilibrium constraint is satisfied by the substitution:
my = K,.[(mim,m,) (16)

The parameters k,, k,, k_3, k_4, m;, m,, and m, are all non-negative, while k,,
k,, k_s, and k_, are also upper-bounded by collision limits. Working with this set
of seven independent variables, the derivatives of the reaction rate are deter-
mined as follows:

:Tr = G (k2 k% 3mikim K. ) (m mym,BPQ + mym,PQ + myK.B + K.BQ) (17)
1
d
akr = G (k22 skimym,K,)(mym,m, PQ + K.Q + mim, KA + m,K,) (18)
2
air = G(k ,ml 2m§K,)(Q + mI’n2”I4AB + M|M4A + M4) (19)
-3
air = G (k% k2mim, K. )(mym,m ABP + mm,AP + m,P + K.AB) (20)
-4
ai: G(k_4k 3k k2M4K )( k_ak_gm.k2m2m4BPQ
1
-k_4k_3m21,k2m4PQ + k_4k,_3k] KCQ - k_3k1 m¥k2m2m4ABP
_k_gklm%kzm,;AP + k_4k_3k1m4 Ke - k_4klm%k7_m2m%AB
_k_4k]m?k2m3A) (21)
i = ‘—G(k..4k 3k,m1k2m K,)(k_,,k_gmlszPQ
amz
+k_ok_sk PQ + k_sk,mik;ABP + k_jkm k;m AB)  (22)
_or
o L = G(k_sk_skymyk; K.)(k— sk _sm k,K.BQ
4

+k_sk_3k1K.Q +k_3k mk; K AB — k_sk,mik,m,m;AB
—k_okym2k,miA — k_,kym k,m3) (23)
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where:
G =eu(AB — POQK;)D™? (24)
Since a positive driving force is required for the reaction to take place, G must be
positive. Consequently, Eqs. (17) to (20) yield:
d
a_/:,->0’ for i=1,2, -3, —4. (25)
Thus, to yield the maximum possible rate, the four bimolecular step parameters
k,, k,, k_», and k_, must be at their collision limits. Since

or
o,

<0 (26)

and m, =0, in order to maximize the rate r, m, must be equal to 0. This directly
implies that k_,— % since it has already been concluded that k, is non-zero.
Considering that the mechanism steps —2 and 3 compete for the same
intermediate, the fact that k_,— o implies that the concentration of that
intermediate is zero, and the reaction can only take place if k;— . The only
remaining independent variables are m; and m,, which do not assume extreme
values. They are obtained from the solution of the system of equations:

or

37‘- =0 27N
or

s Y (28)

with k,, k,, k_s, and k_, at their collision limits and m, =0, as indicated above.
The system cannot be solved analytically.

Returning to the original set of independent variables, the results can be
summarized as follows. To maximize the rate as given in Egs. (7) and (8): set
k_,— = and k;— o maintaining Eq. (9); set the parameters k,, k,, k_3, and k_,
to their collision-determined upper bounds; and obtain k., and k, from the
system:

k_k? sk_skoBK,Q + k% k% ok _3 K30 + k_1k_sk_3k,k,ABK,

= k3ktk,A + k_ k3, A+ k_ kik,k, (29)
kok_sk_sk koPQ + kok_3k3k, AP + k3k2k,A

= kz—lkz—ak—aer + kz__,k4k_4k_3K¢ (30)

Under the assumptions stated, substitution of all these values for the kinetic
parameters into the rate equation will yield the maximum rate.
4. NONDIMENSIONALIZATION

The algebraic expressions and the optimization procedure can be simplified if
appropriate dimensionless parameters are introduced. In this section, the ordered
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reaction mechanism, for any number of reactants and products, is described in
terms of a set of dimensionless parameters. Then the example from the previous
section is recast in a dimensionless form, and final results for other mechanisms
are listed.

Dimensionless Parameters for any Ordered Mechanism

For a biochemical reaction with n reactants and m products:

n n+m
S5— > S (31)
i=1 i=n+1
the general ordered mechanism is:
S+ E==2 By, i=1,...,n (32)
Eie2 B +S, i=n+tl...,n+m (33)
wi

For more compact notation, the symbol E,, .., is allowed as an alternative token
for E,. Let ¢; be the characteristic time of step i, where i = £1, ..., *n:

L=ki'S7Y t,=kZ)!, for i=1,...,n (34
=kt e =kZI}SY, for i=n+1,...,n+m (39)
The dimensionless parameters that will be used are:
w=4/t,i=2,...,n or i==(n+m),...,—(n+1) (36)
h=t_ft,i=1,...,n or i=—(n+m),...,—(n+1) (37)
n+m
In s
i=n+l
f=—"kK' (38)
IS
i=1
E;
€; =n+m-l = Ef/emtal (39)
L E
i=1
rt

nd = erom{l — f ) (40)

Physical Significance of the Dimensionless Parameters

Using ¢, as the global time scale, ; is simply the scaled characteristic time of step
i. It can also be viewed as the ‘“‘activity” of S; scaled by the activity of §,. Two
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compounds can have the same activity u;, even with different concentrations, if
their rate constants for reactions to enzyme species are inversely proportional to
their concentrations. h; is the equilibrium constant of step i, with respect to
enzyme species alone. At equilibrium, A; is equal to e;.,/¢,. f is the mass action
ratio divided by the equilibrium constant; the dimensionless driving force for the
reaction is 1 — f. ¢; is the concentration of enzyme species E; as a fraction of total
enzyme. r,, is the dimensionless rate per unit driving force, per mole of total
enzyme, per unit time f,. It is essentially the inverse of the dimensionless
“resistance” that the mechanism puts up against the driving force.

Dimensionless Maximum-Rate Result for the Example

In terms of dimensionless parameters the two-reactant two-product system (Eqs.
2 to 6) can be written as:

Ta =€, — e/hy (41)

Fua = U3 (€2 — €3/hy) (42)

Tna=uZ3(es/h_3—ey) (43)

Tha =uZMesh_s—e)) (44)

e, te,teste,=1 45)

f=h_sh_s/hh; (46)
TABLE I

Result of dimensionless maximization of the rate for an ordered mechanism with 1 reactant and 1
product

Reaction: $;— S,

Rate:

1
r,,,,_u_2f +1

TABLE 1I

Result of dimensionless maximization of the rate for an ordered mechanism with 1 reactant and 2
products

Reaction: S§;— 85, + 5,

Rate:
;1-=u_2f tU_f 42k gt 2hg 1
nd
With h_5 from the equation:
_ u—zf ]112
hs {u_, +1
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TABLE 1II

Result of dimensionless maximization of the rate for an ordered mechanism with 1 reactant and 3
products

Reaction: §,—8,+5,+35,

Rate:

A _, uof u,f u_sf
’.d_zh-sh-a+ e +u_ f+2 o Yu_sf+u_f+h_ju_s+1

With h_, and k_, from equations:
h_qu_f+u_ f= hz_Jh_4u__3 +h2 k% u_ +hihe,
U_of +u_sh of =hZ k2 u_o+ h2 h% + h_jht u_ +h_sh?,

TABLE 1V

Result of dimensionless maximization of the rate for an ordered mechanism with 2 reactants and 1
product

Reaction: §,+ 8$,— 5,

Rate:

1 2u,
’nd_u_3f+ 7'—[—+ u,+1

With h, from the equation:
u T
m=(5f+7)
u_sf+f

The maximum rate for the reaction, in terms of dimensionless parameters, can be
expressed as:

rnd=(u_ahlfh:é'i‘u_:lfh:}‘i'uzh_4h|_1 +u2hi—l +u..4h)f+u_3f+h1f
Yu_of Fustu_jh_y+h_o+1)7" (47)

where u,, u_s, and u_, are collision limited and h, and h_, are determined from

TABLE V

Result of dimensionless maximization of the rate for an ordered mechanism with 2 reactants and 2
products

Reaction; S, + 8,5+,

Rate:
1 _ushf u_sf hogtly ,u,
—= +2=-" 2 u ftu_f+ +2-23u,+
Tnd h_, 2 -4 u—af +u of h hy Uyt
With k and h_, from the equations:
t_ 2 +h_qu_ R +h_hif =hu,+ h_gu,

U_nh3f + u_shyf = k2 uy + 2 u_sh+ h2 A,
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TABLE VI

Result of dimensionless maximization of the rate for an ordered mechanism with 2 reactants and 3
products

Reaction: S, + 85— 8+ 5,+ 55

Rate:

_L=2“L”L'.+2“;"lf+u_shlf+;,l';+zii+“*_&f

Tnd h_sh_4 h—S h_5h~4 h—4

h_sh
+u_,f+ 2';"‘f+ u_of + u_5f+—"h*‘"z+ uy+h_su_g+1
-5 1

With k,, h_,, and h_s from the equations:
U_sh3f + h_gu_yhif + h_su_sh_(hif + h_sh_shif =2 sh? uy+ h2sh_qus+h_sh_qu,
u_sh2f + h_su_sh, f+u_shyf = hEgh? uy + h_sh® u_uhy + k% u_sh? ) + h2sh% ik,
h_g_ghif +h_gu_sh\f —h_su_shf= B2 sh_quy + W2 u_sh_hy +Hosh_shy—h_sh® u_sh,

the following system of equations:

u_shif +u_shth_of + Bih_of =h i, +h_qu, (48)
u_gh%f + u_3hlf = u2h34 - u_4h1h2_4 - h‘h2_4 (49)

Results for Other Ordered Mechanisms

Similarly to the above example, the optimization results for all ordered reaction
schemes that involve three or fewer reactants and three or fewer products have
been obtained, and are listed in Tables I to IX. The results have been, whenever
possible, simplified algebraically.

TABLE VI

Result of dimensionless maximization of the rate for an ordered mechanism with 3 reactants and 1
product

Reaction: §,+S5,+8;—S;

Rate:
u

1 U3 3
—= + ——+ =+ u+
o hyu,f u“f+2h,h2 ks uy+2
With h, and h, from the equations:

hih2uy f +u_ghih3f + Hihif = hus+u,

u—d"f"zf"'"fhlf_hlh§u2f=h2"2_hl“3

u;

h.+uz+1
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TABLE VIII

Result of dimensionless maximization of the rate for an ordered mechanism with 3 reactants and 2
products

Reaction: §;,+ 5, +8,— S, + S5

Rate:
h_suy Uy

hih, | “hihy

f

tu_fru_sf+2-—=—

h’+ u,+2h;:l“2+2 Yuy+h_su_s+h_s+1

With A, h,, and h_s from the equations:
u_hhof +h_gu_shih,f +h_shihyf — h_shihouof = h2shouy+ h_shoty —h_sh gy
hoshih3usf + u_h3h3f + h_su_sh3hif + h_shihif = h_shius+h%us +h _su,
u_ P2 + u_gh3hof + u_shihof = hEgus+ B2 shyu, + B2 qu_shyhy + B2 shihy

TABLE IX

Result of dimensionless maximization of the rate for an ordered mechanism with 3 reactants and 3
products

Reaction: 85,4+ 85, + S3—= 85, + S5+ S

Rate:
1 _4f _4f sf —bh—5“3
—_— + —3 + ——=6"-573
Py hou,f hoh_s h " u_4f+ o tu_sfru_of+2 hohy
h_cuy h_gh_suy  _h_g,
=24 —46 =32
+2 T, +2h h2 kz us+2 n +2-=5=2 "y +2 +u2

+h_su_st+h_qu_gh_ sth_gh_s+h_gu_g+h_o+1
With h, h,, h_s, and h_g from the equations:
u_sh3hyf + h_su_shih, f +h_gtu_gh_sh3hyf +h_gh_shihof —h_gh_shihju, f
=h2 h2shyu, + K2 h_shouy+ h_gh_shyu, — h_gh_shyu,
h_oh_shyh3uyf +u_oh3hf + h_gu_sh3h2f + h_qu_sh_sh?h2f + h_oh_sh?h2f
=h_gh_shyuy+high? suy+ k2 h_suy+h_ch_su,
U_ahh2f + u_h2hof + h_gi_chyhof +u_hihof
= h2h® gy + h2 h2 kot + h_gh® su_sh by + 2 u_gh? sh b, + h2 h2shihy
h_su_sh2h3f + h_su_sh2hof + h_su_shihof —h_gti_shihof
=h2 h_suts+ h2h_shouy+ h2 qu_oh_shihy + hich_shih,— h_ch* qu_sh\h,

5. ASYMPTOTIC BEHAVIOR

The dimensionless quantities allow easier examination of limiting cases that
facilitate the understanding of the maximum-rate concepts. These cases are
particularly useful in light of the complexity of the general analytic expressions.
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Effect of f in a Simplified System
As an example, the effect of f (the mass action ratio divided by the equilibrium
constant) on the maximum rate of a bioreaction with one reactant and three
products will be examined. To reduce the number of independent parameters, the
analysis is restricted, by assuming that u; =1 for i = —2, —3, —4. This is the case
when the products have approximately equal molecular weights and the con-

centration of each product is roughly 60% of the concentration of the reactant.
This restriction simplifies the equations for the maximum rate (Table III) to:

Fa=(MI3RZA+MIS+ i+ 3f +2h sh g+ h_3+2h_+1)7  (50)
with £_; and h_, being the solution of the following system, simplified through

some algebraic manipulation:
f=2r4h s (51)

2h_o(1+h_g)=h_s(1+2h_y) (52)

Reaction Very Far from Equilibrium

To find the asymptotic behavior when f << 1, Egs. (51) and (52) are solved for
h_s and h_,, and substituted in Eq. (50) to yield 7,,. As a first approximation,
only terms of order f'” are retained:

hos=@2N)?,  hoa=(fI9" (53, 54)
ra=1+32N" (55

This result does not offer sufficient accuracy, because, even for quite small values -
of f, terms of f° can be comparable to 1. To ensure the applicability of the

approximation, it is wise to obtain the next term in the asymptotic expansion by
retaining terms of order f2° as well:

h_y=(2f)"" -3 (f)*" (56)
hoy=(f14)"+3 2™ (57)
rd =143 +5020)" (58)

Application of these forms shows that even for a reaction removed 100-fold from
equilibrium (f =0.01, i.e., the mass action ratio is 100 times smaller than the
equilibrium constant) the maximum rate is less than half the rate expected for an
irreversible reaction (f =0). Hence, the fact that the reaction is not fully
irreversible exerts a significant effect on the maximum rate.

Reaction Near Equilibrium

At the other end of the spectrum, for f — 1 Egs. (50), (51), and (52) after similar
solution and substitution yield:

1-f 1 1-f
2+21Q; h—422ﬁ_ 4 (59, 60)

ra =3+ @ +27"3)1+f)) ' ~(7.95+3.71 ) (61}

h_3z1—
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FIGURE 4 General numerical solution and analytic asymptotic solutions for one-reactant three-
product enzymatic reactions, for u,=1, u,=1, and uy;=1. (a) Asymptotic solution for f—>0,
retaining terms of order f*. (b) Asymptotic solution for f—»0, retaining terms of order f%°. (c)
Asymptotic solution for f > 1. (d) General solution for any value of f between 0 and 1.

For f— 1, r,, varies approximately linearly with f, and no severe effect of f on the
rate is observed. Figure 4 shows the numerical solution of the example, for any
value of f, along with the two asymptotic cases that were examined.

It should be noted that r,, is already expressed as rate per unit driving force
(1—f), so the effect of f examined here is in addition to the effect expected solely
from the reduction of the driving force. To account for the overall effect of f on
the rate, when the reaction is near equilibrium, Eq. (61) must be combined with
Eq. (40) which relates r,, to r. For the example examined here, the maximum
rate is proportional to (1 —f)/(7.95 + 3.71f). In the region close to equilibrium,
i.e., as f—1, this function becomes zero. Thus, in agreement with the
expectations set forth in the introduction of the paper, the rate smoothly
approaches zero as the reaction approaches equilibrium.

6. ESTIMATION OF COLLISION PARAMETERS

Collision-determined upper bounds for the kinetic parameters, along with other
ranges useful in the methodology, are estimated in this section. These kinetic
parameters are necessary in the application of the presented technique. The
collision limit k for a bimolecular mechanism-step between a substrate S (of small
molecular weight) and an enzyme E:

E+S—t>ES (62)

is given by (Hiromi, 1979):
k = pspekeo (63)
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where ps and pg are steric factors, smaller than one, and k, the encounter
constant.

Steric Factor for the Substrate

The steric factor pg ranges from as small as roughly 0.01 (for large molecules) to
as large as comparable to 1 (for small molecules). The participation of water, H*,
or OH™ in reactions will be neglected, because, as discussed in Section 2, these
molecules do not necessarily originate from the bulk of the solution. Other
molecules occurring in biochemical reactions are generally complicated enough to
have unreactive orientations, leading to ps significantly smaller than 1. A
conservatively high value will be nevertheless assumed for ps. Specifically, it is
assumed that pg = 1/3, signifying that one third of the possible orientations of §
are suitable for binding.

Steric Factor for the Enzyme

Since the active site of an enzyme is the area surrounding only a small number of
bonds, it is modelled here as a circle of diameter 8 A, or 8 X 10~'°m. The point
of interest here is essentially the inaccuracy allowed in the collisions. The value
assumed above implies that, if the substrate misses the exact binding spot by
more than 4 A, the collision will be ineffective. In this sense, estimation of pg as
the area of the active site divided by the total area of the enzyme (Hiromi, 1979)
yields

pe=(2x107""m/rg)? (64)

where rg is the enzyme radius.

Approximate Rate of Encounter

For unchanged molecules, the rate of encounter &, is given by (Gutfreund, 1972,
Hiromi, 1979):

ko=4aN(Dg + Ds)(rg + rs), in M~ 's™! (65)

where N is Avogadro’s number (6 X 10?*kmol™"), D and Dy are the diffusion
coefficients of the enzyme and the substrate in m?/s, and rg and rg are molecular
radii of the enzyme and the substrate in m. Since E is a big molecule and § a
small molecule, Ds is much larger than Dg, and rg is much larger than rs. This
allows the elimination of the effect of D and rg, through the introduction of a
correction constant factor equal to 1.25:

(Dg + Ds)(rg + rg) = 1.25 Dgrg (66)
Substitution of Eq. (66) in Eq. (65) then yields:
ko=~ SaNDgrg (67)

For the diffusion coefficient of the substrate, data from the CRC Handbook of
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Chemistry and Physics (Weast and Astle, 1985) yield the approximation:
Ds=7.3x107°M5%* at 25°C (68)

where Mg is the molecular weight of S. The elevation of Dz with temperature is
roughly 2% to 3% per degree. The enzyme radius is related to the enzyme
diffusivity through the Stokes-Einstein relation:

Dg=RT/6aNren ©(69)
For viscosity 7 equal to that of the solvent (water), and using Dg data from the
literature (Hiromi, 1979), Eq. (69) yields: '
re=4.5x10""M%*® (70)
where Mg is the molecular weight of E. ‘

Through substitution of Eqs. (68) and (70) into Eq. (67), k, can be expressed as
an empirical function of the molecular weights Mg and Ms:

ko=3x10°M5%*M%*®, in M's7! (71)

Resulting Collision Parameter and Relevant Assumptions

Substitution of Eqs. (64) and (71) into Eq. (63), under the stated assumption that
ps =1/3, yields an expression of k as an empirical function of the molecular
weights Mg and Ms:

k=2x10"Mz"*Mz®®, in M's™! (72)

This relation is valid if one assumes that there are no electrostatic effects, the
viscosity of the solution is equal to that of water, and the temperature is 25°C.
Rough ranges and typical values for some of the parameters discussed, based on
the above result and data from Ingraham ez al. (1983), are shown in Table X. The
correlation between k; and k,, due to the fact that the molecular weight M is the
same, was taken into account for the estimation of the range of u; in Table X.

TABLE X

Ranges for parameters pertinent in the maximum-rate methodology

Quantity Minimum Maximum Typical value
S; Sx107°M $x107°M 107'M
Mg 20 800 200
Mg 10* 10° 10°
collision k;,  6x10°M~'s™'  2x10°M7!s™' 2x10'M~'s™!
t=1/kS; 3x107%s 107%s 4x1074s
u; =/t 2x10™° 6x10° 1
f 10~12 0.99 0.01
€ rotol 2x10"8M 107*M 107¢M
rfe o 2s~! 1000s™! 100s™!

Fod 107 10° 3x10°
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The numbers are only meant to be used in the investigation of realistic parameter
values. The bounds are not absolute and the “typical values” are just order-of-
magnitude estimates and not statistical averages of observed values.

7. NUMERICAL EXAMPLES

In this section, simple examples of the application of this methodology, focusing
on a section of the glycolytic pathway shown in Figure S, are shown.

Parameters for Small Molecules

Estimates for the necessary parameters of the metabolites involved are shown in
Table XI. The concentrations for the pathway intermediates in Table XI were
taken to be equal to their concentrations in human erythrocytes, provided by
Lehninger (1975).

Parameters for Enzymes

The molecular weights of enzymes are often not known, and the molecular weight
of each enzyme in the pathway is assumed here to be equal to 40,000, which is
probably an underestimate for most enzymes and will result in higher values for
the maximum rates. This follows a general strategy: When only a rough range for
a parameter is known, the parameter is assumed to have the value that leads to a
conservative overestimate of the maximum rate.

The equilibrium constant of each step (Table XII) can be estimated from Gibbs
Free-Energy values provided by Lehninger (1975).

Results

Table XII shows the maximum-rate calculations for the analyzed steps of the
pathway. To obtain values for the maximum rate itself, values for enzyme
concentrations are required. Since these are not known, upper bounds for the
specific activities of the enzymes (r/e,..m) were calculated, in units of moles of
substrate per mole of enzyme per second. Some other interesting results are
worth mentioning:

(a) If the order in which reactants bind to the enzyme is reversed the maximum
rate estimate changes by less than 15%. Similarly, if the order in which products

ATP  ADP ATP ADP
Glucose _\, 2 GIc6P > FruéP \j\ — FruDP
Hexokinase  Glc-6-P-isomerase PhosphoFructoKinase

FIGURE 5 A section of the glycolytic pathway.
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TABLE XI

Estimation of important parameters for intermediates of the glycolytic pathway

Collision k; Concentration kS '=4

Intermediate Mol. weight (10°M™’s” [) (uM) (ns)
ATP 503 2.2 1850 24
ADP 424 23 138 320
Glucose 180 3s 5000 6
Gic6P 258 29 83 420
Fru6P 258 29 14 2500
FruDP 336 2.6 k)| 1200

dissociate is reversed, the rate upper-bound is not severely affected. Considering
the other uncertainties in the estimation, the binding order is not expected to
have a significant effect on the maximum rate.

(b) If the reaction catalyzed by hexokinase is assumed to be irreversible, the
constraint relating the kinetic parameters to the equilibrium constant is removed,
and a simplified algebraic expression is obtained for the dimensionless maximum
rate:

Faa = (1+u)™" (73)

Application of Eq. (73) yields r/e,,, =3.2 x 10°. This result does not deviate
significantly from the result obtained without the irreversibility assumption
(r/esom = 2.9 X 10%). In effect it is quite reasonable to assume that the reaction is
irreversible.

Using the results of the calculations, whenever enzyme concentrations are
given, the maximum rate for each step and the overall maximum rate for the
pathway can be calculated. If, on the other hand, the overall pathway rate is
given, the minimum required concentration for each enzyme can be calculated,
and possible bottlenecks, where high enzyme concentrations are required, can be
predicted.

To compare the simple approach of Eq. (1) to the presented method, one can
apply Eq. (1) to Glucose-6P Isomerase. The ratio r/e is equal to k[S], whose
inverse has already been calculated, for glucose-6-phosphate, in the last column
of Table XI. Thus, Eq. (1) yields r/e,m = 24 X 10?. The proposed new technique,

TABLE XlI

Estimation of maximum-rate parameters for some steps of the glycolytic pathway

e cum

Step K, f tha (s‘T.
Hexokinase 8.6 x 107 1.4x107% 017 29x10°
Glucose-6P-isomerase 50x%107" 3.4x107! 065 53x10°

Phosphofructokinase 3.1 x10? 53x107* 08 3.6x107
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however, yields an upper bound (5.3 x 10? from Table XII) which is considerably
tighter. This is generally true for reactions that are not very far from equilibrium.
It occurs because, as suggested in the Introduction and Figure 2(b), the method
takes into account thermodynamic limitations; for reactions that approach
equilibrium, the method predicts a rate upper-bound approaching zero. Equation
(1) has no provisions for thermodynamics and equilibrium.

One might observe that Phosphofructokinase (PFK) has a maximum rate close
to that of Glucose-6P Isomerase (Table XII), even though PFK is not as close to
equilibrium. However, PFK involves more substrates and products which
introduce collision limitations in more steps of the mechanism. As mentioned in
the Introduction, these limitations in the mechanism compound and lead to a
tighter rate upper-bound for the whole reaction.

A comparison of actual reaction rates to upper bounds has been carried out by
Albery and Knowles (1976), using only Eq. (1). They demonstrated that there
exist enzymes which attain the upper bound. Since the technique presented here
tightens the upper bounds, its results are even more realistic.

8. EXTREMA FOR OTHER PARAMETERS

Although the problem was stated as maximization of the rate, the same
procedures and formulae also answer the following optimization questions:

(a) What is a lower bound for the substrate concentration S; that can achieve a
desired or observed rate r, for given concentrations of the remaining substrates
and products S;, k #i, and given enzyme concentration €,,,;?

(b) What is a lower bound for the enzyme concentration e, that can achieve a
given rate r, for given substrate and product concentrations S;?

(c) What is an upper bound for the concentration for a product S, that can
accommodate a given rate r, for given concentrations of the remaining products
and substrates S, k # p, and given enzyme concentration e,,? This upper bound
for the concentration will normally be quite high, and thus useless, but when the
reaction is close to equilibrium reasonable concentrations will be obtained.

(d) What is a lower bound for the equilibrium constant K, that allows a given
rate r, for given substrate and product concentrations S, and given enzyme
concentration e, ? In this case, an obvious minimum is the mass action ratio of
the reaction, but this methodology will yield a tighter (i.e. larger) minimum.

Case (b) was already mentioned in the example. Cases (a) and (c) combined can
yield both upper and lower bounds of an intermediate in a metabolic pathway,
when the rate of the pathway and concentrations of all the other metabolites are
given.

For all of these questions, the simple thermodynamic and collision arguments
mentioned in the Introduction can provide some answers, but the methodology
presented here will always provide better results, i.e., tighter bounds. This was
demonstrated, in the example, for Glucose-6P isomerase.
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9. EXPLOITATION OF ADDITIONAL CONSTRAINTS

Further narrowing of the bounds yielded by the methodology (i.e., increase of the
lower bounds and decrease of the upper bounds) can be achieved through the
exploitation of partial information on the rate of the reaction. Knowledge on
specific activity, Michaelis constants, or reaction rate data under some particular
conditions, introduces additional constraints in the maximization. With more
constraints, the maximum rate can be reduced further and other parameter
bounds accordingly tightened.

Constraints on the Maximum Enzyme Turnover

As an illustration, consider the example two-reactant-two-product ordered

mechanism, which was examined in detail in Sections 2 and 3 of this paper. The

maximum enzyme turnover, V.., of the enzyme can be derived from the general

rate Egs. (7) and (8), by setting P=0, Q =0, A—, and B—
r k3k4

€1otal k 3 + k 4

(74)

Venax =

Any equality or inequality constraint on V,,, yields, through this equation, an
additional constraint involving the kinetic parameters. The constraint can be used
in the maximization to yield tighter bounds.

Constraints on the Michaelis Constant
To incorporate information on the Michaelis constant of reactant B, assume that
P=0, =0, and A— , to obtain from the rate Egs. (6) and (7):
ro_ kik,k:k, B
€t (k3 + Ka)kiky B + (k_y + 3k Ky

From Eq. (75) it follows that V. is given by Eq. (74), and the Michaelis
constant for B, K,,, by the equation:
- (k_» + k3)k,

(ks + ka)k,

Thus, as with V,,,, it is possible to express constraints on K, as constraints
among the kinetic parameters, and use them in the optimization.

(75)

K., (76)

Other Constraints

Suppose that the actual rate is known under some particular concentrations of
metabolites, and a maximum rate estimate is desired for some other concentra-
tions. The rate datum is translated into a constraint among kinetic parameters
through direct substitution of the related concentrations and the rate datum in
Egs. (7) and (8). Then the constrained maximization is performed using the new
concentrations.
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The introduction of any additional constraint, especially one stemming from a
rate datum, further complicates analytical maximization, and may necessitate
numerical application of the whole method. It is nevertheless useful when the
data are available, and bounds significantly tighter than yielded by the original
method are sought.

10. DISCUSSION

The results of the optimization show that in order to obtain the upper bound for
the rate of an enzymatic reaction rate parameters for bimolecular steps should be
set to their collision limits, while other rate parameters must take either extreme
values (such as +=) or intermediate optimal values. The rate constraints derived
by this methodology are always stronger than the collision limits previously
known. Furthermore, they reflect thermodynamic considerations, as they predict
a maximum rate that approaches zero as the reaction approaches equilibrium.
The outlined maximum-rate methodology can alternatively be used to estimate
ranges for other parameters affecting the rate of a biochemical reaction, rather
than estimating the rate itself.

Handling Random-Order Mechanisms

The restriction of the results to ordered mechanisms is not severe. For some
reaction classes the order is known, as is the case with dehydrogenases, for which
the coenzyme binds before the other substrate (Dixon and Webb, 1979).
Otherwise, the mathematical and numerical analysis of random-order mechan-
isms can be carried out similarly, except that the expressions are much more
complicated. A simpler solution is to assume the random-order maximum to be
equal to the maximum among all possible ordered mechanisms. Since the binding
of each substrate changes the conformation of the enzyme, even formally
random-order mechanisms have a preferred order that accounts for most of the
activity of the enzyme. For the purposes of maximum rate analysis, the preferred
mechanism can be assumed as fully representative of the order of binding. The
examples examined in this paper certainly indicate that the binding-order does
not significantly affect the maximum rate. However, it is important to examine all
ordered mechanisms when additional constraints stemming from V, .., Michaelis
constants, or other data are exploited in the maximization, because the additional
data may be very sensitive to binding order.

Applications

Applying the methodology, biochemists can check whether a proposed pathway
or reaction mechanism is thermodynamically feasible and consistent with the
observed rates, while biochemical engineers can check whether a desired process
performance is feasible. The methodology has already been used in the
identification of rate-limiting steps of biochemical pathways (Mavrovouniotis,
1988). An assumption that a step is rate-limiting provides concentration ranges
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for intermediates in the pathway. If, under these concentrations, the maximum
rate estimate is below the observed rate, the candidate rate-limiting step must be
rejected. With respect to the realistic value of the upper bound, i.e., its rough
magnitude relative to actual rates, Albery and Knowles (1976) have already
demonstrated that there exist enzymes which attain the upper bound.

Multi-Enzyme Complexes

When the enzyme catalyzing the reaction is part of a multi-enzyme complex, the
effective concentrations of reactants and products may differ drastically from their
bulk concentrations in the cell. The substrate and intermediate molecules may be
transferred, within the complex, from one enzyme to the other, without visiting
the bulk of the solution. Thus, the methodology cannot be applied to an enzyme
belonging to a multi-enzyme complex. However, it can be applied to the complex
as a whole, for which the assumptions of the methodology hold.

Active Concentrations of Currency Metabolites

Another problem where this methodology is pertinent to is the determination of
the active concentration of a “currency” metabolite that participates in several
bioreactions. Under some conditions a significant fraction of the total metabolite
may be bound to enzymes, leaving only the remainder as reactive concentration.
It would be interesting to employ the maximum rate methodology to determine
the minimum complexed (inactivated) metabolite concentration for given r, €,
and S; for a large set of reactions that involve the metabolite. Then one could
estimate the remaining active concentration and compare it to the total
concentration.

Metabolic Efficiency and Evolution of Enzymes

It would be very useful to examine the metabolic efficiency of enzymes, that is,
their achieved rate divided by the predicted maximum. Based on this efficiency,
enzymes could be classified as almost perfected when their efficiency is com-
parable to 1 (e.g. larger than 0.01 or 0.05), or imperfect when the efficiency is
much smaller than 1. The level of this efficiency is expected to relate. to two
important factors:

(a) The intrinsic mechanistic difficulty of the reaction. Some reactions are so
hard that the internal chemical barriers always overshadow physical collision

factors.
(b) The metabolic importance of the bioreaction. There is stronger evolution-
ary pressure on enzymes that are more critical for the overall efficiency of a

microorganism. Those enzymes are more likely to be almost perfected.

11. CONCLUSIONS

The novel methodology that was presented allows the estimation of a maximum
rate for an enzymatic reaction, provided that the equilibrium constant and the
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concentrations of the enzyme and the metabolites are known. It can estimate an
extremum for another parameter if the actual rate of the reaction is known. The
methodology is based solely on physicochemical considerations and can either be
applied in the absence of Kinetic data or exploit partial kinetic data to produce
tighter bounds.

The approach presented here is consistent with the thermodynamics of the
enzymatic reaction; it predicts a decrease in the maximum permissible rate as the
reaction approaches equilibrium. Simple thermodynamic analysis examines only
the reactants and products of a transformation. The presented approach is,
conceptually, an extension of thermodynamic analysis to account for the
character of enzymatic-reaction mechanisms. However, it depends only on
general characteristics and not specific details of the actual reaction mechanism.

The method can be used to predict bounds for parameters when actual
experimental data are not available, or to evaluate the feasibility of a postulated
enzymatic transformation. Investigation of potential biological regularities involv-
ing enzyme efficiency may provide useful insights on the intrinsic reaction
difficulty and the evolutionary perfection of enzymes.
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NOMENCLATURE

n solvent viscosity

Ps steric factor for a substrate colliding with an enzyme

PE steric factor for an enzyme colliding with a substrate

A a reaction reactant, or concentration of reactant

ADP adenosine diphosphate

ATP adenosine triphosphate

B a reaction reactant, or concentration of reactant

b; collision-determined upper bound for the kinetic parameter k;
D rate parameter defined in the paper by Eq. (8)

Dg enzyme diffusion coefficient

Dg¢ substrate diffusion coefficient

E; the i enzyme complex (or its concentration) in a reaction mechanism
2 dimensionless concentration of the i* enzyme complex

€rotal total enzyme concentration

f the mass action ratio divided by the equilibrium constant
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FruDP - fructose 1,6-diphosphate
Fru6pP fructose 6-phosphate

G rate parameter defined in the paper by Eq. (17)

Glc6P glucose 6-phosphate

h; ratio of the forward and backward time constants for the i step

k collision rate constant of a single-reactant enzymatic reaction

K. equilibrium constant _

k; rate constant for the i™ step of a reaction mechanism

K, Michaelis constant

ky encounter constant for substrate-to-enzyme collisions

Mg enzyme molecular weight

m; ratio of forward and backward rate constants for the i step in a

mechanism

M substrate molecular weight

N Avogadro’s number (6.02 X 10? kmol™")

P a reaction product, or concentration of product

Q a reaction product, or concentration of product

R ideal gas constant

r reaction rate

Fmax maximum rate of a single-reactant irreversible enzymatic reaction

Fog dimensionless reaction rate

S; the i™ metabolite (or its concentration) participating in a reaction

T temperature

L time constant for the i'® step of a reaction mechanism

u; dimensionless time constant for the i*" step of a reaction mechanism
nox maximum, enzyme turnover
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