Publications
The term supramolecular polymer has been applied to polymeric materials in which the individual units, i.e., building blocksare bound to each other via noncovalent interactions, including electrostatic or hydrogen bonding, as well as metalligand conjugation. The building blocks are generally low molecular weight amphiphiles. Methods for preparing biopolymers based on non-toxic, metalligand conjugation have been little studied; however, they offer significant potential for tuning the response of biologically relevant macromolecules. In this communication, we characterize the assembly and morphology of supramolecular biopolymers in which the building blocks are low- or medium-molecular weight globular proteinsubiquitin and Cas9-interacting via metalligand conjugation. In each case, the protein gene was expressed in cell culture with the addition of hexa-His/linkers at both the N and C termini. Divalent cations investigated were Zn2+ and Ni2+. We observe in cryo-TEM imaging an absolute requirement for divalent cations for the formation of supramolecular biopolymers. In the presence of Ni2+, 1D assembled fibers are predominant, while with Zn2+, the more frequently detected structures are sheet-like. We use gel electrophoresis and CD spectroscopy to monitor possible secondary and tertiary structural changes in the protein building blocks during conjugation.
Opsins are G protein-coupled receptors (GPCRs) that have evolved to detect light stimuli and initiate intracellular signaling cascades. Their role as signal transducers is critical to light perception across the animal kingdom. Opsins covalently bind to the chromophore 11-cis retinal, which isomerizes to the all-trans isomer upon photon absorption, causing conformational changes that result in receptor activation. Monostable opsins, responsible for vision in vertebrates, release the chromophore after activation and must bind another retinal molecule to remain functional. In contrast, bistable opsins, responsible for non-visual light perception in vertebrates and for vision in invertebrates, absorb a second photon in the active state to return the chromophore and protein to the inactive state. Structures of bistable opsins in the activated state have proven elusive, limiting our understanding of how they function as bidirectional photoswitches. Here we present active state structures of a bistable opsin, jumping spider rhodopsin isoform-1 (JSR1), in complex with its downstream signaling partners, the Gi and Gq heterotrimers. These structures elucidate key differences in the activation mechanisms between monostable and bistable opsins, offering essential insights for the rational engineering of bistable opsins into diverse optogenetic tools to control G protein signaling pathways.
The remarkable ability of natural proteins to conduct electricity in the dry state over long distances remains largely inexplicable despite intensive research. In some cases, a (weakly) exponential length-attenuation, as in off-resonant tunneling transport, extends to thicknesses even beyond 10 nm. This report deals with such charge transport characteristics observed in self-assembled multilayers of the protein bacteriorhodopsin (bR). ≈7.5 to 15.5 nm thick bR layers are prepared on conductive titanium nitride (TiN) substrates using aminohexylphosphonic acid and poly-diallyl-dimethylammonium electrostatic linkers. Using conical eutectic gallium-indium top contacts, an intriguing, mono-exponential conductance attenuation as a function of the bR layer thickness with a small attenuation coefficient β ≈ 0.8 nm−1 is measured at zero bias. Variable-temperature measurements using evaporated Ti/Au top contacts yield effective energy barriers of ≈100 meV from fitting the data to tunneling, hopping, and carrier cascade transport models. The observed temperature-dependence is assigned to the protein-electrode interfaces. The transport length and temperature dependence of the current densities are consistent with tunneling through the proteinprotein, and protein-electrode interfaces, respectively. Importantly, the results call for new theoretical approaches to find the microscopic mechanism behind the remarkably efficient, long-range electron transport within bR.
The fundamental question of \u201cwhat is the transport path of electrons through proteins?\u201d initially introduced while studying long-range electron transfer between localized redox centers in proteins in vivo is also highly relevant to the transport properties of solid-state, dry metalproteinmetal junctions. Here, we report conductance measurements of such junctions, Au-(Azurin monolayer ensemble)-Bismuth (Bi) ones, with well-defined nanopore geometry and ~103 proteins/pore. Our results can be understood as follows. (1) Transport is via two interacting conducting channels, characterized by different spatial and time scales. The slow and spatially localized channel is associated with the Cu center of Azurin and the fast delocalized one with the proteins polypeptide matrix. Transport via the slow channel is by a sequential (noncoherent) process and in the second one by direct, off-resonant tunneling. (2) The two channels are capacitively coupled. Thus, with a change in charge occupation of the weakly coupled (metal center) channel, the broad energy level manifold, responsible for off-resonance tunneling, shifts, relative to the electrodes Fermi levels. In this process, the off-resonance (fast) channel dominates transport, and the slow (redox) channel, while contributing only negligibly directly, significantly affects transport by intramolecular gating.
Animal vision depends on opsins, a category of G protein-coupled receptor (GPCR) that achieves light sensitivity by covalent attachment to retinal. Typically binding as an inverse agonist, 11-cis retinal photoisomerizes to the all-Trans isomer and activates the receptor, initiating downstream signaling cascades. Retinal bound to bistable opsins isomerizes back to the 11-cis state after absorption of a second photon, inactivating the receptor. Bistable opsins are essential for invertebrate vision and nonvisual light perception across the animal kingdom. While crystal structures are available for bistable opsins in the inactive state, it has proven difficult to form homogeneous populations of activated bistable opsins either via illumination or reconstitution with all-Trans retinal. Here, we show that a nonnatural retinal analog, all-Trans retinal 6.11 (ATR6.11), can be reconstituted with the invertebrate bistable opsin, Jumping Spider Rhodopsin-1 (JSR1). Biochemical activity assays demonstrate that ATR6.11 functions as a JSR1 agonist. ATR6.11 binding also enables complex formation between JSR1 and signaling partners. Our findings demonstrate the utility of retinal analogs for biophysical characterization of bistable opsins, which will deepen our understanding of light perception in animals.
In recent years it became apparent that, in mammals, rhodopsin and other opsins, known to act as photosensors in the visual system, are also present in spermatozoa, where they function as highly sensitive thermosensors for thermotaxis. The intriguing question how a well-conserved protein functions as a photosensor in one type of cells and as a thermosensor in another type of cells is unresolved. Since the moiety that confers photosensitivity on opsins is the chromophore retinal, we examined whether retinal is substituted in spermatozoa with a thermosensitive molecule. We found by both functional assays and mass spectrometry that retinal is present in spermatozoa and required for thermotaxis. Thus, starvation of mice for vitamin A (a precursor of retinal) resulted in loss of sperm thermotaxis, without affecting motility and the physiological state of the spermatozoa. Thermotaxis was restored after replenishment of vitamin A. Using reversed-phase ultra-performance liquid chromatography mass spectrometry, we detected the presence of retinal in extracts of mouse and human spermatozoa. By employing UltraPerformance convergence chromatography, we identified a unique retinal isomer in the sperm extractstri-cis retinal, different from the photosensitive 11-cis isomer in the visual system. The facts (a) that opsins are thermosensors for sperm thermotaxis, (b) that retinal is essential for thermotaxis, and (c) that tri-cis retinal isomer uniquely resides in spermatozoa and is relatively thermally unstable, suggest that tri-cis retinal is involved in the thermosensing activity of spermatozoa.
Discovered over 50 years ago, bacteriorhodopsin is the first recognized and most widely studied microbial retinal protein. Serving as a light-activated proton pump, it represents the archetypal ion-pumping system. Here we compare the photochemical dynamics of bacteriorhodopsin light and dark-adapted forms with that of the first metastable photocycle intermediate known as \u201cK\u201d. We observe that following thermal double isomerization of retinal in the dark from bio-active all-trans 15-anti to 13-cis, 15-syn, photochemistry proceeds even faster than the ~0.5 ps decay of the former, exhibiting ballistic wave packet curve crossing to the ground state. In contrast, photoexcitation of K containing a 13-cis, 15-anti chromophore leads to markedly multi-exponential excited state decay including much slower stages. QM/MM calculations, aimed to interpret these results, highlight the crucial role of protonation, showing that the classic quadrupole counterion model poorly reproduces spectral data and dynamics. Single protonation of ASP212 rectifies discrepancies and predicts triple ground state structural heterogeneity aligning with experimental observations. These findings prompt a reevaluation of counter ion protonation in bacteriorhodopsin and contribute to the broader understanding of its photochemical dynamics.
A key conundrum of biomolecular electronics is efficient electron transport (ETp) through solid-state junctions up to 10 nm, often without temperature activation. Such behavior challenges known charge transport mechanisms, especially via nonconjugated molecules such as proteins. Single-step, coherent quantum-mechanical tunneling proposed for ETp across small protein, 2-3 nm wide junctions, but it is problematic for larger proteins. Here we exploit the ability of bacteriorhodopsin (bR), a well-studied, 4-5 nm long membrane protein, to assemble into well-defined single and multiple bilayers, from ∼9 to 60 nm thick, to investigate ETp limits as a function of junction width. To ensure sufficient signal/noise, we use large area (∼10-3 cm2) Au-protein-Si junctions. Photoemission spectra indicate a wide energy separation between electrode Fermi and the nearest protein-energy levels, as expected for a polymer of mostly saturated components. Junction currents decreased exponentially with increasing junction width, with uniquely low length-decay constants (0.05-0.5 nm-1). Remarkably, even for the widest junctions, currents are nearly temperature-independent, completely so below 160 K. While, among other things, the lack of temperature-dependence excludes, hopping as a plausible mechanism, coherent quantum-mechanical tunneling over 60 nm is physically implausible. The results may be understood if ETp is limited by injection into one of the contacts, followed by more efficient charge propagation across the protein. Still, the electrostatics of the protein films further limit the number of charge carriers injected into the protein film. How electron transport across dozens of nanometers of protein layers is more efficient than injection defines a riddle, requiring further study.
The function of microbial as well as mammalian retinal proteins (aka rhodopsins) is associated with a photocycle initiated by light excitation of the retinal chromophore of the protein, covalently bound through a protonated Schiff base linkage. Although electrostatics controls chemical reactions of many organic molecules, attempt to understand its role in controlling excited state reactivity of rhodopsins and, thereby, their photocycle is scarce. Here, we investigate the effect of highly conserved tryptophan residues, between which the all-trans retinal chromophore of the protein is sandwiched in microbial rhodopsins, on the charge distribution along the retinal excited state, quantum yield and nature of the light-induced photocycle and absorption properties of Gloeobacter rhodopsin (GR). Replacement of these tryptophan residues by non-aromatic leucine (W222L and W122L) or phenylalanine (W222F) does not significantly affect the absorption maximum of the protein, while all the mutants showed higher sensitivity to photobleaching, compared to wild-type GR. Flash photolysis studies revealed lower quantum yield of trans-cis photoisomerization in W222L as well as W222F mutants relative to wild-type. The photocycle kinetics are also controlled by these tryptophan residues, resulting in altered accumulation and lifetime of the intermediates in the W222L and W222F mutants. We propose that protein-retinal interactions facilitated by conserved tryptophan residues are crucial for achieving high quantum yield of the light-induced retinal isomerization, and affect the thermal retinal re-isomerization to the resting state.
Microbial rhodopsin (also called retinal protein)carotenoid conjugates represent a unique class of light-harvesting (LH) complexes, but their specific interactions and LH properties are not completely elucidated as only few rhodopsins are known to bind carotenoids. Here, we report a natural sodium-ion (Na+)-pumping Nonlabens (Donghaeana) dokdonensis rhodopsin (DDR2) binding with a carotenoid salinixanthin (Sal) to form a thermally stable rhodopsincarotenoid complex. Different spectroscopic studies were employed to monitor the retinalcarotenoid interaction as well as the thermal stability of the protein, while size-exclusion chromatography (SEC) and homology modeling are performed to understand the protein oligomerization process. In analogy with that of another Na+-pumping protein Krokinobacter eikastus rhodopsin 2 (KR2), we propose that DDR2 (studied concentration range: 2 × 106 to 4 × 105 M) remains mainly as a pentamer at room temperature and neutral pH, while heating above 55 °C partially converted it into a thermally less stable oligomeric form of the protein. This process is affected by both the pH and concentration. At high concentrations (4 × 105 to 2 × 104 M), the protein adopts a pentamer form reflected in the excitonic circular dichroism (CD) spectrum. In the presence of Sal, the thermal stability of DDR2 is increased significantly, and the pigment is stable even at 85 °C. The results presented could have implications in designing stable rhodopsincarotenoid antenna complexes.
The finding that electronic conductance across ultrathin protein films between metallic electrodes remains nearly constant from room temperature to just a few degrees Kelvin has posed a challenge. We show that a model based on a generalized Landauer formula explains the nearly constant conductance and predicts an Arrhenius-like dependence for low temperatures. A critical aspect of the model is that the relevant activation energy for conductance is either the difference between the HOMO and HOMO1 or the LUMO+1 and LUMO energies instead of the HOMOLUMO gap of the proteins. Analysis of experimental data confirms the Arrhenius-like law and allows us to extract the activation energies. We then calculate the energy differences with advanced DFT methods for proteins used in the experiments. Our main result is that the experimental and theoretical activation energies for these three different proteins and three differently prepared solid-state junctions match nearly perfectly, implying the mechanisms validity.
We demonstrate that the direction of current rectification via one of natures most efficient light-harvesting systems, the photosystem 1 complex (PS1), can be controlled by its orientation on Au substrates. Molecular self-assembly of the PS1 complex using four different linkers with distinct functional head groups that interact by electrostatic and hydrogen bonds with different surface parts of the entire protein PS1 complex was used to tailor the PS1 orientation. We observe an orientation-dependent rectification in the currentvoltage characteristics for linker/PS1 molecule junctions. Results of an earlier study using a surface two-site PS1 mutant complex having its orientation set by covalent binding to the Au substrate supports our conclusion. Currentvoltagetemperature measurements on the linker/PS1 complex indicate off-resonant tunneling as the main electron transport mechanism. Our ultraviolet photoemission spectroscopy results highlight the importance of the protein orientation for the energy level alignment and provide insight into the charge transport mechanism via the PS1 transport chain.
Energy transfer from light-harvesting ketocarotenoids to the light-driven proton pump xanthorhodopsins has been previously demonstrated in two unique cases: an extreme halophilic bacterium1 and a terrestrial cyanobacterium2. Attempts to find carotenoids that bind and transfer energy to abundant rhodopsin proton pumps3 from marine photoheterotrophs have thus far failed46. Here we detected light energy transfer from the widespread hydroxylated carotenoids zeaxanthin and lutein to the retinal moiety of xanthorhodopsins and proteorhodopsins using functional metagenomics combined with chromophore extraction from the environment. The light-harvesting carotenoids transfer up to 42% of the harvested energy in the violet- or blue-light range to the green-light absorbing retinal chromophore. Our data suggest that these antennas may have a substantial effect on rhodopsin phototrophy in the worlds lakes, seas and oceans. However, the functional implications of our findings are yet to be discovered.
The electron transport (ETp) efficiency of solid-state protein-mediated junctions is highly influenced by the presence of electron-rich organic cofactors or transition metal ions. Hence, we chose to investigate an interesting cofactor-free non-redox protein, streptavidin (STV), which has unmatched strong binding affinity for an organic small-molecule ligand, biotin, which lacks any electron-rich features. We describe for the first time meso-scale ETp via electrical junctions of STV monolayers and focus on the question of whether the rate of ETp across both native and thiolated STV monolayers is influenced by ligand binding, a process that we show to cause some structural conformation changes in the STV monolayers. Au nanowire-electrodeprotein monolayermicroelectrode junctions, fabricated by modifying an earlier procedure to improve the yields of usable junctions, were employed for ETp measurements. Our results on compactly integrated, dense, uniform, ∼3 nm thick STV monolayers indicate that, notwithstanding the slight structural changes in the STV monolayers upon biotin binding, there is no statistically significant conductance change between the free STV and that bound to biotin. The ETp temperature (T) dependence over the 80300 K range is very small but with an unusual, slightly negative (metallic-like) dependence toward room temperature. Such dependence can be accounted for by the reversible structural shrinkage of the STV at temperatures below 160 K.
A way of modulating the solid-state electron transport (ETp) properties of oligopeptide junctions is presented by charges and internal hydrogen bonding, which affect this process markedly. The ETp properties of a series of tyrosine (Tyr)-containing hexa-alanine peptides, self-assembled in monolayers and sandwiched between gold electrodes, are investigated in response to their protonation state. Inserting a Tyr residue into these peptides enhances the ETp carried
their junctions. Deprotonation of the Tyr-containing peptides causes a further increase of ETp efficiency that depends on this residue's position. Combined results of molecular dynamics simulations and spectroscopic experiments suggest that the increased conductance upon deprotonation is mainly a result of enhanced coupling between the charged C-terminus carboxylate group and the adjacent Au electrode. Moreover, intra-peptide hydrogen bonding of the Tyr hydroxyl to the C-terminus carboxylate reduces this coupling. Hence, the extent of such a conductance change depends on the Tyr-carboxylate distance in the peptide's sequence.
Photoreceptor proteins play a critical role in light utilization for energy conversion and environmental sensing. Rhodopsin is a prototypical photoreceptor protein containing a retinal group that functions as a light-receptive site. It is essential to characterize the structure of the retinal chromophore because the chromophore structure, along with retinalprotein interactions, regulates which wavelengths of light are absorbed. Resonance Raman spectroscopy is a powerful tool to characterize chromophore structures in proteins. The resonance Raman spectra of heliorhodopsins, a recently discovered rhodopsin family, were previously reported to exhibit two intense ethylenic CC stretching bands never observed for type-1 rhodopsins. Here, we show that the double-band feature in the ethylenic CC stretching modes is not due to structural inhomogeneity but rather to the retinal polyene chains linear structure. It contrasts with bent all-trans chromophore in type-1 rhodopsins. The linear structure of the chromophore results from weak atomic contacts between the 13-methyl group and a nearby Trp side chain, which can slow thermal reisomerization in the photocycle. It is possible that the deceleration of reisomerization increases the lifetime of the signaling intermediate for photosensory function.
The decades-long ultrafast examination of nearly a dozen microbial retinal proteins, ion pumps, and sensory photoreceptors has not identified structure-function indicators which predict photoisomerization dynamics, whether it will be sub-picosecond and ballistic or drawn out with complex curve-crossing kinetics. Herein, we report the emergence of such an indicator. Using pH control over retinal isomer ratios, photoinduced transient absorption is recorded in an inward proton pumping Antarctic microbial rhodopsin (AntR) for 13-cis and all-trans retinal resting states. The all-trans fluorescent state decays with 1 ps exponential kinetics. In contrast, in 13-cis it decays within ∼300 fs accompanied by continuous spectral evolution, indicating ballistic internal conversion. The coherent wave packet nature of 13-cis isomerization in AntR matches published results for bacteriorhodopsin (BR) and Anabaena sensory rhodopsin (ASR), which also accommodate both all-trans and 13-cis retinal resting states, marking the emergence of a first structure-photodynamics indicator which holds for all three tested pigments.
Immunoglobulin M (IgM) antibodies hold promise as anticancer drugs and as agents for promoting immune homeostasis. This promise has not been realized due to low expression levels in mammalian cells producing IgM class antibodies, and the failure of protein A chromatography for IgM purification. Here, we describe a nonchromatographic platform for quantitatively capturing IgMs at neutral pH, which is then recovered with 86%94% yield and >95% purity at pH 3. The platform contains micelles conjugated with the [(bathophenanthroline)3:Fe2+] amphiphilic complex. Inclusion of amino acid monomers, for example, phenylalanine or tyrosine, during conjugation of detergent micelles, allows subsequent extraction of IgMs at close to neutral pH. With the successful implementation of this purification platform for both polyclonal humans and bovine IgMs, we anticipate similar results for monoclonal IgMs, most relevant for the pharmaceutical industry.
Many organisms sense light using rhodopsins, photoreceptive proteins containing a retinal chromophore. Here we report the discovery, structure and biophysical characterization of bestrhodopsins, a microbial rhodopsin subfamily from marine unicellular algae, in which one rhodopsin domain of eight transmembrane helices or, more often, two such domains in tandem, are C-terminally fused to a bestrophin channel. Cryo-EM analysis of a rhodopsin-rhodopsin-bestrophin fusion revealed that it forms a pentameric megacomplex (~700 kDa) with five rhodopsin pseudodimers surrounding the channel in the center. Bestrhodopsins are metastable and undergo photoconversion between red- and green-absorbing or green- and UVA-absorbing forms in the different variants. The retinal chromophore, in a unique binding pocket, photoisomerizes from all-trans to 11-cis form. Heterologously expressed bestrhodopsin behaves as a light-modulated anion channel.
In the decades'-long quest for high-quality membrane protein (MP) crystals, non-ionic detergent micelles have primarily served as a passive shield against protein aggregation in aqueous solution and/or as a conformation stabilizing environment. We have focused on exploiting the physical chemistry of detergent micelles in order to direct intrinsic MP/detergent complexes to assemble via conjugation under ambient conditions, thereby permitting finely tuned control over the micelle cloud point. In the current work, three commercially available amphiphilic, bipyridine chelators in combination with Fe
or Ni
were tested for their ability to conjugate non-ionic detergent micelles both in the presence and absence of an encapsulated bacteriorhodopsin molecule. Water-soluble chelators were added, and results were monitored with light microscopy and dynamic light scattering (DLS). [Bipyridine:metal] complexes produced micellar conjugates, which appeared as oil-rich globules (10-200 μm) under a light microscope. DLS analysis demonstrated that micellar conjugation is complete 20 min after the introduction of the amphiphilic complex, and that the conjugation process can be fully or partially reversed with water-soluble chelators. This process of controlled conjugation/deconjugation under nondenaturing conditions provides broader flexibility in the choice of detergent for intrinsic MP purification and conformational flexibility during the crystallization procedure.
Nanofluidics is an emerging hot field that explores the unusual behaviors of ions/molecules transporting through nanoscale channels, which possesses a broad application prospect. However, in situ probing bioactivity of functional proteins on a single-molecule level by a nanofluidic device has not been reported, and it is still a big challenge in the field. Herein, we reported a biological nanofluidic device with a single-protein sensitivity, based on natural proton-pumping protein, bacteriorhodopsin (bR), and a single SiNx nanopore. Nanofluidic single-molecule probing of bR proton-pumping activity and its light response were achieved under applied voltage of 0 V, by biologically self-powered steady-state ionic current nanopore sensing. Green-light irradiation of the device led to the monitoring of a steady-state proton current of ∼3.51 pA/per bR trimer, corresponding to charge density of 815 μC/cm2 generated by each bR monomer, which far exceeded the previously reported value of 1.4 μC/cm2. This finding and method would promote the development of artificial biological and hybrid nanofluidic devices in biosensing and energy conversion applications.
The protonated Schiff-base retinal acts as the chromophore in bacteriorhodopsin as well as in rhodopsin. In both cases, photoexcitation initializes fast isomerization which eventually results in storage of chemical energy or signaling. The details of the photophysics for this important chromophore is still not fully understood. In this study, action-absorption spectra and photoisomerization dynamics of three retinal derivatives are measured in the gas phase and compared to that of the protonated Schiff-base retinal. The retinal derivatives include C9=C10trans-locked, C13=C14trans-locked and a retinal derivative without the β-ionone ring. The spectroscopy as well as the isomerization speed of the chromophores are altered significantly as a consequence of the steric constraints.
To explain what drives us to study electron transport (ETp) through electrode/protein/electrode solid-state junctions (cf. Figure 1) we present some of the reasons, mostly in the form of the following questions:
1. Scientific curiosity: How can electron transport take place through nonconjugated, flexible, polyelectrolytic macromolecules? Answering this question is also driven by intense current interest to understand ETp via so-called bacterial nanowires. (1−3)
2. Biological implications and relevance:Can we learn from understanding ETp via proteins also about their role in biological electron transfer (ET)?
3. Physico-chemical insights: Which constituting elements and properties of proteins are involved in effective electron transport? The following can be singled out:
a. primary, secondary, and tertiary structure;
b. π-electron content and H-bonding character of amino-acid residues;
c. cofactors and their redox properties; alternatively, these can be described in terms of:
i. the (electronic) energy levels of a cofactors HOMO and LUMO;
ii. the energy difference between these levels, and between each of these levels and the electrode Fermi level; (51)
iii. the difference between the electrochemical potentials of the electrodes (= Fermi level) and of the protein (≈ redox potential (51)).
4. Potential applications: Can proteins serve as components of electronic devices as part of true bioelectronics?
Understanding the charge transport properties of proteins at the molecular scale is crucial for the development of novel bioelectronic devices. In this contribution, we report on the preparation and electrical characterization of thin films of bacteriorhodopsin grafted on the surface of titanium nitride via aminophosphonate linkers. Thickness analysis using atomic force microscopy revealed a protein film thickness of 8.2±1.5 nm, indicating the formation of a protein bilayer. Electrical measurements were carried out in the dry state, in a vertical arrangement with a eutectic gallium-indium (EGaIn) or an evaporated Ti/Au top contact. DC current-voltage measurements yielded comparable effective tunneling decay constants β∼0.13A-1 for the EGaIn top contact and ∼0.15A-1 for the Ti/Au top contact. The results presented herein may establish a novel platform for studying charge transport via protein molecules in a solid-state device configuration.
Rhodopsin and carotenoids are two molecules that certain bacteria use to absorb and utilize light. Type I rhodopsin, the simplest active proton transporter, converts light energy into an electrochemical potential. Light produces a proton gradient, which is known as the proton motive force across the cell membrane. Some carotenoids are involved in light absorbance and transfer of absorbed energy to chlorophyll during photosynthesis. A previous study in Salinibacter ruber has shown that carotenoids act as antennae to harvest light and transfer energy to retinal in xanthorhodopsin (XR). Here, we describe the role of canthaxanthin (CAN), a carotenoid, as an antenna for Gloeobacter rhodopsin (GR). The non-covalent complex formed by the interaction between CAN and GR doubled the proton pumping speed and improved the pumping capacity by 1.5-fold. The complex also tripled the proton pumping speed and improved the pumping capacity by 5-fold in the presence of strong and weak light, respectively. Interestingly, when canthaxanthin was bound to Gloeobacter rhodopsin, it showed a 126-fold increase in heat resistance, and it survived better under drought conditions than Gloeobacter rhodopsin. The results suggest direct complementation of Gloeobacter rhodopsin with a carotenoid for primitive solar energy harvesting in cyanobacteria.
Heliorhodopsins are a recently discovered diverse retinal protein family with an inverted topology of the opsin where the retinal protonated Schiff base proton is facing the cell cytoplasmic side in contrast to type 1 rhodopsins. To explore whether light-induced retinal double-bond isomerization is a prerequisite for triggering protein conformational alterations, we utilized the retinal oxime formation reaction and thermal denaturation of a native heliorhodopsin of Thermoplasmatales archaeon SG8-52-1 (TaHeR) as well as a trans-locked retinal analogue (TaHeRL) in which the critical C13═C14 double-bond isomerization is prevented. We found that both reactions are light-accelerated not only in the native but also in the \u201clocked\u201d pigment despite lacking any isomerization. It is suggested that light-induced charge redistribution in the retinal excited state polarizes the protein and triggers protein conformational perturbations that thermally decay in microseconds. The extracted activation energy and the frequency factor for both the reactions reveal that the light enhancement of TaHeR differs distinctly from the earlier studied type 1 microbial rhodopsins.
The research described in this report seeks to present proof-of-concept for a novel and robust platform for purification of antibody fragments and to define and optimize the controlling parameters. Purification of antigen-binding F(ab)2 fragments is achieved in the absence of chromatographic media or specific ligands, rather by using clusters of non-ionic detergent (e.g. Tween-60, Brij-O20) micelles chelated via Fe2+ ions and the hydrophobic chelator, bathophenanthroline (batho). These aggregates, quantitatively capture the F(ab)2 fragment in the absence or presence of E. coli lysate and allow extraction of only the F(ab)2 domain at pH 3.8 without concomitant aggregate dissolution or coextraction of bacterial impurities. Process yields range from 70 to 87% by densitometry. Recovered F(ab)2 fragments are monomeric (by dynamic light scattering), preserve their secondary structure (by circular dichroism) and are as pure as those obtained via Protein A chromatography (from a mixture of F(ab)2 and Fc fragments). The effect of process parameters on Ab binding and Ab extraction (e.g. temperature, pH, ionic strength, incubation time, composition of extraction buffer) are reported, using a monoclonal antibody (mAb) and polyclonal human IgGs as test samples.
A central issue in protein electronics is how far the structural stability of the protein is preserved under the very high electrical field that it will experience once a bias voltage is applied. This question is studied on the redox protein Azurin in the solid-state Au/protein/Au junction by monitoring protein vibrations during current transport under applied bias, up to ≈1 GV m
−1, by electrical detection of inelastic electron transport effects. Characteristic vibrational modes, such as C-H stretching, amide (N-H) bending, and A-S (of the bonds that connect the protein to an Au electrode), are not found to change noticeably up to 1.0 V. At >1.0 V, the N-H bending and C-H stretching inelastic features have disappeared, while the Au-S features persist till ≈2 V, i.e., the proteins remain Au bound. Three possible causes for the disappearance of the N-H and C-H inelastic features at high bias, namely, i) resonance transport, ii) metallic filament formation, and iii) bond rupture leading to structural changes in the protein are proposed and tested. The results support the last option and indicate that spectrally resolved inelastic features can serve to monitor in operando structural stability of biological macromolecules while they serve as electronic current conduit.
We have recently described a non-chromatographic, ligand-free approach for antibody (Ab) purification based on specially designed [Tween-20:bathophenanthroline:Fe2+] aggregates. To assess the potential generality of this approach, a variety of detergents belonging to four nonionic detergent families (Tween, Brij, Triton and Pluronic) have now been studied. All surfactant aggregates led to high purity of the recovered Ab's (>95 %, by gel densitometry). Good overall Ab recovery yields were observed with Tween-20 (80-83 %), Brij-O20 (85-87 %) and Triton X-100 (87-90 %), while Pluronic F-127 was less efficient (42-53 %). Of additional importance is the finding that the process was performed by filtration rather than centrifugation, thereby allowing a continuous purification mode that led to the recovery of monomeric IgG, as determined by dynamic light scattering and preservation of Ab specificity as measured by ELISA. The amphiphilic chelator, bathophenanthroline (batho) was recycled almost quantitatively (95 %) by crystallization. Good IgG recovery yields of similar to 80 % were also observed when Ab concentrations were increased from 1 mg/mL to 3-5 mg/mL. Potential advantages of the purification platform for industrial downstream processing of therapeutic monoclonal antibodies, are discussed.
We report on charge transport across single short peptides using the Mechanically Controlled Break Junction (MCBJ) method. We record thousands of electron transport events across single-molecule junctions and with an unsupervised machine learning algorithm, we identify several classes of traces with multifarious conductance values that may correspond to different peptide conformations. Data analysis shows that very short peptides, which are more rigid, show conductance plateaus at low conductance values of about 10-3G0 and below, with G0 being the conductance quantum, whereas slightly longer, more flexible peptides also show plateaus at higher values. Fully stretched peptide chains exhibit conductance values that are of the same order as that of alkane chains of similar length. The measurements show that in the case of short peptides, different compositions and molecular lengths offer a wide range of junction conformations. Such information is crucial to understand mechanism(s) of charge transport in and across peptide-based biomolecules.
Multi-heme cytochromes (MHCs) are fascinating proteins used by bacterial organisms to shuttle electrons within, between, and out of their cells. When placed in solid-state electronic junctions, MHCs support temperature-independent currents over several nanometers that are 3 orders of magnitude higher compared to other redox proteins of similar size. To gain molecular-level insight into their astonishingly high conductivities, we combine experimental photoemission spectroscopy with DFT+ς current-voltage calculations on a representative Gold-MHC-Gold junction. We find that conduction across the dry, 3 nm long protein occurs via off-resonant coherent tunneling, mediated by a large number of protein valence-band orbitals that are strongly delocalized over heme and protein residues. This picture is profoundly different from the electron hopping mechanism induced electrochemically or photochemically under aqueous conditions. Our results imply that the current output in solid-state junctions can be even further increased in resonance, for example, by applying a gate voltage, thus allowing a quantum jump for next-generation bionanoelectronic devices.
We observe reversible, bias-induced switching of conductance via a blue copper protein azurin mutant, N42C Az, with a nearly 10-fold increase at |V| > 0.8 V than at lower bias. No such switching is found for wild-type azurin, WT Az, up to |1.2 V|, beyond which irreversible changes occur. The N42C Az mutant will, when positioned between electrodes in a solid-state AuproteinAu junction, have an orientation opposite that of WT Az with respect to the electrodes. Current(s) via both proteins are temperature-independent, consistent with quantum mechanical tunneling as dominant transport mechanism. No noticeable difference is resolved between the two proteins in conductance and inelastic electron tunneling spectra at
We report the first observation of an efficient, native membrane conjugation mechanism via positively charged, linear oligo-amines. Clustering of membrane fragments relies on electrostatic interactions between the net negative charge of the membranes and the positively charged, water-soluble mediators. This conjugation principle is demonstrated with two different bacterial membranes in which are embedded either the intrinsic membrane protein (MP) bacteriorhodopsin (bR) or the more recently identified xanthorhodopsin (XR). As determined by their characteristic UV-vis absorption spectra and by circular dichroism, the MPs are not significantly perturbed by the oligo-amines carrying from +3 to +6 positive charges. Light microscopy and scanning electron microscope (SEM) imaging provide direct evidence for membrane conjugation. Process efficiency was found to be correlated with the net charge of the oligo-amine used. Membrane conjugation is accomplished within a wide range of pH values (7-2.5); is reversed by NaCl; and does not require the presence of a precipitant (e.g. PEG) nor Ca2+ ions. Some evidence for bilayer fusion is also observed, but only in the presence of the +6 oligo-amine analog.
Retinal proteins play significant roles in light-induced protons/ions transport across the cell membrane. A recent studied retinal protein, gloeobacter rhodopsin (gR), functions as a proton pump, and binds the carotenoid salinixanthin (sal) in addition to the retinal chromophore. We have studied the interactions between the two chromophores as reflected in the circular dichroism (CD) spectrum of gR complex. gR exhibits a weak CD spectrum but following binding of sal, it exhibits a significant enhancement of the CD bands. To examine the CD origin, we have substituted the retinal chromophore of gR by synthetic retinal analogues, and have concluded that the CD bands originated from excitonic interaction between sal and the retinal chromophore as well as the sal chirality induced by binding to the protein. Temperature increase significantly affected the CD spectra, due to vanishing of excitonic coupling. A similar phenomenon of excitonic interaction lose between chromophores was recently reported for a photosynthetic pigment-protein complex (Nature Commmun, 9, 2018, 99). We propose that the excitonic interaction in gR is weaker due to protein conformational alterations. The excitonic interaction is further diminished following reduction of the retinal protonated Schiff base double bond. Furthermore, the intact structure of the retinal ring is necessary for obtaining the excitonic interaction.
A new technique for promoting nucleation and growth of membrane protein (MP) crystals from micellar environments is reported. It relies on the conjugation of micelles that sequester MPs in protein detergent complexes (PDCs). Conjugation via amphiphilic [metal:chelator] complexes presumably takes place at the micelle/water interface, thereby bringing the PDCs into proximity, promoting crystal nucleation and growth. We have successfully applied this approach to two light-driven proton pumps: bacteriorhodopsin (bR) and the recently discovered King Sejong 1-2 (KS1-2), using the amphiphilic 4,4 ' -dinonyl-2,2 ' -dipyridyl (Dinonyl) (0.7 mM) chelator in combination with Zn2+, Fe2+, or Ni2+ (0.1 mM). Crystal growth in the presence of the [metal-chelator] complexes leads to purple, hexagonal crystals (50-75 mu m in size) of bR or pink, rectangular/square crystals (5-15 mu m) of KS1-2. The effects of divalent cation identity and concentration, chelator structure and concentration, ionic strength and pH on crystal size, morphology and process kinetics, are described.
Bacteriorhodopsin (bR), a proton-pumping protein that converts light into electrochemical energy, has recently attracted attention for solar energy conversion applications. However, its application for electrochemical supercapacitors has not been reported due to the demanding requirements on ordered oriented membranes. Herein, the authors explore bR for supercapacitor application by decorating oriented bR-monolayers onto the surface of an ordered and highly capacitive polyaniline (PANI)-nanofilm prepared by electropolymerization on an Au electrode. The prepared PANI-nanofilm displays good and tunable pseudocapacitive performance attributed to its multiple proton doping states. Due to the synergistic contribution of light-induced proton pumping capacity and the photoelectric function of bR, the specific capacitance of the bR/PANI/Au-electrode has been enhanced pronouncedly by the introduction of oriented bR-monolayers, and has been further improved upon light irradiation. At a current density of 60 A g(-1), a specific capacitance as high as 1146 F g(-1) was achieved following 550 nm light irradiation for the as-prepared bR/PANI-nanocomposites.
Successful integration of proteins in solid-state electronics requires contacting them in a non-invasive fashion, with a solid conducting surface for immobilization as one such contact. The contacts can affect and even dominate the measured electronic transport. Often substrates, substrate treatments, protein immobilization, and device geometries differ between laboratories. Thus the question arises how far results from different laboratories and platforms are comparable and how to distinguish genuine protein electronic transport properties from platform-induced ones. We report a systematic comparison of electronic transport measurements between different laboratories, using all commonly used large-area schemes to contact a set of three proteins of largely different types. Altogether we study eight different combinations of molecular junction configurations, designed so that A(geo) of junctions varies from 10(5) to 10(-3) mu m(2). Although for the same protein, measured with similar device geometry, results compare reasonably well, there are significant differences in current densities (an intensive variable) between different device geometries. Likely, these originate in the critical contact-protein coupling (similar to contact resistance), in addition to the actual number of proteins involved, because the effective junction contact area depends on the nanometric roughness of the electrodes and at times, even the proteins may increase this roughness. On the positive side, our results show that understanding what controls the coupling can make the coupling a design knob. In terms of extensive variables, such as temperature, our comparison unanimously shows the transport to be independent of temperature for all studied configurations and proteins. Our study places coupling and lack of temperature activation as key aspects to be considered in both modeling and practice of protein electronic transport experiments.
Solid-state electronic transport (ETp) via the electron-transfer copper protein azurin (Az) was measured in Au/Az/Au junction configurations down to 4 K, the lowest temperature for solid-state protein-based junctions. Not only does lowering the temperature help when observing fine features of electronic transport, but it also limits possible electron transport mechanisms. Practically, wire-bonded devices-on-chip, carrying Az-based microscopic junctions, were measured in liquid He, minimizing temperature gradients across the samples. Much smaller junctions, in conducting-probe atomic force microscopy measurements, served, between room temperature and the protein's denaturation temperature (similar to 323 K), to check that conductance behavior is independent of device configuration or contact nature and thus is a property of the protein itself. Temperature-independent currents were observed from similar to 320 to 4 K. The experimental results were fitted to a single-level Landauer model to extract effective energy barrier and electrode-molecule coupling strength values and to compare data sets. Our results strongly support that quantum tunneling, rather than hopping, dominates ETp via Az.
The primary sequence and secondary structure of a peptide are crucial to charge migration, not only in solution (electron transfer, ET), but also in the solid-state (electron transport, ETp). Hence, understanding the charge migration mechanisms is fundamental to the development of biomolecular devices and sensors. We report studies on four Aib-containing helical peptide analogues: two acyclic linear peptides with one and two electron-rich alkene-based side chains, respectively, and two peptides that are further rigidified into a macrocycle by a side bridge constraint, containing one or no alkene. ETp was investigated across Au/peptide/Au junctions, between 80 and 340 K in combination with the molecular dynamic (MD) simulations. The results reveal that the helical structure of the peptide and electron-rich side chain both facilitate the ETp. As temperature increases, the loss of helical structure, change of monolayer tilt angle, and increase of thermally activated fluctuations affect the conductance of peptides. Specifically, room temperature conductance across the peptide monolayers correlates well with previously observed ET rate constants, where an interplay between backbone rigidity and electron-rich side chains was revealed. Our findings provide new means to manipulate electronic transport across solid-state peptide junctions.
A sample-type protein monolayer, that can be a stepping stone to practical devices, can behave as an electrically driven switch. This feat is achieved using a redox protein, cytochrome C (CytC), with its heme shielded from direct contact with the solid-state electrodes. Ab initio DFT calculations, carried out on the CytC-Au structure, show that the coupling of the heme, the origin of the protein frontier orbitals, to the electrodes is sufficiently weak to prevent Fermi level pinning. Thus, external bias can bring these orbitals in and out of resonance with the electrode. Using a cytochrome C mutant for direct S-Au bonding, approximately 80 % of the Au-CytC-Au junctions show at greater than 0.5 V bias a clear conductance peak, consistent with resonant tunneling. The on-off change persists up to room temperature, demonstrating reversible, bias-controlled switching of a protein ensemble, which, with its built-in redundancy, provides a realistic path to protein-based bioelectronics.
Understanding the factors affecting the stability and function of proteins at the molecular level is of fundamental importance. In spite of their use in bioelectronics and optogenetics, factors influencing thermal stability of microbial rhodopsins, a class of photoreceptor protein ubiquitous in nature are not yet well-understood. Here we report on the molecular mechanism for thermal denaturation of microbial retinal proteins, including, a highly thermostable protein, thermophilic rhodopsin (TR). External stimuli-dependent thermal denaturation of TR, the proton pumping rhodopsin of Thermus thermophilus bacterium, and other microbial rhodopsins are spectroscopically studied to decipher the common factors guiding their thermal stability. The thermal denaturation process of the studied proteins is light-catalyzed and the apo-protein is thermally less stable than the corresponding retinal-covalently bound opsin. In addition, changes in structure of the retinal chromophore affect the thermal stability of TR. Our results indicate that the hydrolysis of the retinal protonated Schiff base (PSB) is the rate-determining step for denaturation of the TR as well as other retinal proteins. Unusually high thermal stability of TR multilayers, in which PSB hydrolysis is restricted due to lack of bulk water, strongly supports this proposal. Our results also show that the protonation state of the PSB counter-ion does not affect the thermal stability of the studied proteins. Thermal photo-bleaching of an artificial TR pigment derived from non-isomerizable trans-locked retinal suggests, rather counterintuitively, that the photoinduced retinal trans-cis isomerization is not a pre-requisite for light catalyzed thermal denaturation of TR. Protein conformation alteration triggered by light-induced retinal excited state formation is likely to facilitate the PSB hydrolysis.
We report the first demonstration of nonionic detergent micelle conjugation and phase separation using purpose-synthesized, peptide amphiphiles, C-10-(Asp)(5) and C-10-(Lys)(5). Clustering is achieved in two different ways. Micelles containing the negatively charged peptide amphiphile C-10-(Asp)(5) are conjugated (a) via a water-soluble, penta-Lys mediator or (b) to micelles containing the C-10-(Lys)(5) peptide amphiphile. Both routes lead to phase separation in the form of oil-rich globules visible in the light microscope. The hydrophobic nature of these regions leads to spontaneous partitioning of hydrophobic dyes into globules that were found to be stable for weeks to months. Extension of the conjugation mechanism to micelles containing a recently discovered, light-driven proton pump King Sejong 1-2 (KS1-2) demonstrates that a membrane protein may be concentrated using peptide amphiphiles while preserving its native conformation as determined by characteristic UV absorption. The potential utility of these peptide amphiphiles for biophysical and biomedical applications is discussed.
The chlorophyll-derivative chlorin e6 (Ce6) identified in the retinas of deep-sea ocean fish is proposed to play a functional role in red bioluminescence detection. Fluorescence and H-1 NMR spectroscopy studies with the bovine dim-light photoreceptor, rhodopsin, indicate that Ce6 weakly binds to it with mu m affinity. Absorbance spectra prove that red light sensitivity enhancement is not brought about by a shift in the absorbance maximum of rhodopsin. F-19 NMR experiments with samples where F-19 labels are either placed at the cytoplasmic binding site or incorporated as fluorinated retinal indicate that the cytoplasmic domain is highly perturbed by binding, while little to no changes are detected near the retinal. Binding of Ce6 also inhibits G-protein activation. Chemical shift changes in H-1-N-15 NMR spectroscopy of N-15-Trp labeled bovine rhodopsin reveal that Ce6 binding perturbs the entire structure. These results provide experimental evidence that Ce6 is an allosteric modulator of rhodopsin.
Retinal proteins' biological activity is triggered by the retinal chromophore's light absorption, which initiates a photocycle. However, the mechanism by which retinal light excitation induces the protein's response is not completely understood. Recently, two new retinal proteins were discovered, namely, King Sejong 1-2 (KS1-2) and Nonlabens (Donghaeana) dokdonensis (DDR2), which exhibit H+ and Na+ pumping activities, respectively. To pinpoint whether protein conformation alterations can be achieved without light-induced retinal C-13=C-14 double-bond isomerization, we utilized the hydroxylamine reaction, which cleaves the protonated Schiff base bond through which the retinal chromophore is covalently bound to the protein. The reaction is accelerated by light even though the cleavage is not a photochemical reaction. Therefore, the cleavage reaction may serve as a tool to detect protein conformation alterations. We discovered that in both KS1-2 and DDR2, the hydroxylamine reaction is light accelerated, even in artificial pigments derived from synthetic retinal in which the crucial C-13=C-14 double-bond isomerization is prevented. Therefore, we propose that in both proteins the light-induced retinal charge redistribution taking place in the retinal excited state polarizes the protein, which, in turn, triggers protein conformation alterations. A further general possible application of the present finding is associated with other photoreceptor proteins having retinal or other non-retinal chromophores whose light excitation may affect the protein conformation.
We introduce a new concept and potentially general platform for antibody (Ab) purification that does not rely on chromatography or specific ligands (e.g., Protein A); rather, it makes use of detergent aggregates capable of efficiently capturing Ab while rejecting hydrophilic impurities. Captured Ab are then extracted from the aggregates in pure form without co-extraction of hydrophobic impurities or aggregate dissolution. The aggregates studied consist of conjugated "Engineered-micelles" built from the nonionic detergent, Tween-20; bathophenanthroline, a hydrophobic metal chelator, and Fe(2+)ions. When tested in serum-free media with or without bovine serum albumin as additive, human or mouse IgGs were recovered with good overall yields (70-80%, by densitometry). Extraction of IgGs with 7 different buffers at pH 3.8 sheds light on possible interactions between captured Ab and their surrounding detergent matrix that lead to purity very similar to that obtained via Protein A or Protein G resins. Extracted Ab preserve their secondary structure, specificity and monomeric character as determined by circular dichroism, enzyme-linked immunosorbent assay and dynamic light scattering, respectively.
In microbial rhodopsins (also called retinal proteins), the retinal chromophore is used for harvesting light. A carotenoid molecule has been reported to complement the retinal as light harvesting antenna in bacterial retinal proteins, although examples are scarce. In this paper, we present the formation of a novel antenna complex between thermophilic rhodopsin (TR) and the carotenoid salinixanthin (Sal). The complex formation and its structure were studied using UV-visible absorption as well as circular dichroism (CD) spectroscopies. Our studies indicate that the complex is formed in both the trimeric and monomeric forms of TR. CD spectroscopy suggests that excitonic coupling takes place between retinal and Sal. The binding of Sal with artificial TR pigments derived from synthetic retinal analogues further supports the contribution of the retinal chromophore to the CD spectrum. These studies further support the possibility of interaction between the 4-keto ring of the Sal and the retinal in TR-Sal complexes. Temperature-dependent CD spectra indicate that the positive band (ca. 482 nm) of the bisignate CD spectra of the studied complexes originates from the contribution of excitonic coupling and induced chirality of Sal in the protein binding site. The presence of a relatively smaller glycine residue in the vicinity of the retinal chromophore in TR is proposed to be crucial for binding with Sal. The results are expected to shed light on the mechanism of retinal carotenoid interactions in other biological systems.
The incorporation of proteins as functional components in electronic junctions has received much interest recently due to their diverse bio-chemical and physical properties. However, information regarding the energies of the frontier orbitals involved in their electron transport (ETp) has remained elusive. Here we employ a new method to quantitatively determine the energy position of the molecular orbital, nearest to the Fermi level (E-F) of the electrode, in the electron transfer protein Azurin. The importance of the Cu(ii) redox center of Azurin is demonstrated by measuring gate-controlled conductance switching which is absent if Azurin's copper ions are removed. Comparing different electrode materials, a higher conductance and a lower gate-induced current onset is observed for the material with smaller work function, indicating that ETp via Azurin is LUMO-mediated. We use the difference in work function to calibrate the difference in gate-induced current onset for the two electrode materials, to a specific energy level shift and find that ETp via Azurin is near resonance. Our results provide a basis for mapping and studying the role of energy level positions in (bio)molecular junctions.
The visual process is initiated via light absorption by rhodopsin (Rh) pigments consisting of a retinyl polyene chromophore (11-cis) covalently bound to a membrane apo-protein (opsin) through a protonated Schiff base linkage with a lysine residue. 1-4 Excitation leads to changes in the electrical potential of the membrane, which are transmitted to the brain through appropriate synaptic processes.
Different batches of Si wafers with nominally the same specifications were found to respond differently to identical chemical surface treatments aimed at regrowing Si oxide on them. We found that the oxides produced on different batches of wafer differ electrically, thereby affecting solid-state electron transport (ETp) via protein films assembled on them. These results led to the another set of experiments, where we studied this phenomenon using two distinct chemical methods to regrow oxides on the same batch of Si wafers. We have characterized the surfaces of the regrown oxides and of monolayers of linker molecules that connect proteins with the oxides and examined ETp via ultrathin layers of the protein bacteriorhodopsin, assembled on them. Our results illustrate the crucial role of (near) surface charges on the substrate in defining the ETp characteristics across the proteins. This is expressed most strikingly in the observed current's temperature dependences, and we propose that these are governed by the electrostatic landscape at the electrode-protein interface rather than by intrinsic protein properties. This study's major finding, relevant to protein bioelectronics, is that protein-electrode coupling in junctions is a decisive factor in ETp across them. Hence,surface electrostatics can create a barrier that dominates charge transport and controls the transport mode across the junction. Our findings' wider importance lies in their relevance to hybrid junctions of Si with (polyelectrolyte) biomolecules, a likely direction for future bioelectronics. A remarkable corollary of presented results is that once an electron is injected into the protein, transport within the proteins is so efficient that it does not encounter a measurable barrier down to 160 K.
The development of tandem ion mobility spectroscopy (IMS) known as IMS-IMS has led to extensive research into isomerizations of isolated molecules. Many recent works have focused on the retinal chromophore which is the optical switch used in animal vision. Here, we study a shortened derivative of the chromophore, which exhibits a rich IM spectrum allowing for a detailed analysis of its isomerization pathways, and show that the longer the chromophore is, the lower the barrier energies for isomerization are.
Multi-heme cytochrome c (Cytc) proteins are key for transferring electrons out of cells, to enable intracellular oxidation to proceed in the absence of O-2. In these proteins most of the hemes are arranged in a linear array suggesting a facile path for electronic conduction. To test this, we studied solvent-free electron transport across two multi-heme Cytc-type proteins: MtrF (deca-heme Cytc) and STC (tetra-heme Cytc). Transport is measured across monolayers of these proteins in a solid state configuration between Au electrodes. Both proteins showed 1000x higher conductance than single heme, or heme-free proteins, but similar conductance to monolayers of conjugated organics. Conductance is found to be temperature-independent (320-80 K), suggesting tunneling as the transport mechanism. This mechanism is consistent with I-V curves modelling, results of which could be interpreted by having protein-electrode coupling as rate limiting, rather than transport within the proteins.
Making biomolecular electronics a reality will require control over charge transport across biomolecules. Here we show that chemical modulation of the coupling between one of the electronic contacts and the biomolecules in a solid-state junction allows controlling electron transport (ETp) across the junction. Employing the protein azurin (Az), we achieve such modulation as follows: Az is covalently bound by Au-S bonding to a lithographically prepared Au electrode (Au-Az). Au nanowires (AuNW) onto which linker molecules, with free carboxylic group, are bound via Au-S bonds serve as top electrode. Current voltage plots of AuNW-linkerCOOH//Az-Au junctions have been shown earlier to exhibit step-like features, due to resonant tunneling through discrete Az energy levels. Forming an amide bond between the free carboxylic group of the AuNW-bound linker and Az yields AuNW-linkerCO-NH-Az-Au junctions. This Az-linker bond switches the ETp mechanism from resonant to off-resonant tunneling. By varying the extent of this amide bonding, the current voltage dependence can be controlled between these two mechanisms, thus providing a platform for altering and controlling the ETp mechanism purely by chemical modification in a two-terminal device, i.e., without a gate electrode. Using results from conductance, including the energy barrier and electrode molecule coupling parameters extracted from current voltage fitting and normalized differential conductance analysis and from inelastic-electron-tunneling and photoelectron spectroscopies, we determine the Az frontier orbital energies, with respect to the Au Fermi level, for four junction configurations, differing only in electrode-protein coupling. Our approach and findings open the way to both qualitative and quantitative control of biomolecular electronic junctions.
By comparing two-dimensional electronic spectroscopy (2DES) and Pump-Probe (PP) measurements on xanthorhodopsin (XR) and reduced-xanthorhodopsin (RXR) complexes, the ultrafast carotenoid-to-retinal energy transfer pathway is revealed, at very early times, by an excess of signal amplitude at the associated cross-peak and by the carotenoid bleaching reduction due to its ground state recovery. The combination of the measured 2DES and PP spectroscopic data with theoretical modelling allows a clear identification of the main experimental signals and a comprehensive interpretation of their origin and dynamics. The remarkable velocity of the energy transfer, despite the non-negligible energy separation between the two chromophores, and the analysis of the underlying transport mechanism, highlight the role played by the ground state carotenoid vibrations in assisting the process.
Metalloproteins, proteins containing a transition metal ion cofactor, are electron transfer agents that perform key functions in cells. Inspired by this fact, electron transport across these proteins has been widely studied in solid-state settings, triggering the interest in examining potential use of proteins as building blocks in bioelectronic devices. Here, we report results of low-temperature (10 K) electron transport measurements via monolayer junctions based on the blue copper protein azurin (Az), which strongly suggest quantum tunneling of electrons as the dominant charge transport mechanism. Specifically, we show that, weakening the protein-electrode coupling by introducing a spacer, one can switch the electron transport from off-resonant to resonant tunneling. This is a consequence of reducing the electrode's perturbation of the Cu(II)localized electronic state, a pattern that has not been observed before in protein-based junctions. Moreover, we identify vibronic features of the Cu(II) coordination sphere in transport characteristics that show directly the active role of the metal ion in resonance tunneling. Our results illustrate how quantum mechanical effects may dominate electron transport via protein-based junctions.
Peptide-based molecular electronic devices are promising due to the large diversity and unique electronic properties of biomolecules. These electronic properties can change considerably with peptide structure, allowing diverse design possibilities. In this work, we explore the effect of the side-chain of the peptide on its electronic properties, by using both experimental and computational tools to detect the electronic energy levels of two model peptides. The peptides include 2Ala and 2Trp as well as their 3-mercaptopropionic acid linker which is used to form monolayers on an Au surface. Specifically, we compare experimental ultraviolet photoemission spectroscopy measurements with density functional theory based computational results. By analyzing differences in frontier energy levels and molecular orbitals between peptides in gas-phase and in a monolayer on gold, we find that the electronic properties of the peptide side-chain are maintained during binding of the peptide to the gold substrate. This indicates that the energy barrier for the peptide electron transport can be tuned by the amino acid compositions, which suggests a route for structural design of peptide-based electronic devices.
We discuss spin injection and spin valves, which are based on organic and biomolecules, that offer the possibility to overcome some of the limitations of solid-state devices, which are based on ferromagnetic metal electrodes. In particular, we discuss spin filtering through bacteriorhodopsin in a solid state biomolecular spin valve that is based on the chirality induced spin selectivity (CISS) effect and shows a magnetoresistance of ∼2% at room temperature. The device is fabricated using a layer of bacteriorhodopsin (treated with n-octyl-thioglucoside detergent: OTG-bR) that is adsorbed on a cysteamine functionalized gold electrode and capped with a magnesium oxide layer as a tunneling barrier, upon which a Ni top electrode film is placed and used as a spin analyzer. The bR based spin valves show an antisymmetric magnetoresistance response when a magnetic field is applied along the direction of the current flow, whereas they display a positive symmetric magnetoresistance curve when a magnetic field is applied perpendicular to the current direction.
We review the status of protein-based molecular electronics. First, we define and discuss fundamental concepts of electron transfer and transport in and across proteins and proposed mechanisms for these processes. We then describe the immobilization of proteins to solid-state surfaces in both nanoscale and macroscopic approaches, and highlight how different methodologies can alter protein electronic properties. Because immobilizing proteins while retaining biological activity is crucial to the successful development of bioelectronic devices, we discuss this process at length. We briefly discuss computational predictions and their connection to experimental results. We then summarize how the biological activity of immobilized proteins is beneficial for bioelectronic devices, and how conductance measurements can shed light on protein properties. Finally, we consider how the research to date could influence the development of future bioelectronic devices.
Over the past few decades, the structure, functions, properties, and molecular mechanisms of retinal proteins have been studied extensively. The newly studied retinal protein Gloeobacter rhodopsin (gR) acts as a light-driven proton pump, transferring a proton from the cytoplasmic region to the extracellular region of a cell following light absorption. It was previously shown that gR can bind the carotenoid salinixanthin (sal). In the present study, we report the effect of pH on the binding of retinal to the apo-protein of gR, in the presence and absence of sal, to form the gR pigment. We found that binding at different pH levels reflects the titration of two different protein residues, one at the lower pK(a) 3.5 and another at the higher pK(a) 8.4, that affect the pigment's formation. The maximum amount of pigment was formed at pH 5, both with and without the presence of sal. The introduction of sal accelerates the rate of pigment formation by a factor of 190. Furthermore, it is suggested that occupation of the binding site by the retinal chromophore induces protein conformational alterations which in turn affect the carotenoid conformation, which precedes the formation of the retinal-protein covalent bond. Our examination of synthetic retinal analogues in which the ring structure was modified revealed that, in the absence of sal, the retinal ring structure affects the rate of pigment formation and that the intact structure is needed for efficient pigment formation. However, the presence of sal abolishes this effect, and all-trans retinal and its modified ring analogues bind at a similar rate.
Xanthorhodopsin (xR) is a member of the retinal protein family and acts as a proton pump in the cell membranes of the extremely halophilic eubacterium Salinibacter ruber. In addition to the retinal chromophore, xR contains a carotenoid, which acts as a light-harvesting antenna as it transfers 40% of the quanta it absorbs to the retinal. Our previous studies have shown that the CD and absorption spectra of xR are dramatically affected due to the protonation of two different residues. It is still unclear whether xR can bind cations. Electron paramagnetic resonance (EPR) spectroscopy used in the present study revealed that xR can bind divalent cations, such as Mn2+ and Ca2+, to deionized xR (DI-xR). We also demonstrate that xR can bind 1 equiv of Mn2+ to a high-affinity binding site followed by binding of ∼40 equiv in cooperative manner and ∼100 equiv of Mn2+ that are weakly bound. SQUID magnetic studies suggest that the high cooperative binding of Mn2+ cations to xR is due to the formation of Mn2+ clusters. Our data demonstrate that Ca2+ cations bind to DI-xR with a lower affinity than Mn2+, supporting the assumption that binding of Mn2+ occurs through cluster formation, because Ca2+ cations cannot form clusters in contrast to Mn2+.
Ultrafast photochemistry of pharaonis halorhodopsin (p-HR) in the intact membrane of Natronomonas pharaonis has been studied by photoselective femtosecond pump-hyperspectral probe spectroscopy with high time resolution. Two variants of this sample were studied, one with wild-type retinal prosthetic groups and another after shifting the retinal absorption deep into the blue range by reducing the Schiff base linkage, and the results were compared to a previous study on detergent-solubilized p-HR. This comparison shows that retinal photoisomerization dynamics is identical in the membrane and in the solubilized sample. Selective photoexcitation of bacterioruberin, which is associated with the protein in the native membrane, in wild-type and reduced samples, demonstrates conclusively that unlike the carotenoids associated with some bacterial retinal proteins the carrotenoid in p-HR does not act as a light-harvesting antenna. (Graph Presented).
The barrier energies for isomerization and fragmentation were measured for a series of retinal chromophore derivatives using a tandem ion mobility spectrometry approach. These measurements allow us to quantify the effect of charge delocalization on the rigidity of chromophores. We find that the role of the methyl group on the C13 position is pivotal regarding the ground state dynamics of the chromophore. Additionally, a correlation between quasi-equilibrium isomer distribution and fragmentation pathways is observed.
Lake Baikal is the deepest and one of the most ancient lakes in the world. Its unique ecology has resulted in the colonization of a diversity of depth habitats by a unique fauna that includes a group of teleost fish of the sub-order Cottoidei. This relatively recent radiation of cottoid fishes shows a gradual blue-shift in the wavelength of the absorption maximum of their visual pigments with increasing habitat depth. Here we combine homology modeling and quantum chemical calculations with experimental in vitro measurements of rhodopsins to investigate dim-light adaptation. The calculations, which were able to reproduce the trend of observed absorption maxima in both A1 and A2 rhodopsins, reveal a Barlow-type relationship between the absorption maxima and the thermal isomerization rate suggesting a link between the observed blue-shift and a thermal noise decrease. A Nakanishi point-charge analysis of the electrostatic effects of non-conserved and conserved amino acid residues surrounding the rhodopsin chromophore identified both close and distant sites affecting simultaneously spectral tuning and visual sensitivity. We propose that natural variation at these sites modulate both the thermal noise and spectral shifting in Baikal cottoid visual pigments resulting in adaptations that enable vision in deep water light environments.
Charge migration for electron transfer via the polypeptide matrix of proteins is a key process in biological energy conversion and signaling systems. It is sensitive to the sequence of amino acids composing the protein and, therefore, offers a tool for chemical control of charge transport across biomaterial-based devices. We designed a series of linear oligoalanine peptides with a single tryptophan substitution that acts as a "dopant," introducing an energy level closer to the electrodes' Fermi level than that of the alanine homopeptide. We investigated the solid-state electron transport (ETp) across a selfassembled monolayer of these peptides between gold contacts. The single tryptophan "doping" markedly increased the conductance of the peptide chain, especially when its location in the sequence is close to the electrodes. Combining inelastic tunneling spectroscopy, UV photoelectron spectroscopy, electronic structure calculations by advanced density-functional theory, and dc current-voltage analysis, the role of tryptophan in ETp is rationalized by charge tunneling across a heterogeneous energy barrier, via electronic states of alanine and tryptophan, and by relatively efficient direct coupling of tryptophan to a Au electrode. These results reveal a controlled way of modulating the electrical properties of molecular junctions by tailormade "building block" peptides.
The 11-cis retinal chromophore is tightly packed within the interior of the visual receptor rhodopsin and isomerizes to the all-trans configuration following absorption of light. The mechanism by which this isomerization event drives the outward rotation of transmembrane helix H6, a hallmark of activated G protein-coupled receptors, is not well established. To address this question, we use solid-state NMR and FTIR spectroscopy to define the orientation and interactions of the retinal chromophore in the active metarhodopsin II intermediate. Here we show that isomerization of the 11-cis retinal chromophore generates strong steric interactions between its β-ionone ring and transmembrane helices H5 and H6, while deprotonation of its protonated Schiff's base triggers the rearrangement of the hydrogen-bonding network involving residues on H6 and within the second extracellular loop. We integrate these observations with previous structural and functional studies to propose a two-stage mechanism for rhodopsin activation.
The dearth of high quality, three dimensional crystals of membrane proteins, suitable for X-ray diffraction analysis, constitutes a serious barrier to progress in structural biology. To address this challenge, we have developed a new crystallization medium that relies on the conjugation of surfactant micelles via base-pairing of complementary hydrophobic nucleosides. Base-pairs formed at the interface between micelles bring them into proximity with each other; and when the conjugated micelles contain a membrane protein, crystal nucleation centers can be stabilized, thereby promoting crystal growth. Accordingly, two hydrophobic nucleoside derivatives deoxyguanosine (G) and deoxycytidine (C), each covalently bonded to a 10 carbon chain were synthesized and added to an aqueous solution containing octyl β-D-thioglucopyranoside micelles. These hydrophobic nucleosides induced the formation of oil-rich globules after 2 days incubation at 19 °C or after a few hours in the presence of ammonium sulfate; however, phase separation was inhibited by 100 mM GMP. The presence of the membrane protein bacteriorhodopsin in the conjugated micellar dispersion resulted in the growth within the colorless globules of a variety of purple crystals, the color indicating a functional protein. On this basis, we suggest that conjugation of micelles via base-pair complementarity may provide significant assistance to the structural determination of integral membrane proteins.
The group of homoiochlorophyllous resurrection plants evolved the unique capability to survive severe drought stress without dismantling the photosynthetic machinery. This implies that they developed efficient strategies to protect the leaves from reactive oxygen species (ROS) generated by photosynthetic side reactions. These strategies, however, are poorly understood. Here, we performed a detailed study of the photosynthetic machinery in the homoiochlorophyllous resurrection plant Craterostigma pumilum during dehydration and upon recovery from desiccation. During dehydration and rehydration, C.pumilum deactivates and activates partial components of the photosynthetic machinery in a specific order, allowing for coordinated shutdown and subsequent reinstatement of photosynthesis. Early responses to dehydration are the closure of stomata and activation of electron transfer to oxygen accompanied by inactivation of the cytochrome b(6)f complex leading to attenuation of the photosynthetic linear electron flux (LEF). The decline in LEF is paralleled by a gradual increase in cyclic electron transport to maintain ATP production. At low water contents, inactivation and supramolecular reorganization of photosystem II becomes apparent, accompanied by functional detachment of light-harvesting complexes and interrupted access to plastoquinone. This well-ordered sequence of alterations in the photosynthetic thylakoid membranes helps prepare the plant for the desiccated state and minimize ROS production. Significance Statement Dehydration in plants is accompanied by an increase in reactive oxygen species. The resurrection plant Craterostigma pumilum avoids damage by reactive oxygen species during dehydration. A mechanism is shown in this study that is based on a well-ordered combination of common changes in the photosynthetic machinery.
Primary photochemical events in the unusually thermostable proton pumping rhodopsin of Thermus thermophilus bacterium (TR) are reported for the first time. Internal conversion in this protein is shown to be significantly faster than in bacteriorhodopsin (BR), making it the most rapidly isomerizing microbial proton pump known. Internal conversion (IC) dynamics of TR and BR were recorded from room temperature to the verge of thermal denaturation at 70 °C and found to be totally independent of temperature in this range. This included the well documented multiexponential nature of IC in BR, suggesting that assignment of this to ground state structural inhomogeneity needs revision. TR photodynamics were also compared with that of the phylogenetically more similar proton pump Gloeobacter rhodopsin (GR). Despite this similarity GR has poor thermal stability, and the excited state decays significantly more slowly and exhibits very prominent stretched exponential behavior. Coherent torsional wave-packets induced by impulsive photoexcitation of TR and GR show marked resemblance to each other in frequency and amplitude and differ strikingly from similar signatures in pump-probe data of BR and other microbial retinal proteins. Possible correlations between IC rates and thermal stability and the promise of using torsional coherence signatures for understanding chromophore protein binding in microbial retinal proteins are discussed.
Previous studies have shown that the gas-phase fragmentation of the retinal chromophore after S0-S1 photoexcitation results in a prominent fragment of mass 248 which cannot be explained by the cleavage of any single bond along the polyene chain. It was therefore theorized that the fragmentation mechanism involves a series of isomerizations and cyclization processes, and two mechanisms for these processes were suggested. Here we used isotope labeling MS-MS to provide conclusive support for the fragmentation mechanism suggested by Coughlan et al. (J. Phys. Chem. Lett. 2014, 5, 3195).
Spin-dependent photoluminescence (PL) quenching of CdSe nanoparticles (NPs) has been explored in the hybrid system of CdSe NP purple membrane, wild-type bacteriorhodopsin (bR) thin film on a ferromagnetic (Ni-alloy) substrate. A significant change in the PL intensity from the CdSe NPs has been observed when spin-specific charge transfer occurs between the retinal and the magnetic substrate. This feature completely disappears in a bR apo membrane (wild-type bacteriorhodopsin in which the retinal protein covalent bond was cleaved), a bacteriorhodopsin mutant (D96N), and a bacteriorhodopsin bearing a locked retinal chromophore (isomerization of the crucial C13=C14 retinal double bond was prevented by inserting a ring spanning this bond). The extent of spin-dependent PL quenching of the CdSe NPs depends on the absorption of the retinal, embedded in wild-type bacteriorhodopsin. Our result suggests that spin-dependent charge transfer between the retinal and the substrate controls the PL intensity from the NPs.
A vertical nanogap device (VND) structure comprising all-silicon contacts as electrodes for the investigation of electronic transport processes in bioelectronic systems is reported. Devices were fabricated from silicon-on-insulator substrates whose buried oxide (SiO2) layer of a few nanometers in thickness is embedded within two highly doped single crystalline silicon layers. Individual VNDs were fabricated by standard photolithography and a combination of anisotropic and selective wet etching techniques, resulting in p+ silicon contacts, vertically separated by 4 or 8 nm, depending on the chosen buried oxide thickness. The buried oxide was selectively recess-etched with buffered hydrofluoric acid, exposing a nanogap. For verification of the devices' electrical functionality, gold nanoparticles were successfully trapped onto the nanogap electrodes' edges using AC dielectrophoresis. Subsequently, the suitability of the VND structures for transport measurements on proteins was investigated by functionalizing the devices with cytochrome c protein from solution, thereby providing non-destructive, permanent semiconducting contacts to the proteins. Current-voltage measurements performed after protein deposition exhibited an increase in the junctions' conductance of up to several orders of magnitude relative to that measured prior to cytochrome c immobilization. This increase in conductance was lost upon heating the functionalized device to above the protein's denaturation temperature (80 °C). Thus, the VND junctions allow conductance measurements which reflect the averaged electronic transport through a large number of protein molecules, contacted in parallel with permanent contacts and, for the first time, in a symmetrical Si-protein-Si configuration.
Electron transport properties via a photochromic biological photoreceptor have been studied in junctions of monolayer assemblies in solid-state configurations. The photoreceptor studied was a member of the LOV domain protein family with a bound flavin chromophore, and its photochemically inactive mutant due to change of a crucial cysteine residue by a serine. The photochemical properties of the protein were maintained in dry, solid state conditions, indicating that the proteins in the junctions were assembled in native state-like conditions. Significant current magnitudes (>20 μA at 1.0 V applied bias) were observed with a mechanically deposited gold pad (area ∼0.002 cm2) as top electrode. The current magnitudes are ascribed to electrode-cofactor coupling originating from the apparent perpendicular orientation of the protein's cofactor embedded between the electrodes, and its proximity to the electrodes. Temperature independent electron transport across the protein monolayers demonstrated that solid-state electron transport is dominated by tunneling. Modulation of the observed current by illumination of the wildtype protein suggested conformation-dependent electron conduction efficiency across the solid-state protein junctions.
The present work studies the mechanism of light induced protein conformational changes in the over-expressed mutant of halorhodopsin (phR) from Natronomonas pharaonis. The catalytic effect of light is reflected in accelerating hydroxyl amine reaction rate of light adapted phR. Light catalysis was detected in native phR but also in artificial pigments derived from tailored retinal analogs locked at the crucial C13=C14 double bond. It is proposed that the photoexcited retinal chromophore induces protein concerted motion that decreases the energy gap between reactants ground and transition states. This energy gap is overcome by coupling to specific protein vibrations. Surprisingly, the rate constants show unusual decreasing trend following temperature increase both for native and artificial pigments.
Electron transport (ETp) across met-myoglobin (m-Mb), as measured in a solid-state-like configuration between two electronic contacts, increases by up to 20 fold if Mb is covalently bound to one of the contacts, a Si electrode, in an oriented manner by its hemin (ferric) group, rather than in a non-oriented manner. Oriented binding of Mb is achieved by covalently binding hemin molecules to form a monolayer on the Si electrode, followed by reconstitution with apo-Mb. We found that the ETp temperature dependence (>120 K) of non-oriented m-Mb virtually disappears when bound in an oriented manner by the hemin group. Our results highlight that combining direct chemical coupling of the protein to one of the electrodes with uniform protein orientation strongly improves the efficiency of ET across the protein. We hypothesize that the behavior of reconstituted m-Mb is due to both strong protein-substrate electronic coupling (which is likely greater than in non-oriented m-Mb) and direct access to a highly efficient transport path provided by the hemin group in this configuration.
Surprisingly efficient solid-state electron transport has recently been demonstrated through "dry" proteins (with only structural, tightly bound H2O left), suggesting proteins as promising candidates for molecular (bio)electronics. Using inelastic electron tunneling spectroscopy (IETS), we explored electron-phonon interaction in metal/protein/metal junctions, to help understand solid-state electronic transport across the redox protein azurin. To that end an oriented azurin monolayer on Au is contacted by soft Au electrodes. Characteristic vibrational modes of amide and amino acid side groups as well as of the azurin-electrode contact were observed, revealing the azurin native conformation in the junction and the critical role of side groups in the charge transport. The lack of abrupt changes in the conductance and the line shape of IETS point to far off-resonance tunneling as the dominant transport mechanism across azurin, in line with previously reported (and herein confirmed) azurin junctions. The inelastic current and hence electron-phonon interaction appear to be rather weak and comparable in magnitude with the inelastic fraction of tunneling current via alkyl chains, which may reflect the known structural rigidity of azurin.
We observe temperature-independent electron transport, characteristic of tunneling across a ∼6 nm thick Halorhodopsin (phR) monolayer. phR contains both retinal and a carotenoid, bacterioruberin, as cofactors, in a trimeric protein-chromophore complex. This finding is unusual because for conjugated oligo-imine molecular wires a transition from temperature-independent to -dependent electron transport, ETp, was reported at ∼4 nm wire length. In the ∼6 nm long phR, the ∼4 nm 50-carbon conjugated bacterioruberin is bound parallel to the α-helices of the peptide backbone. This places bacterioruberins ends proximal to the two electrodes that contact the protein; thus, coupling to these electrodes may facilitate the activation-less current across the contacts. Oxidation of bacterioruberin eliminates its conjugation, causing the ETp to become temperature dependent (>180 K). Remarkably, even elimination of the retinal-protein covalent bond, with the fully conjugated bacterioruberin still present, leads to temperature-dependent ETp (>180 K). These results suggest that ETp via phR is cooperatively affected by both retinal and bacterioruberin cofactors.
Many novel applications in bioelectronics rely on the interaction between biomolecules and electronically conducting substrates. However, crucial knowledge about the relation between electronic transport via peptides and their amino-acid composition is still absent. Here, we report results of electronic transport measurements via several homopeptides as a function of their structural properties and temperature. We demonstrate that the conduction through the peptide depends on its length and secondary structure as well as on the nature of the constituent amino acid and charge of its residue. We support our experimental observations with high-level electronic structure calculations and suggest off-resonance tunneling as the dominant conduction mechanism via extended peptides. Our findings indicate that both peptide composition and structure can affect the efficiency of electronic transport across peptides.
A member of the retinal protein family, halorhodopsin, acts as an inward light-driven Cl- pump. It was recently demonstrated that the Natronomonas pharaonis halorhodopsin-overproducing mutant strain KM-1 contains, in addition to the retinal chromophore, a lipid soluble chromophore, bacterioruberin, which binds to crevices between adjacent protein subunits. It is established that halorhodopsin has several chloride binding sites, with binding site I, located in the retinal protonated Schiff base vicinity, affecting retinal absorption. However, it remained unclear whether cations also bind to this protein. Our electron paramagnetic resonance spectroscopy examination of cation binding to the halorhodopsin mutant KM-1 reveals that divalent cations like Mn2+ and Ca2+ bind to the protein. Halorhodopsin has a high affinity for Mn2+ ions, which bind initially to several strong binding sites and then to binding sites that exhibit positive cooperativity. The binding behavior is pH-dependent, and its strength is influenced by the nature of counterions. Furthermore, the binding strength of Mn2+ ions decreases upon removal of the retinal chromophore from the protein or following bacterioruberin oxidation. Our results also indicate that Mn2+ ions, as well as Cl- ions, first occupy binding sites other than site I. The observed synergetic effect between cation and anion binding suggests that while Cl- anions bind to halorhodopsin at low concentrations, the occupancy of site I requires a high concentration.
Electron transfer (ET) proteins are biomolecules with specific functions, selected by evolution. As such they are attractive candidates for use in potential bioelectronic devices. The blue copper protein azurin (Az) is one of the most-studied ET proteins. Traditional spectroscopic, electrochemical, and kinetic methods employed for studying ET to/from the protein's Cu ion have been complemented more recently by studies of electrical conduction through a monolayer of Az in the solid-state, sandwiched between electrodes. As the latter type of measurement does not require involvement of a redox process, it also allows monitoring electronic transport (ETp) via redox-inactive Az-derivatives. Here, results of macroscopic ETp via redox-active and -inactive Az derivatives, i.e., Cu(II) and Cu(I)-Az, apo-Az, Co(II)-Az, Ni(II)-Az, and Zn(II)-Az are reported and compared. It is found that earlier reported temperature independence of ETp via Cu(II)-Az (from 20 K until denaturation) is unique, as ETp via all other derivatives is thermally activated at temperatures >≈200 K. Conduction via Cu(I)-Az shows unexpected temperature dependence >≈200 K, with currents decreasing at positive and increasing at negative bias. Taking all the data together we find a clear compensation effect of Az conduction around the Az denaturation temperature. This compensation can be understood by viewing the Az binding site as an electron trap, unless occupied by Cu(II), as in the native protein, with conduction of the native protein setting the upper transport efficiency limit.
Searching for novel hybrid electrocatalysts with high activity and strong durability for a direct electrochemical hydrogen evolution reaction (HER) is extremely desirable but still remains a significant challenge. Herein, we report a novel solid carbon cloth-supported hybrid nano-bio electrocatalyst, decorated with Ag nanoparticles and proton-pumping bacteriorhodopsin (bR) (Ag/bR/CP) that were prepared by in situ electroless deposition and vesicle fusion technology, respectively. When applied as a hydrogen evolution cathode, the Ag/bR/CP shows a low onset overpotential of 63 mV, good durability (no detectable change in its catalytic activity for up to 1000 cycles in alkaline media), and enhanced HER performance under 550 nm irradiation, attributed to the activation of Ag and synergistic effects following light absorption, demonstrated by photoelectrochemical measurements.
The retinal proton pump xanthorhodopsin (XR) was recently found to function with an attached carotenoid light harvesting antenna, salinixanthin (SX). It is intriguing to discover if this departure from single chromophore architecture is singular or if it has been adopted by other microbial rhodopsins. In search of other cases, retinal protein encoding genes in numerous bacteria have been identified containing sequences corresponding to carotenoid binding sites like that in XR. Gloeobacter rhodopsin (GR), exhibiting particularly close homology to XR, has been shown to attach SX, and fluorescence measurements suggest SX can function as a light harvesting (LH) antenna in GR as well. In this study, we test this suggestion in real time using ultrafast transient absorption. Results show that energy transfer indeed occurs from S2 of SX to retinal in the GR-SX composite with an efficiency of ∼40%, even higher than that in XR. This validates the earlier fluorescence study, and supports the notion that many microbial retinal proteins use carotenoid antennae to harvest light.
The role of the electron spin in chemistry and biology has received much attention recently owing to to the possible electromagnetic field effects on living organisms and the prospect of using molecules in the emerging field of spintronics. Recently the chiral-induced spin selectivity effect was observed by electron transmission through organic molecules. In the present study, we demonstrated the ability to control the spin filtering of electrons by light transmitted through purple membranes containing bacteriorhodopsin (bR) and its D96N mutant. The spin-dependent electrochemical cyclic voltammetry (CV) and chronoamperometric measurements were performed with the membranes deposited on nickel substrates. High spin-dependent electron transmission through the membranes was observed; however, after the samples were illuminated by 532 nm light, the spin filtering in the D96N mutant was dramatically reduced whereas the light did not have any effect on the wild-type bR. Beyond demonstrating spin-dependent electron transmission, this work also provides an interesting insight into the relationship between the structure of proteins and spin filtering by conducting electrons.
Xanthorhodopsin (xR) is a retinal protein that contains, in addition to the retinal moiety, a salinixanthin chromophore absorbing at 456, 486, and 520 nm [ Balashov, S. "P.; Science 2005, 309, 2061 ]. The CD spectrum of xR is very unique with a "conservative" character, containing negative and positive lobes and resembling the first derivative of the absorption spectrum [ Balashov, S. P.; Biochemistry 2006, 45, 10998 ]. It was suggested that the CD spectrum is likely to be composed of several components and that the salinixanthin interacts closely with the retinal chromophore [ Balashov, S. P.; Biochemistry 2006, 45, 10998; Imasheva, E. S.; Photochem. Photobiol. 2008, 84, 977; Lanyi, J. K.; Acta Bioenerg. 2008, 1777, 684; Smolensky, E.; Biochemistry 2009, 48, 8179; Smolensky Koganov, E.; Biochemistry 2013, 52, 1290 ]. In this work, we aim to further explore the nature and origin of the unique CD spectrum of xR. We follow the absorption and CD spectra at different pHs of wild-type (wt) xR and of artificial xR pigments, characterized by a shifted absorption maximum of the retinal chromophore, as well as their corresponding reduced retinal protonated Schiff base pigments. Our results revealed a protein residue (other than the protonated Schiff base counterion), for which protonation affects the CD spectrum by decreasing the negative lobe at ∼530 nm and the positive lobes at 478 and 455 nm, which might be due to elimination of excitonic coupling between the salinixanthin chromophores, although other possibilities cannot be completely excluded. This spectrum change occurs by the pH decreasing, even in artificial pigment where the absorption of the retinal pigment is significantly shifted from 570 to about 450 nm. The possible excitonic coupling between the salinixanthin chromophores and its contribution to the CD spectrum of xR were supported by a good fitting of the CD spectrum to conservative (excitonic) bands [ Zsila, F.; Tetrahedron: Asymmetry 2001, 12, 3125; Zsila, F.; Tetrahedron: Asymmetry 2002, 13, 273 ]. We propose that the CD spectrum of xR consists of contributions from an excitonic coupling interaction between the salinixanthins chromophores located in different subunits of the 3D structure of xR, the chiral conformation of the salinixanthin within its binding site, and the contribution of the retinal chromophore to the negative lobe at around 550 nm.
We describe two alternative and complementary purification methods for halorhodopsin and bacteriorhodopsin. The first relies on a unique form of detergent micelles which we have called engineered-micelles. These are specifically conjugated in the presence of [hydrophobic chelator:Fe(2+)] complexes and form detergent aggregates into which membrane proteins partition, but hydrophilic water-soluble proteins do not. The approach was tested on the membrane protein, bacteriorhodopsin (bR), with five non-ionic detergents (OG, OTG, NG, DM, and DDM), commonly used in purification and crystallization of membrane proteins, in combination with the commercially available bathophenanthroline or with one of the three synthesized phenanthroline derivatives (Phen-C10, Phen-C8 and Phen-C6). Our results show that bR is extracted efficiently (60-86%) and directly from its native membrane into diverse detergent aggregates with preservation of its native conformation, while 90-95% of an artificial contaminating background is excluded. For implementation of the second method, based on engineered-membranes, the use of detergents, which in some cases may produce protein denaturation, is not required at all. Protein-containing membranes are conjugated via the same hydrophobic [chelator:metal ion] complexes but maintain the membrane protein in its native bilayer environment throughout the process. This method is demonstrated on the membrane protein halorhodopsin from Natronomonas pharaonis (phR) and leads to good recovery yields (74-89%) and removal of >85% of artificial background impurities while preserving the native state of phR. The detailed structure of the hydrophobic chelator used has been found to have a marked effect on the purity and yield of both methods.
GR is directly shown by ultrafast pump-probe measurements to bind the carotenoid Salinixanthin, which acts as an efficient light harvesting antenna. Along with Xanthorhodopsin, This proves light harvesting to be a prevalent strategy in retinal proteins.
A central vision in molecular electronics is the creation of devices with functional molecular components that may provide unique properties. Proteins are attractive candidates for this purpose, as they have specific physical (optical, electrical) and chemical (selective binding, self-assembly) functions and offer a myriad of possibilities for (bio-)chemical modification. This Progress Report focuses on proteins as potential building components for future bioelectronic devices as they are quite efficient electronic conductors, compared with saturated organic molecules. The report addresses several questions: how general is this behavior; how does protein conduction compare with that of saturated and conjugated molecules; and what mechanisms enable efficient conduction across these large molecules? To answer these questions results of nanometer-scale and macroscopic electronic transport measurements across a range of organic molecules and proteins are compiled and analyzed, from single/few molecules to large molecular ensembles, and the influence of measurement methods on the results is considered. Generalizing, it is found that proteins conduct better than saturated molecules, and somewhat poorer than conjugated molecules. Significantly, the presence of cofactors (redox-active or conjugated) in the protein enhances their conduction, but without an obvious advantage for natural electron transfer proteins. Most likely, the conduction mechanisms are hopping (at higher temperatures) and tunneling (below ca. 150-200 K).
Potential future use of bacteriorhodopsin (bR) as a solid-state electron transport (ETp) material requires the highest possible active protein concentration. To that end we prepared stable monolayers of protein-enriched bR on a conducting HOPG substrate by lipid depletion of the native bR. The ETp properties of this construct were then investigated using conducting probe atomic force microscopy at low bias, both in the ground dark state and in the M-like intermediate configuration, formed upon excitation by green light. Photoconductance modulation was observed upon green and blue light excitation, demonstrating the potential of these monolayers as optoelectronic building blocks. To correlate protein structural changes with the observed behavior, measurements were made as a function of pressure under the AFM tip, as well as humidity. The junction conductance is reversible under pressure changes up to ∼300 MPa, but above this pressure the conductance drops irreversibly. ETp efficiency is enhanced significantly at >60% relative humidity, without changing the relative photoactivity significantly. These observations are ascribed to changes in protein conformation and flexibility and suggest that improved electron transport pathways can be generated through formation of a hydrogen-bonding network.
Microbial rhodopsins are photoactive proteins, and their binding site can accommodate either all-trans or 13-cis retinal chromophore. The pH dependence of isomeric composition, dark-adaptation rate, and primary events of Anabaena sensory rhodopsin (ASR), a microbial rhodopsin discovered a decade ago, are presented. The main findings are: (a) Two pKa values of 6.5 and 4.0 assigned to two different protein residues are observed using spectroscopic titration experiments for both ground-state retinal isomers: all-trans, 15-anti (AT) and 13-cis, 15-syn (13C). The protonation states of these protein residues affect the absorption spectrum of the pigment and most probably the isomerization process of the retinal chromophore. An additional pKa value of 8.5 is observed only for 13C-ASR. (b) The isomeric composition of ASR is determined over a wide pH range and found to be almost pH-independent in the dark (>96% AT isomer) but highly pH-dependent in the light-adapted form. (c) The kinetics of dark adaptation is recorded over a wide pH range, showing that the thermal isomerization from 13C to AT retinal occurs much faster at high pH rather than under acidic conditions. (d) Primary photochemical events of ASR at pH 5 are recorded using VIS hyperspectral pump-probe spectroscopy with
Electronic coupling to electrodes, G, as well as that across the examined molecules, H, is critical for solid-state electron transport (ETp) across proteins. Assessing the importance of each of these couplings helps to understand the mechanism of electron flow across molecules. We provide here experimental evidence for the importance of both couplings for solid-state ETp across the electron- mediating protein cytochrome c (CytC), measured in a monolayer configuration. Currents via CytC are temperature-independent between 30 and -130 K, consistent with tunneling by superexchange, and thermally activated at higher temperatures, ascribed to steady-state hopping. Covalent protein-electrode binding significantly increases G, as currents across CytC mutants, bound covalently to the electrode via a cysteine thiolate, are higher than those through electrostatically adsorbed CytC. Covalent binding also reduces the thermal activation energy, Ea, of the ETp by more than a factor of two. The importance of H was examined by using a series of seven CytC mutants with cysteine residues at different surface positions, yielding distinct electrode-protein(-heme) orientations and separation distances. We find that, in general, mutants with electrode-proximal heme have lower Ea values (from high-temperature data) and higher conductance at low temperatures (in the temperatureindependent regime) than those with a distal heme. We conclude that ETp across these mutants depends on the distance between the heme group and the top or bottom electrode, rather than on the total separation distance between electrodes (protein width).
Optogenetic tools have become indispensable in neuroscience to stimulate or inhibit excitable cells by light. Channelrhodopsin-2 (ChR2) variants have been established by mutating the opsin backbone or by mining related algal genomes. As an alternative strategy, we surveyed synthetic retinal analogues combined with microbial rhodopsins for functional and spectral properties, capitalizing on assays in C. elegans, HEK cells and larval Drosophila. Compared with all-trans retinal (ATR), Dimethylamino-retinal (DMAR) shifts the action spectra maxima of ChR2 variants H134R and H134R/T159C from 480 to 520 nm. Moreover, DMAR decelerates the photocycle of ChR2(H134R) and (H134R/T159C), thereby reducing the light intensity required for persistent channel activation. In hyperpolarizing archaerhodopsin-3 and Mac, naphthyl-retinal and thiophene-retinal support activity alike ATR, yet at altered peak wavelengths. Our experiments enable applications of retinal analogues in colour tuning and altering photocycle characteristics of optogenetic tools, thereby increasing the operational light sensitivity of existing cell lines or transgenic animals.
Integrating proteins in molecular electronic devices requires control over their solid-state electronic transport behavior. Unlike "traditional" electron transfer (ET) measurements of proteins that involve liquid environments and a redox cycle, no redox cofactor is needed for solid-state electron transport (ETp) across the protein. Here we show the fundamental difference between these two approaches by macroscopic area measurements, which allow measuring ETp temperature dependence down to cryogenic temperatures, via cytochrome C (Cyt C), an ET protein with a heme (Fe-porphyrin) prosthetic group as a redox centre. We compare the ETp to electrochemical ET measurements, and do so also for the protein without the Fe (with metal-free porphyrin) and without porphyrin. As removing the porphyrin irreversibly alters the protein's conformation, we repeat these measurements with human serum albumin (HSA), 'doped' (by non-covalent binding) with a single hemin equivalent, i.e., these natural and artificial proteins share a common prosthetic group. ETp via Cyt C and HSA-hemin are very similar in terms of current magnitude and temperature dependence, which suggests similar ETp mechanisms via these two systems, thermally activated hopping (with ∼0.1 eV activation energy) >190 K and tunneling by superexchange
Spin-dependent photoelectron transmission and spin-dependent electrochemical studies were conducted on purple membrane containing bacteriorhodopsin (bR) deposited on gold, aluminum/aluminum-oxide, and nickel substrates. The result indicates spin selectivity in electron transmission through the membrane. Although the chiral bR occupies only about 10% of the volume of the membrane, the spin polarization found is on the order of 15%. The electrochemical studies indicate a strong dependence of the conduction on the protein's structure. Denaturation of the protein causes a sharp drop in the conduction through the membrane.
Electron-transfer (ET) rates are measured by use of time-resolved EPR spectroscopy, involving photooxidation of nitroxyl radicals by a ruthenium bipyridyl complex. This permits acquisition of the fundamental characteristics of ET in solution. The method was used on two spin-labeled derivatives of bacteriorhodopsin, and is applicable to proteins, nucleic acids, and biological membranes.
A novel method for purifying membrane proteins is presented. The approach makes use of engineered micelles composed of a nonionic detergent, β-octylglucoside, and a hydrophobic metal chelator, bathophenanthroline. Via the chelators, the micelles are specifically conjugated, i.e., tethered, in the presence of Fe2+ ions, thereby forming micellar aggregates which provide the environment for separation of lipid-soluble membrane proteins from water-soluble proteins. The micellar aggregates (here imaged by cryo-transmission electron microscopy) successfully purify the light driven proton pump, bacteriorhodopsin (bR), from E. coli lysate. Purification takes place within 15 min and can be performed both at room temperature and at 4 C. More than 94% of the water-soluble macromolecules in the lysate are excluded, with recovery yields of the membrane protein ranging between 74% and 85%. Since this approach does not require precipitants, high concentrations of detergent to induce micellar aggregates, high temperature, or changes in pH, it is suggested that it may be applied to the purification of a wide variety of membrane proteins.
Monolayers of the redox protein Cytochrome C (CytC) can be electrostatically formed on an H-terminated Si substrate, if the protein- and Si-surface are prepared so as to carry opposite charges. With such monolayers we study electron transport (ETp) via CytC, using a solid-state approach with macroscopic electrodes. We have revealed that currents via holo-CytC are almost 3 orders of magnitude higher than via the heme-depleted protein (→ apo-CytC). This large difference in currents is attributed to loss of the proteins' secondary structure upon heme removal. While removal of only the Fe ion (→ porphyrin-CytC) does not significantly change the currents via this protein at room temperature, the 30-335 K temperature dependence suggests opening of a new ETp pathway, which dominates at high temperatures (>285 K). These results suggest that the cofactor plays a major role in determining the ETp pathway(s) within CytC.
Photochemistry of bacteriorhodopsin (bR), anabaena sensory rhodopsin (ASR), and all-trans retinal protonated Schiff base (RPSB) in ethanol is followed with femtosecond pump-hyperspectral near-IR (NIR) probe spectroscopy. This is the first systematic probing of retinal protein photochemistry in this spectral range. Stimulated emission of the proteins is demonstrated to extend deep into the NIR, and to decay on the same characteristic time scales previously determined by visible probing. No signs of a transient NIR absorption band above λpr > 1.3 μm, which was recently reported and is verified here for the RPSB in solution, is observed in either protein. This discrepancy demonstrates that the protein surroundings change photochemical traits of the chromophore significantly, inducing changes either in the energies or couplings of photochemically relevant electronic excited states. In addition, low-frequency and heavily damped spectral modulations are observed in the NIR signals of all three systems up to 1.4 μm. By background subtraction and Fourier analysis they are shown to resemble wave packet signatures in the visible, stemming from multiple vibrational modes and by analogy are assigned to torsional wave packets in the excited state of the retinal chromophore. Differences in the vibrational frequencies between the three samples and the said discrepancy in transient spectra are discussed in terms of opsin effects on the RPSB electronic structure.
Xanthorhodopsin (xR) is a retinal protein that contains, in addition to the retinal chromophore, a carotenoid (salinixanthin) that functions as a light-harvesting antenna [Balashov, S. P., et al. (2005) Science 309, 2061-2064]. The center-center distance between the two polyene chains is 12-13 Å, but the distance between the two rings of retinal and salinixanthin is surprisingly small (∼5 Å) with an angle of ∼45 [Luecke, H., et al. (2008) Proc. Natl. Acad. Sci. U.S.A. 105, 16561-16565]. We aimed to clarify the role of the β-ionone ring in the binding of retinal to apo-xR, as well as a possible role that the β-ionone ring plays in fixation of the salinixanthin 4-keto ring. The binding of native retinal and series of synthetic retinal analogues modified in the β-ionone ring to apo-xR was monitored by absorption and circular dichroism (CD) spectroscopies. The results indicate that the β-ionone ring modification significantly affected formation of the retinal-protein covalent bond as well as the pigment absorption and CD spectra. It was observed that several retinal analogues, modified in the retinal β-ionone ring, did not bind to apo-xR and did not form the pigment. Also, none of these analogues induced the fixation of the salinixanthin 4-keto ring. In addition, we show that the native retinal within its binding site adopts exclusively the 6-s-trans ring-chain conformation.
The ultrafast spectroscopic investigation of novel retinal proteins challenges existing notions concerning the course of primary events in these natural photoreceptors. We review two illustrations here. The first demonstrates that changes in the initial retinal configuration can alter the duration of photochemistry by nearly an order of magnitude in Anabaena sensory rhodopsin, making it as rapid as the ballistic photoisomerization in visual pigments. This prompted a reinvestigation of the much studied bacteriorhodopsin, leading to a similar trend as well, contrary to earlier reports. The second involves the study of xanthorhodopsin, an archaeal proton pump that includes an attached light-harvesting carotenoid. Pump-probe experiments demonstrate the efficient transfer of energy from carotenoid to retinal, providing a first glimpse at a cooperative multichromophore function, which is probably characteristic of many other proteins as well. Finally, we discuss measures required to advance our knowledge from kinetics to mode-specific dynamics concerning this expanding family of biological photoreceptors.
Measuring solid-state electron transport (ETp) across proteins allows studying electron transfer (ET) mechanism(s), while minimizing solvation effects on the process. ETp is, however, sensitive to any static (conformational) or dynamic (vibrational) changes in the protein. Our macroscopic measurements allow extending ETp studies to low temperatures, with the concomitant resolution of lower current densities, because of the larger electrode contact areas. Thus, earlier we reported temperature-independent ETp via the copper protein azurin (Az), from 80 K until denaturation, whereas for apo-Az ETp was temperature dependent above 180 K. Deuteration (H/D substitution) may provide mechanistic information on the question of whether the ETp involves H-bonds in the solid state. Here we report results of kinetic deuterium isotope effect (KIE) measurements on ETp through holo-Az as a function of temperature (30-340 K). Strikingly, deuteration changed ETp from temperature independent to temperature dependent above 180 K. This H/D effect is expressed in KIE values between 1.8 (340 K) and 9.1 (≤180 K). These values are remarkable in light of the previously reported inverse KIE on ET in Az in solution. We ascribe the difference between our KIE results and those observed in solution to the dominance of solvent effects in the latter (larger thermal expansion in H 2O than in D2O), whereas in our case the KIE is primarily due to intramolecular changes, mainly in the low-frequency structural modes of the protein caused by H/D exchange. The observed high KIE values are consistent with a transport mechanism that involves through-H-bonds of the β-sheet structure of Az, likely also those in the Cu coordination sphere.
A strategy for clustering of native lipid membranes is presented. It relies on the formation of complexes between hydrophobic chelators embedded within the lipid bilayer and metal cations in the aqueous phase, capable of binding two (or more) chelators simultaneously Fig. 1. We used this approach with purple membranes containing the light driven proton pump protein bacteriorhodopsin (bR) and showed that patches of purple membranes cluster into mm sized aggregates and that these are stable for months when incubated at 19°C in the dark. The strategy may be general since four different hydrophobic chelators (1,10-phenanthroline, bathophenanthroline, Phen-C10, and 8-hydroxyquinoline) and various divalent cations (Ni2+, Zn2+, Cd2+, Mn2+, and Cu2+) induced formation of membrane clusters. Moreover, the absolute requirement for a hydrophobic chelator and the appropriate metal cations was demonstrated with light and atomic force microscopy (AFM); the presence of the metal does not appear to affect the functional state of the protein. The potential utility of the approach as an alternative to assembled lipid bilayers is suggested.
Solid-state electron transport (ETp) via a monolayer of immobilized azurin (Az) was examined by conducting probe atomic force microscopy (CP-AFM), as a function of both temperature (248-373K) and applied tip force (6-15 nN). At low forces, ETp via holo-Az (with Cu2+) is temperature-independent, but thermally activated via the Cu-depleted form of Az, apo-Az. While this observation agrees with those of macroscopic-scale measurements, we find that for holo-Az the mechanism of ETp at high temperatures changes upon an increase in the force applied by the tip to the proteins; namely, above 310 K and forces >6 nN ETp becomes thermally activated. This is in contrast to apo-Az, where increasing applied force causes only small monotonic increases in currents due to decreased electrode separation. The distinct ETp temperature dependence of holo- and apo-Az is assigned to a difference in structural response to pressure between the two protein forms. An important implication of these CP-AFM results (of measurements over a significant temperature range) is that for reliable ETp measurements on flexible macromolecules, such as proteins, the pressure applied during the measurements should be controlled or at least monitored.
Electrons can migrate via proteins over distances that are considered long for nonconjugated systems. The nanoscale dimensions of proteins and their enormous structural and chemical flexibility makes them fascinating subjects for exploring their electron transport (ETp) capacity. One particularly attractive direction is that of tuning their ETp efficiency by "doping" them with small molecules. Here we report that binding of retinoate (RA) to human serum albumin (HSA) increases the solid-state electronic conductance of a monolayer of the protein by >2 orders of magnitude for RA/HSA ≤ 3. Temperature-dependent ETp measurements show the following with increasing RA/HSA: (a) The temperature-independent current magnitude of the low-temperature (300-fold), suggesting a decrease in the distance-decay constant of the process. (b) The activation energy of the thermally activated regime (>190 K) decreases from 220 meV (RA/HSA = 0) to 70 meV (RA/HSA ≤ 3).
Femtosecond spectroscopy is used to compare photochemical dynamics in light-adapted and dark-adapted bacteriorhodopsin (BR). The retinal prosthetic group is initially all-trans in the former, while it is nearly a 1:1 mixture with 13-cis in the latter. Comparing photochemistry in both serves to assess how the initial retinal configuration influences internal conversion and photoisomerization dynamics. Contrary to an earlier study, our results show that after excitation of the 13-cis form it crosses back to the ground state much more rapidly than the biologically active all-trans reactant. A similar result was recently obtained for another microbial retinal protein, Anabaena Sensory Rhodospin (ASR), which can be toggled by light between two analogous ground state configurations. Together, these studies suggest that this disparity in rates may be a general trend in the photochemistry of microbial retinal proteins. This may bear as well on the well-known enhancement in photoisomerization rates going from microbial retinal proteins to the visual pigments, as the latter also start the course of photoreception in a cis retinal configuration, in that case 11-cis. In lieu of indications for pretwisting or straining of the 13-cis retinal forms of BR and ASR, akin to those reported for rhodopsin, current results challenge many of the mechanisms held responsible for the ballistic photochemical dynamics observed in visual pigment.
Absorption of light by the visual pigment rhodopsin triggers a rapid cis-trans photoisomerization of its retinal chromophore and a series of conformational changes in both the retinal and protein. The largest structural change is an outward tilt of transmembrane helix H6 that increases the separation of the intracellular ends of H6 and H3 and opens up the G-protein binding site. In the dark state of rhodopsin, Glu247 at the intracellular end of H6 forms a salt bridge with Arg135 on H3 to tether H6 in an inactive conformation. The Arg135-Glu247 interaction is broken in the active state of the receptor, and Arg135 is then stabilized by interactions with Tyr223, Met257, and Tyr306 on helices H5, H6, and H7, respectively. To address the mechanism of H6 motion, solid-state NMR measurements are undertaken of Metarhodopsin I (Meta I), the intermediate preceding the active Metarhodopsin II (Meta II) state of the receptor. 13C NMR dipolar recoupling measurements reveal an interhelical contact of 13Cχ-Arg135 with 13Cμ- Met257 in Meta I but not with 13Cχ-Tyr223 or 13Cχ- Tyr306. These observations suggest that helix H6 has rotated in the formation of Meta I but that structural changes involving helices H5 and H7 have not yet occurred. Together, our results provide insights into the sequence of events leading up to the outward motion of H6, a hallmark of G protein-coupled receptor activation.
Electron transport (ETp) across bacteriorhodopsin (bR), a natural proton pump protein, in the solid state (dry) monolayer configuration, was studied as a function of temperature. Transport changes from thermally activated at T > 200 K to temperature independent at
Photochemistry in retinal proteins (RPs) is determined both by the properties of the retinal chromophore and by its interactions with the surrounding protein. The initial retinal configuration, and the isomerization coordinates active in any specific protein, must be important factors influencing the course of photochemistry. This is illustrated by the vast differences between the photoisomerization dynamics in visual pigments which start 11-cis and end all-trans, and those observed in microbial ion pumps and sensory rhodopsins which start all-trans and end in a 13-cis configuration. However, isolating these factors is difficult since most RPs accommodate only one active stable ground-state configuration. Anabaena sensory rhodopsin, allegedly functioning in cyanobacteria as a wavelength sensor, exists in two stable photoswitchable forms, containing all-trans and 13-cis retinal isomers, at a wavelength-dependent ratio. Using femtosecond spectroscopy, and aided by extraction of coherent vibrational signatures, we show that cis-to-trans photoisomerization, as in visual pigments, is ballistic and over in a fraction of a picosecond, while the reverse is nearly 10 times slower and kinetically reminiscent of other microbial rhodopsins. This provides a new test case for appreciating medium effects on primary events in RPs.
Excited state dynamics of native Xanthorhodopsin (XR), of an XR sample with a reduced prosthetic group, and of the associated Carotenoid (CAR) salinixanthin (SX) in ethanol were investigated by hyperspectral Near Infrared (NIR) probing. Global kinetic analysis shows that: (1) unlike the transient spectra recorded in the visible, fitting of the NIR data requires only two phases of exponential spectral evolution, assigned to internal conversion from S2 → S1 and from S1 → S0 of the carotene. (2) The rate of the internal conversion from S2 → S1 in the reduced sample is well fit with a decay time of 130 fs, significantly longer than in XR and in SX, both of which are well fit with τ ≈ 100 fs. This increased lifetime is consistent with a ∼30% efficiency of ET from SX to retinal in XR. (3) S1 of salinixanthin is verified to lie ∼12700 cm-1 above the ground electronic surface, excluding its involvement in the retinal sensitization in XR. (4) The oscillator strength of the S1 → S2 transition is determined to be no more than 0.16, despite its symmetry allowedness. (5) No long lived NIR absorbance decay assignable to the carotenoid S* state was detected in any of the samples. Inconsistencies concerning previously determined S2 lifetimes and kinetic schemes used to model these data are discussed.
The temperature dependence of current-voltage values of electron transport through proteins integrated into a solid-state junction has been investigated. These measurements were performed from 80 up to 400 K [above the denaturation temperature of azurin (Az)] using Si/Az/Au junctions that we have described previously. The current across the similar to 3.5 nm thick Az junction was temperature-independent over the complete range. In marked contrast, for both Zn-substituted and apo-Az (i.e., Cu-depleted Az), thermally activated behavior was observed. These striking temperature-dependence differences are ascribed to the pivotal function of the Cu ion as a redox center in the solid-state electron transport process. Thus, while Cu enabled temperature-independent electron transport, upon its removal the polypeptide was capable only of supporting thermally activated transport.
A VIS pump/hyperspectral NIR probe study of all-trans-retinal protonated Schiff base (RPSB) in ethanol is presented. Upon irradiation, a short-lived absorption band covers the recorded range of λ = 1-2 μm. It decays to reveal the tail of S 1 emission at λ 0. The existence of this hitherto unrecorded excited-state absorption deep in the NIR will require a revision of current models for RPSB electronic structure. The phenomenological similarity of these observations with ultrafast NIR studies of carotenoids raises the question of whether three, and not two, electronic states participate in RPSB photochemistry as well. The relevance of these observations to retinal protein photochemistry is discussed.
Second-harmonic generation (SHG) by membrane-incorporated probes is a nonlinear optical signal that is voltage-sensitive and the basis of a sensitive method for imaging membrane potential. The voltage dependence of SHG by four different probes, three retinoids (all-trans retinal), and two new retinal analogs, 3-methyl-7-(4́-dimethylamino-phenyl)- 2,4,6-heptatrienal (AR-3) and 3,7-dimethyl-9-(4́-dimethylamino-phenyl)-2,4,6,8-nonatetraenal (AR-4), and a styryl dye (FM4-64), were compared in HEK-293 cells. Results were analyzed by fitting data with an expression based on an electrooptic mechanism for SHG, which depends on the complex-valued first- and second-order nonlinear electric susceptibilities (x2 and x3) of the probe. This gave values for the voltage sensitivity at the cell's resting potential, the voltage where the SHG is minimal, and the amplitude of the signal at that voltage for each of the four compounds. These measures show that x2 and x3 are complex numbers for all compounds except all-trans retinal, consistent with the proximities of excitation and/or emission wavelengths to molecular resonances. Estimates of probe orientation and location in the membrane electric field show that, for the far-fromresonance case, the shot noise-limited signal/noise ratio depends on the location of the probe in the membrane, and on x3 but not on x2.
Studying solid-state electronic conductance of biological molecules requires interfacing the biomolecules with electronic conductors without altering the molecules. To this end, we developed and present here a simple, solution-based approach of conjugating Bacteriorhodopsin (bR)-containing membranes with metallic clusters. Our approach is based on selective electroless deposition of Pt nanoparticles on suspended membrane fragments through chemical interaction of the Pt precursor with the proteins residues. Optical absorption measurements show that the membranes retain their photoactivity after this procedure. The result of the Pt deposition is best shown by conductive probe atomic force microscopy mapping of electronic current transport across such soft biological layers, which allows reproducible microscopic electrical characterization of the electronic conductance of the resulting junctions. The maps show that chemical contact between the protein and the deposited electrode yields better electronic coupling than a physical contact, demonstrating that also with biomolecules, the type and method of deposition of the electrical contact are critical to the behavior of the resulting junctions.
Protein structures can facilitate long-range electron transfer in solution. But a fundamental question remains: can these structures also serve as solid-state electronic conductors? Answering this question requires methods for studying conductivity of the "dry" protein (which only contains tightly bound structured water molecules) sandwiched between two electronic conductors in a solid-state type configuration. If successful, such systems could serve as the basis for future, bioinspired electronic device technology. In this Account, we survey, analyze, and compare macroscopic and nanoscopic (scanning probe) solid-state conductivities of proteins, noting the inherent constraints of each of these, and provide the first status report on this research area. This analysis shows convincing evidence that "dry" proteins pass orders of magnitude higher currents than saturated molecules with comparable thickness and that proteins with known electrical activity show electronic conductivity, nearly comparable to that of conjugated molecules ("wires"). These findings suggest that the structural features of proteins must have elements that facilitate electronic conductivity, even if they do not have a known electron transfer function. As a result, proteins could serve not only as sensing, polar,or photoactive elements in devices (such as field-effect transistor configurations) but also as electronic conductors. Current knowledge of peptide synthesis and protein modification paves the way toward a greater understanding of how changes in a protein's structure affect its conductivity. Such an approach could minimize the need for biochemical cascades in systems such as enzyme-based circuits, which transduce the protein's response to electronic current. In addition, as precision and sensitivity of solid-state measurements increase, and as knowledge of the structure and function of "dry" proteins grows, electronic conductivity may become an additional approach to study electron transfer in proteins and solvent effects without the introduction of donor or acceptor moieties. We are particularly interested in whether evolution might have prompted the electronic carrier transport capabilities of proteins for which no electrically active function is known in their native biological environment and anticipate that further research may help address this fascinating question.
Proteorhodopsin (PR), a retinal protein of marine proteobacteria, is a light-driven proton pump. Light excitation of PR initiates a photocycle that triggers the translocation of a proton from the cytoplasmic to the extracellular side. Asp97 is located near the retinal-protonated Schiff base and serves as the proton acceptor during the photocycle. The pKa of Asp97 is unusually high (∼7.0), especially in comparison with that of its bR equivalent residue Asp85 (∼2.6). We have studied possible anions binding to PR (produced from gene vector eBAC31A08 and expressed in Escherichia coli) and their effect on its absorption maxima, Asp97 pKa, and the photocycle. We found that chloride, sulfate, trifluoroacetate, trichloroacetate, and tribromoacetate anions bind to PR and regulate Asp97 pKa. Asp97 has a pKa of ∼7.8 in water, but the value decreases to ∼7.0 in the presence of sulfate and chloride anions. Halogeno-acetate anions elevated Asp97 pKa and compete with chloride anions. The most significant effect was detected with tribromoacetate anions that increase the Asp97 pKa to a value of >9.5. The possibility that PR has at least two binding sites for these anions is discussed. In addition, we have demonstrated that these anions bind to PR also at high pH (above Asp97 pKa) because they affect the rate of growth and thermal decay of the M intermediate in the photocycle of PR.
Excited-state dynamics of xanthorhodopsin (XR) and of salinixanthin (SX) in ethanol were investigated by ultrafast pump-hyperspectral probe spectroscopy. Following excitation to the strongly allowed S2 state of the SX chromophore, transient spectra were recorded photoselectively in the range 430-850 nm. Global kinetic analysis of these data shows the following. (1) Efficient energy transfer from S2 of the SX in XR to its retinal moiety is verified here. The lifetime of S2 in SX is, however, determined to be ∼20 fs, much shorter than previously reported. (2) Branching ratios of excitation transfer from S2 to Si, to S*, and to retinal in XR are measured leading to species associated difference spectra (SADS) for all the states involved. Strong protein effects are detected on these branching probabilities. (3) Si and S* absorption bands in both systems exhibit anisotropy well below the expected r = 0.4, indicating an angle of ∼25° between the S0 → S2 and S1 →- Sn/S* → Sn transition dipoles. The latter allows confident assignment of the debated S* absorption band to an excited state of SX, and not to "hot" S0. In light of the extremely fast IC from S2 to lower excited singlets, possible involvement of ballistic IC in SX, and of coherent energy transfer in XR, are discussed.
Seeing the light: A joint experimental and theoretical approach delivers the free gasphase high-resolution absorption spectrum of the chromophore conformations implicated In the spectroscopy of retinal proteins (see scheme). Notably, many retinal pigments absorb close to the gasphase value. Chemical equation presentation
The primary photochemical dynamics of Hb. pharaonis Halorhodopsin (pHR) are investigated by femtosecond visible pump-near IR dump-hyperspectral probe spectroscopy. The efficiency of excited state depletion is deduced from transient changes in absorption, recorded with and without stimulated emission pumping (SEP), as a function of the dump delay. The concomitant reduction of photocycle Population is assessed by probing the "K" intermediate difference spectrum. Results show that the cross section for stimulating emission is nearly constant throughout the fluorescent state lifetime. Probing "K" demonstrates that dumping produces a proportionate reduction in photocycle yields. We conclude that, despite its nonexponential internal conversion (IC) kinetics, the fluorescent state in pHR constitutes a single intermediate in the photocycle. This contrasts with Conclusions drawn from the Study of primary events in the related chloride pump from Hb. salinarum (sHR), believed to produce the "K" intermediate from a distinct short-lived subpopulation in the excited state. Our discoveries concerning internal conversion dynamics in pHR are discussed in light of recent expectations for similar excited state dynamics in both proteins.
Electron transfer (ET) through proteins, a fundamental element of many biochemical reactions, is studied Intensively in aqueous solutions. Over the past decade, attempts were made to Integrate proteins into solid-state Junctions in order to study their electronic conductance properties. Most such studies to date were conducted with one or very few molecules In the Junction, using scanning probe techniques. Here we present the high-yield, reproducible preparation of large-area monolayer Junctions, assembled on a Si platform, of proteins of three different families: azurln (Az), a blue-copper ET protein, bacterlorhodopsln (bR), a membrane proteln-chromophore complex with a proton pumping function, and bovine serum albumin (BSA). We achieve highly reproducible electrical current measurements with these three types of monolayers using appropriate top electrodes. Notably, the current-voltage (i-V) measurements on such Junctions show relatively minor differences between Az and bR, even though the latter lacks any known ET function. Electron Transport (ETp) across both Az and bR is much more efficient than across BSA, but even for the latter the measured currents are higher than those through a monolayer of organic, C18 alkyl chains that is about half as wide, therefore suggesting transport mechanlsm(s) different from the often considered coherent mechanism. Our results show that the employed proteins maintain their conformation under these conditions. The relatively efficient ETp through these proteins opens up possibilities for using such blomolecules as current-carrying elements in solid-state electronic devices.
Structural restraints provided by solid-state NMR measurements of the metarhodopsin 11 intermediate are combined with molecular dynamics simulations to help visualize structural changes in the light activation of rhodopsin. Since the timescale for the formation of the metarhodopsin H intermediate (>1 ms) is beyond that readily accessible by molecular dynamics, we use NMR distance restraints derived from (13)C dipolar recoupling measurements to guide the simulations. The simulations yield a working model for how photoisomerization of the 11-cis retinylidene chromophore bound within the interior of rhodopsin is coupled to transmembrane helix motion and receptor activation. The mechanism of activation that emerges is that multiple switches on the extracellular (or intradiscal) side of rhodopsin trigger structural changes that converge to disrupt the ionic lock between helices H3 and H6 on the intracellular side of the receptor. (C) 2009 Elsevier Ltd. All rights reserved.
Femtosecond pump, NIR dump experiments demonstrate that contrary to previous reports, nonexponential internal conversion in Natronomonas pharaonis Halorhodopsin doesn't reflect bifurcation in the fluorescent state to short lived reactive, and slowly decaying non reactive populations.
Internal conversion and energy transfer from S2 of the salinixanthine antenna in xanthorhodopsin takes less than 30 fs, leading to lower singlets with rotated transition dipoles. This timescale questions models of resonant electronic energy transfer.
Halorhodopsin from Natronomonas pharaonis (NpHR) is a member of the retinal protein group and serves as a light-driven chloride pump in which chloride ions are transported through the membrane following light absorption by the retinal chromophore. In this study, we examined two main issues: (1) factors controlling the binding of the retinal chromophore to the NpHR opsin and (2) the ability of the NpHR opsin to catalyze the thermal isomerization of retinal isomers. We have revealed that the reconstitution process of pharaonis HR (NpHR) pigment from its apoprotein and all-trans retinal depends on the pH, and the process has a pK(a) of 5.8 +/- 0.1. It was proposed that this pK(a) is associated with the pK(a) of the lysine residue that binds the retinal chromophore (Lys256). The pigment formation is regulated by the concentration of sodium chloride, and the maximum yield was observed at 3.7 M NaCl. The low yield of pigment in a lower concentration of NaCl (
Essential for the biological function of the light-driven proton pump, bacteriorhodopsin (BR), and the light sensor, sensory rhodopsin II (SRII), is the coupling of the activated retinal chromophore to the hosting protein moiety. In order to explore the dynamics of this process we have performed ultrafast transient mid-infrared spectroscopy on isotopically labeled BR and SRII samples. These include SRII in D2O buffer, BR in H218O medium, SRII with 15N-labeled protein, and BR with 13C1413C15-labeled retinal chromophore. Via observed shifts of infrared difference bands after photoexcitation and their kinetics we provide evidence for nonchromophore bands in the amide I and the amide II region of BR and SRII. A band around 1550 cm-1 is very likely due to an amide II vibration. In the amide I region, contributions of modes involving exchangeable protons and modes not involving exchangeable protons can be discerned. Observed bands in the amide I region of BR are not due to bending vibrations of protein-bound water molecules. The observed protein bands appear in the amide I region within the system response of ca. 0.3 ps and in the amide II region within 3 ps, and decay partially in both regions on a slower time scale of 9-18 ps. Similar observations have been presented earlier for BR5.12, containing a nonisomerizable chromophore (R. Gross et al. J. Phys. Chem. B 2009, 113, 7851-7860). Thus, the results suggest a common mechanism for ultrafast protein response in the artificial and the native system besides isomerization, which could be induced by initial chromophore polarization.
The visual pigment rhodopsin is unique among the G protein-coupled receptors in having an 11-cis retinal chromophore covalently bound to the protein through a protonated Schiff base linkage. The chromophore locks the visual receptor in an inactive conformation through specific steric and electrostatic interactions. This efficient inverse agonist is rapidly converted to an agonist, the unprotonated Schiff base of all-trans retinal, upon light activation. Here, we use magic angle spinning NMR spectroscopy to obtain the 13C chemical shifts (C5-C20) of the all-trans retinylidene chromophore and the 15N chemical shift of the Schiff base nitrogen in the active metarhodopsin II intermediate. The retinal chemical shifts are sensitive to the conformation of the chromophore and its molecular interactions within the protein-binding site. Comparison of the retinal chemical shifts in metarhodopsin II with those of retinal model compounds reveals that the Schiff base environment is polar. In particular, the 13C15 and 15Nε chemical shifts indicate that the CdN bond is highly polarized in a manner that would facilitate Schiff base hydrolysis. We show that a strong perturbation of the retinal 13C12 chemical shift observed in rhodopsin is reduced in wild-type metarhodopsin II and in the E181Q mutant of rhodopsin. On the basis of the T1 relaxation time of the retinal 13C18 methyl group and the conjugated retinal 13C5 and 13C8 chemical shifts, we have determined that the conformation of the retinal C6-C7 single bond connecting the β-ionone ring and the retinylidene chain is 6-s-cis in both the inactive and the active states of rhodopsin. These results are discussed within the general framework of ligand-activated G protein-coupled receptors.
Photochemistry of all-trans tert-butylamine retinal protonated Schiff-base (TB-RPSB) is investigated by femtosecond pump-hyperspectral probe spectroscopy. Unlike the n-butyl analogue (NB-RPSB) no shifting of the transient spectral bands is observed upon tuning the excitation pulses from 395 to 475 nm. The 15 nm shift observed for NB-RPSB in similar experiments was assigned to unspecified ground state structural inhomogeneity. Present results indicate that is most likely due to the coexistence of C15{double bond, long}N double bond isomers in NB-RPSB. Elimination of this inhomogeneity in TB-RPSB makes it a more appropriate model for appreciating protein effects on RPSB photochemistry in retinal proteins.
Xanthorhodopsin (xR) is a recently discovered retinal protein that contains, in addition to the retinal chromophore, a carotenoid (salinixanthin) absorbing at 456, 486, and 520 nm, which functions as a light-harvesting antenna. We have studied the interactions between the two chromophores by monitoring the absorbance and circular dichroism (CD) spectroscopies of artificial pigments derived from synthetic retinal analogues characterized by shifted absorption maxima. In addition, we have followed the binding process of the synthetic chromophores to the apomembrane of xR. We have revealed that the CD spectrum of xR originated mainly from the carotenoid chromophore without a significant contribution of the retinal chromophore. Because the binding process rate of these analogues is slower compared to all-trans retinal, it was possible to detect and analyze the major alterations in the CD spectrum. It was revealed that the main changes occur as a result of binding site occupation by the retinal chromophore and not because of the formation of the retinal-protein covalent bond.
Two and three pulses experiments are conducted to record the elusive S1 vibrational spectrum of Retinal Protonated Schiff-Base in solution. We find a reduction in C=C stretching frequency and other shifted bands in the fluorescent state, whose relevance are discussed.
Bacteriorhodopsin, reconstituted with a sterically "locked" retinal chromophore, BR5.12, has frequently been used to elucidate elementary photoinduced processes in the native pigment bacteriorhodopsin. In this work, the vibrational response of BR5.12 to photoexcitation is investigated by means of femtosecond time-resolved mid-infrared and UV-vis spectroscopy. The electronically excited state of BR5.12 decays with a time constant of 18 ps. Neither in the UV-vis nor in the mid-IR spectral region are indications found for chromophore photoproducts, besides the full recovery of the electronic ground state. However, vibrational bands are observed at around 1660 and 1550 cm-1 in the protein amide I and amide II band regions, respectively. They are formed within a few picoseconds or even instantaneously. Thus, they appear faster than the Si decay and persist for at least 130 ps, i.e., for much longer than the Si lifetime. These findings strongly suggest that the observed bands must be assigned to protein vibrations and that they are not caused by a photoinduced temperature rise. Thus, for the first time, ultrafast protein vibrational changes are detected in BR5.12, that are not associated with isomerization. Possibly they can be related to the enhanced chemical reactivity of photoactivated BR5.12 reported in the literature. In wild-type bacteriorhodopsin, bands with very similar spectral and kinetic characteristics are observed, suggesting that they might originate from a similar mechanism which is not isomerization. A plausible mechanism is a polarization induced protein conformational change, as discussed in the literature.
Rhodopsin is a highly specialized G protein-coupled receptor (GPCR) that is activated by the rapid photochemical isomerization of its covalently bound 11-cis-retinal chromophore. Using two-dimensional solid-state NMR spectroscopy, we defined the position of the retinal in the active metarhodopsin II intermediate. Distance constraints were obtained between amino acids in the retinal binding site and specific 13C-labeled sites located on the β-ionone ring, polyene chain, and Schiff base end of the retinal. We show that the retinal C20 methyl group rotates toward the second extracellular loop (EL2), which forms a cap on the retinal binding site in the inactive receptor. Despite the trajectory of the methyl group, we observed an increase in the C20-Gly188 (EL2) distance consistent with an increase in separation between the retinal and EL2 upon activation. NMR distance constraints showed that the β-ionone ring moves to a position between Met207 and Phe208 on transmembrane helix H5. Movement of the ring toward H5 was also reflected in increased separation between the C∈ carbons of Lys296 (H7) and Met44 (H1) and between Gly121 (H3) and the retinal C18 methyl group. Helix-helix interactions involving the H3-H5 and H4-H5 interfaces were also found to change in the formation of metarhodopsin II reflecting increased retinal-protein interactions in the region of Glu122 (H3) and His211 (H5). We discuss the location of the retinal in metarhodopsin II and its interaction with sequence motifs, which are highly conserved across the pharmaceutically important class A GPCR family, with respect to the mechanism of receptor activation.
The second extracellular loop (EL2) of rhodopsin forms a cap over the binding site of its photoreactive 11-cis retinylidene chromophore. A crucial question has been whether EL2 forms a reversible gate that opens upon activation or acts as a rigid barrier. Distance measurements using solid-state 13C NMR spectroscopy between the retinal chromophore and the β4 strand of EL2 show that the loop is displaced from the retinal binding site upon activation, and there is a rearrangement in the hydrogen-bonding networks connecting EL2 with the extracellular ends of transmembrane helices H4, H5 and H6. NMR measurements further reveal that structural changes in EL2 are coupled to the motion of helix H5 and breaking of the ionic lock that regulates activation. These results provide a comprehensive view of how retinal isomerization triggers helix motion and activation in this prototypical G protein-coupled receptor.
Controlling the orientation of bacteriorhodopsin (bR) monolayers is an important step in studying and utilizing such membranes in a solid-state configuration in., for example, photoelectric applications. Macroscopic monolayers of bR have been fabricated in a variety of ways, but characterization of the distribution of the two possible orientations in which the membrane fragments can adsorb has not yet been addressed experimentally. Here, an approach is presented that labels only one of the membrane surfaces by electroless growth of metal nanoparticles on top of the solid-supported membranes. In, this way, it is possible to observe which surface of the membranes is actually adsorbed to the substrate. How this technique serves to interface the membranes with a top metal contact for further electrical measurements is also demonstrated.
Interfacing functional proteins with solid supports for device applications is a promising route to possible applications in bio-electronics, -sensors, and -optics. Various possible applications of bacteriorhodopsin (bR) have been explored and reviewed since the discovery of bR. This tutorial review discusses bR as a medium for biomolecular optoelectronics, emphasizing ways in which it can be interfaced, especially as a thin film, solid-state current-carrying electronic element.
The interfacing of functional proteins with solid supports and the study of related protein-adsorption behavior are promising and important for potential device applications. In this study, we describe the preparation of bacteriorhodopsin (bR) monolayers on Br-terminated solid supports through covalent attachment. The bonding, by chemical reaction of the exposed free amine groups of bR with the pendant Br group of the chemically modified solid surface, was confirmed both by negative AFM results obtained when acetylated bR (instead of native bR) was used as a control and by weak bands observed at around 1610 cm-1 in the FTIR spectrum. The coverage of the resultant bR monolayer was significantly increased by changing the pH of the purple-membrane suspension from 9.2 to 6.8. Although bR, which is an exceptionally stable protein, showed a pronounced loss of its photoactivity in these bR monolayers, it retained full photoactivity after covalent binding to Br-terminated alkyls in solution. Several characterization methods, including atomic force microscopy (AFM), contact potential difference (CPD) measurements, and UV/Vis and Fourier transform infrared (FTIR) spectroscopy, verified that these bR monolayers behaved significantly different from native bR. Current-voltage (I-V) measurements (and optical absorption spectroscopy) suggest that the retinal chromophore is probably still present in the protein, whereas the UV/Vis spectrum suggests that it lacks the characteristic covalent protonated Schiff base linkage. This finding sheds light on the unique interactions of biomolecules with solid surfaces and may be significant for the design of protein-containing device structures.
Xanthorhodopsin is a light-driven proton pump in the extremely halophilic bacterium Salinibacter ruber. Its unique feature is that besides retinal it has a carotenoid, salinixanthin, with a light harvesting function. Tight and specific binding of the carotenoid antenna is controlled by binding of the retinal. Addition of all-trans retinal to xanthorhodopsin bleached with hydroxylamine restores not only the retinal chromophore absorption band, but causes sharpening of the salinixanthin bands reflecting its rigid binding by the protein. In this report we examine the correlation of the changes in the two chromophores during bleaching and reconstitution with native all-trans retinal, artificial retinal analogs and retinol. Bleaching and reconstitution both appear to be multistage processes. The carotenoid absorption changes during bleaching occurred not only upon hydrolysis of the Schiff base but continued while the retinal was leaving its binding site. In the case of reconstitution, the 13-desmethyl analog formed the protonated Schiff base slower than retinal, and provided the opportunity to observe changes in carotenoid binding at various stages. The characteristic sharpening of the carotenoid bands, indicative of its reduced conformational heterogeneity in the binding site, occurs when the retinal occupies the binding site but the covalent bond to Lys-240 via a Schiff base is not yet formed. This is confirmed by the results for retinol reconstitution, where the Schiff base does not form but the carotenoid exhibits its characteristic spectral change from the binding.
Molecular electronics is very much about contacts, and thus understanding of any generic contact effect is essential to its advance. For example, it is still not obvious in how far variations in electrode roughness of macroscopic contacts can lead to rectification. Here we report an investigation of this contact effect on electronic transport properties using metal-insulator-metal planar junctions with a 5 nm thick bacteriorhodopsin-based insulator as model system. We demonstrate that the experimentally observed rectifying behavior is not an intrinsic property of the molecules used, but rather of the local contact quality. Even a slight increase in surface roughness of the bottom electrode gives rise to distinct rectifying behavior in these and, by extrapolation, possibly other molecular junctions.
Photochemistry of protonated all-trans retinal Schiff-base (RPSB), the active chromophore in bacteriorhodopsin (BR) and sensory rhodopsins has been investigated with femtosecond multichannel pump probe spectroscopy at two excitation wavelengths. In a recent study of an RPSB analogue which mimics the opsin shift in BR, significant excitation wavelength dependence of the transient spectra was observed and assigned to structural inhomogeneity in the ground state. Our aim is to determine if similar inhomogeneity is manifest also in the native RPSB in solution which is the archtypical model for appreciating the apoproteins effect on retinal protein photochemistry. Significant differences in transient spectra collected after 390 and 480 nm excitation are observed and are likewise assigned to ground state structural inhomogeneity. For both excitation wavelengths the stimulated emission band extends well beyond 900 nm, much deeper than previously reported in the near IR. The shallowness of this feature and a newly revealed dip in its intensity near 760 nm are attributed to an overlapping excited state absorption, as reported for BR. This assignment identifies the documented RPSB excited state absorption band which peaks at 500 nm as the counterpart of the 460 nm absorption feature reported for the reactive excited state of BR coined I460. Implications of this assignment, and possible mechanisms for inhomogeneous broadening of the electronic absorption spectrum of RPSB in solution are discussed.
Incorporation of photodynamic therapy into clinical practice for induction of vascular photo-occlusion highlights the need to prevent adverse phototoxicity to sensitive juxtaposed tissues, particularly in the retina. We developed a system termed "competitive quenching" to prevent adverse phototoxic damage. It involves differential compartmentalization of a photoactivator to the intravascular compartment for photoexcitation and delivery of phototoxicity to targeted vessels. A different photodynamic agent is partitioned to the extravascular retinal space to quench reactive oxygen species generated by photosensitization, thereby protecting the adjacent retinal tissues from adverse phototoxicity. The absorption spectra of quenchers must span wavelengths that are shorter and excluded from the spectral range of photoexcitation light to prevent photoactivation of the quencher. Perihydroxylated perylenequinones were found to be suitable to function as "competitive quenchers" with the prototype hypericin identified as a potent quencher. Here we examined the mechanisms operative in competitive quenching and suggest that hypericin forms a complex with verteporfin, thereby quenching singlet oxygen formation. Furthermore, we show that hypericin, with six phenolic hydroxyls, protects retinal and endothelial hybridoma cells from phototoxicity more effectively than the dimethyl tetrahydroxy helianthrone structural analog with only four such phenolic hydroxyls. The findings suggest that hydroxyl numbers contribute to the efficacy of competitive quenching.
A reliable and reproducible method for preparing bacteriorhodopsin (bR)-containing metal-biomolecule-monolayer-metal planar junctions via vesicle fusion tactics and soft deposition of Au top electrodes is reported. Optimum monolayer and junction preparations, including contact effects, are discussed. The electron-transport characteristics of bR-containing membranes are studied systematically by incorporating native bR or artificial bR pigments derived from synthetic retinal analogues, into single solid-supported lipid bilayers. Current-voltage (I-V) measurements at ambient conditions show that a single layer of such bR-containing artificial lipid bilayers pass current in solid electrode/bilayer/solid electrode structures. The current is passed only if retinal or its analogue is present in the protein. Furthermore, the preparations show photoconductivity as long as the retinal can isomerize following light absorption. Optical characterization suggests that the junction photocurrents might be associated with a photochemically induced M-like intermediate of bR. I-V measurements along with theoretical estimates reveal that electron transfer through the protein is over four orders of magnitude more efficient than what would be estimated for direct tunneling through 5 nm of water-free peptides. Our results furthermore suggest that the light-driven proton-pumping activity of the sandwiched solid-state bR monolayer contributes negligibly to the steady-state light currents that are observed, and that the orientation of bR does not significantly affect the observed I-V characteristics.
A retinal Schiff base analogue which artificially mimics the protein-induced red shifting of absorption in bacteriorhodopsin (BR) has been investigated with femtosecond multichannel pump probe spectroscopy. The objective is to determine if the catalysis of retinal internal conversion in the native protein BR, which absorbs at 570 nm, is directly correlated with the protein-induced Stokes shifting of this absorption band otherwise known as the "opsin shift". Results demonstrate that the red shift afforded in the model system does not hasten internal conversion relative to that taking place in a free retinal-protonated Schiff base (RPSB) in methanol solution, and stimulated emission takes place with biexponential kinetics and characteristic timescales of approximately 2 and 10.5 ps. This shows that interactions between the prosthetic group and the protein that lead to the opsin shift in BR are not directly involved in reducing the excited-state lifetime by nearly an order of magnitude. A sub-picosecond phase of spectral evolution, analogues of which are detected in photoexcited retinal proteins and RPSBs in solution, is observed after excitation anywhere within the intense visible absorption band. It consists of a large and discontinuous spectral shift in excited-state absorption and is assigned to electronic relaxation between excited states, a scenario which might also be relevant to those systems as well. Finally, a transient excess bleach component that tunes with the excitation wavelength is detected in the data and tentatively assigned to inhomogeneous broadening in the ground state absorption band. Possible sources of such inhomogeneity and its relevance to native RPSB photochemistry are discussed.
Recent studies of the activation mechanism of rhodopsin involving Fourier-transform infrared spectroscopy and a combination of chromophore modifications and site-directed mutagenesis reveal an allosteric coupling between two protonation switches. In particular, the ring and the 9-methyl group of the all-trans retinal chromophore serve to couple two proton-dependent activation steps: proton uptake by a cytoplasmic network between transmembrane (TM) helices 3 and 6 around the conserved ERY (Glu-Arg-Tyr) motif and disruption of a salt bridge between the retinal protonated Schiff base (PSB) and a protein counterion in the TM core of the receptor. Retinal analogs lacking the ring or 9-methyl group are only partial agonists - the conformational equilibrium between inactive Meta I and active Meta II photoproduct states is shifted to Meta I. An artificial pigment was engineered, in which the ring of retinal was removed and the PSB salt bridge was weakened by fluorination of C14 of the retinal polyene. These modifications abolished allosteric coupling of the proton switches and resulted in a stabilized Meta I state with a deprotonated Schiff base (Meta ISB). This state had a partial Meta II-like conformation due to disruption of the PSB salt bridge, but still lacked the cytoplasmic proton uptake reaction characteristic of the final transition to Meta II. As activation of native rhodopsin is known to involve deprotonation of the retinal Schiff base prior to formation of Meta II, this Meta ISB state may serve as a model for the structural characterization of a key transient species in the activation pathway of a prototypical G protein-coupled receptor.
Sub-10-fs laser pulses are used to impulsively photoexcite bacteriorhodopsin (BR) suspensions and probe the evolution of the resulting vibrational wave packets. Fourier analysis of the spectral modulations induced by transform-limited as well as linearly chirped excitation pulses allows the delineation of excited- and ground-state contributions to the data. On the basis of amplitude and phase variations of the modulations as a function of the dispersed probe wavelength, periodic modulations in absorption above 540 nm are assigned to ground-state vibrational coherences induced by resonance impulsive Raman spectral activity (RISRS). Probing at wavelengths below 540 nm-the red edge of the intense excited-state absorption band-uncovers new vibrational features which are accordingly assigned to wave packet motions along bound coordinates on the short-lived reactive electronic surface. They consist of high- and low-frequency shoulders adjacent to the strong C=C stretching and methyl rock modes, respectively, which have ground-state frequencies of 1008 and 1530 cm-1. Brief activity centered at ∼900 cm-1, which is characteristic of ground-state HOOP modes, and strong modulations in the torsional frequency range appear as well. Possible assignments of the bands and their implication to photoinduced reaction dynamics in BR are discussed. Reasons for the absence of similar signatures in the pump-probe spectral modulations at longer probing wavelengths are considered as well.
Halorhodopsin from Natronobacterium pharaonis (pHR) is a light-driven chloride pump in which photoisomerzation of a retinal chromophore triggers a photocycle which leads to a chloride anion transport across the plasma membrane. Similarly to other retinal proteins the protonated Schiff base (PSB), which covalently links the retinal to the protein, does not experience hydrolysis reaction at room temperature even though several water molecules are located in the protonated Schiff base (PSB) vicinity. In the present studies we have revealed that in contrast to other studied archaeal rhodopsins, temperature increase to about 70°C hydrolyses the PSB linkage of pHR. The rate of the reaction is affected by Cl- concentration and reveals an anion binding site (in addition to the Cl- in the SB vicinity) with a binding constant of 100mM (measured at 70°C). We suggest that this binding site is located on the extracellular side and its possible role in the Cl - pumping mechanism is discussed. The rate of the hydrolysis reaction is affected by the nature of the anion bound to pHR. Substitution of the Cl- anion by Br-, I- and SCN- exhibits similar behavior to that of Cl- in the region of 100mM but higher concentrations are needed for N3-, HCOO- and NO2- to achieve similar behavior. Steady state pigment illumination accelerates the reaction and reduces the energy of activation and the frequency factor. Adjusting the sample temperature to 25°C following the hydrolysis reaction led to about 80% pigment recovery. However, the newly reformed pigment is different from the mother pigment and has different characteristics. It is concluded that the apo-membrane adopts a modified conformation and/or aggregated state which rebinds the retinal to give a new conformation of the pHR pigment.
Bacteriorhodopsin (BR), a light-driven proton pump in Halobacterium salinarum, accommodates two resting forms of the retinylidene chromophore, the all-trans form (AT-BR) and the 13-cis,15-syn form (13C-BR). Both isomers are present in thermal equilibrium in the dark, but only the all-trans form has proton-pump activity. In this study, we applied low-temperature Fourier-transform infrared (FTIR) spectroscopy to 13C-BR at 77 K and compared the local structure around the chromophore before and after photoisomerization with that in AT-BR. Strong hydrogen-out-of-plane (HOOP) vibrations were observed at 964 and 958 cm-1 for the K state of 13C-BR (13C-BRK) versus a vibration at 957 cm-1 for the K state of AT-BR (AT-BR K). In AT-BRK, but not in 13C-BRK, the HOOP modes exhibit isotope shifts upon deuteration of the retinylidene at C15 and at the Schiff base nitrogen. Whereas the HOOP modes of AT-BRK were significantly affected by the mutation of Thr89, this was not the case for the HOOP modes of 13C-BRx. These observations imply that, while the chromophore distortion is localized near the Schiff base in AT-BRK, it is located elsewhere in 13C-BRK. By use of [ζ-15N]lysine- labeled BR, we identified the N-D stretching vibrations of the 13C-BR Schiff base (in D2O) at 2173 and 2056 cm-1, close in frequency to those of AT-BR. These frequencies indicate strong hydrogen bonding of the Schiff base in 13C-BR, presumably with a water molecule as in AT-BR. In contrast, the N-D stretching vibration appears at 2332 and 2276 cm-1 in 13C-BRK versus values of 2495 and 2468 cm-1 for AT-BRK, suggesting that the rupture of the Schiff base hydrogen bond that occurs in AT-BRK does not occur in 13C-BRK. Rotational motion of the Schiff base upon retinal isomerization is probably smaller in magnitude for 13C-BR than for AT-BR. These differences in the primary step are possibly related to the absence of light-driven proton pumping by 13C-BR.
Coupling of noble-metal nanoparticles (NPs) into electronics might lead to interesting new avenues in nanoelectronics. It was found that currents through metal//organic (or inorganic) insulator/Au NP monolayer//metal planar junctions (2) are orders of magnitude higher than what is obtained without the NP monolayer (1). (Graph Presented).
The visual pigment rhodopsin is a seven-transmembrane (7-TM) G protein-coupled receptor (GPCR). Activation of rhodopsin involves two pH-dependent steps: proton uptake at a conserved cytoplasmic motif between TM helices 3 and 6, and disruption of a salt bridge between a protonated Schiff base (PSB) and its carboxylate counterion in the transmembrane core of the receptor. Formation of an artificial pigment with a retinal chromophore fluorinated at C14 decreases the intrinsic pKa of the PSB and thereby destabilizes this salt bridge. Using Fourier transform infrared difference and UV-visible spectroscopy, we characterized the pH-dependent equilibrium between the active photoproduct Meta II and its inactive precursor, Meta I, in the 14-fluoro (14-F) analogue pigment. The 14-F chromophore decreases the enthalpy change of the Meta I-to-Meta II transition and shifts the Meta I/Meta II equilibrium toward Meta II. Combining C14 fluorination with deletion of the retinal β-ionone ring to form a 14-F acyclic artificial pigment uncouples disruption of the Schiff base salt bridge from transition to Meta II and in particular from the cytoplasmic proton uptake reaction, as confirmed by combining the 14-F acyclic chromophore with the E134Q mutant. The 14-F acyclic analogue formed a stable Meta I state with a deprotonated Schiff base and an at least partially protonated protein counterion. The combination of retinal modification and site-directed mutagenesis reveals that disruption of the protonated Schiff base salt bridge is the most important step thermodynamically in the transition from Meta I to Meta II. This finding is particularly important since deprotonation of the retinal PSB is known to precede the transition to the active state in rhodopsin activation and is consistent with models of agonist-dependent activation of other GPCRs.
Studying electron transport (ET) through proteins is hampered by achieving reproducible experimental configurations, particularly electronic contacts to the proteins. The transmembrane protein bacteriorhodopsin (bR), a natural light-activated proton pump in purple membranes of Halobacterium salinarum, is well studied for biomolecular electronics because of its sturdiness over a wide range of conditions. To date, related studies of dry bR systems focused on photovoltage generation and photoconduction with multilayers, rather than on the ET ability of bR, which is understandable because ET across 5-nm-thick, apparently insulating membranes is not obvious. Here we show that electronic current passes through bR-containing artificial lipid bilayers in solid "electrode-bilayer-electrode" structures and that the current through the protein is more than four orders of magnitude higher than would be estimated for direct tunneling through 5-nm, water-free peptides. We find that ET occurs only if retinal or a close analogue is present in the protein. As long as the retinal can isomerize after light absorption, there is a photo-ET effect. The contribution of light-driven proton pumping to the steady-state photocurrents is negligible. Possible implications in view of the suggested early evolutionary origin of halobacteria are noted.
Halorhodopsin from Natronomonas pharaonis (pHR) is a light-driven chloride pump that transports a chloride anion across the plasma membrane following light absorption by a retinal chromophore which initiates a photocycle. Analysis of the amino acid sequence of pHR reveals three cysteine residues (Cys160, Cys184, and Cys186) in helices D and E. Here we have labeled the cysteine residues with nitroxide spin labels and studied using electron paramagnetic resonance (EPR) spectroscopy their mobility, accessibility to various reagents, and the distance between the labels. It was revealed by following the d1/d parameter that the distance between the spin labels is ca. 13-15 Å. The EPR spectrum suggests that one label has a restricted mobility while the other two are more mobile. Only one label is accessible to hydrophilic paramagnetic broadening reagents leading to the conclusion that this label is exposed to the water phase. All three labels are reduced by ascorbic acid and reoxidized by molecular oxygen. The rate of the oxidation is accelerated following retinal irradiation indicating that the protein experiences conformation alterations in the vicinity of the labels during the pigment photocycle. It is suggested that Cys186 is exposed to the bulk medium while Cys184, located close to the retinal ionone ring, exhibits an immobilized EPR signal and is characterized by a hydrophobic environment.
A visible-pump/UV-probe transient absorption is used to characterize the ultrafast dynamics of bacteriorhodopsin with 80-fs time resolution. We identify three spectral components in the 265- to 310-nm region, related to the all-trans retinal, tryptophan (Trp)-86 and the isomerized photoproduct, allowing us to map the dynamics from reactants to products, along with the response of Trp amino acids. The signal of the photoproduct appears with a time delay of ≈250 fs and is characterized by a steep rise (≈150 fs), followed by additional rise and decay components, with time scales characteristic of the J intermediate. The delayed onset and the steep rise point to an impulsive formation of a transition state on the way to isomerization. We argue that this impulsive formation results from a splitting of a wave packet of torsional modes on the potential surface at the branching between the all-trans and the cis forms. Parallel to these dynamics, the signal caused by Trp response rises in ≈200 fs, because of the translocation of charge along the conjugate chain, and possible mechanisms are presented, which trigger isomerization.
Isomerization of the 11-cis retinal chromophore in the visual pigment rhodopsin is coupled to motion of transmembrane helix H6 and receptor activation. We present solid-state magic angle spinning NMR measurements of rhodopsin and the metarhodopsin II intermediate that support the proposal that interaction of Trp2656.48 with the retinal chromophore is responsible for stabilizing an inactive conformation in the dark, and that motion of the β-ionone ring allows Trp2656.48 and transmembrane helix H6 to adopt active conformations in the light. Two-dimensional dipolar-assisted rotational resonance NMR measurements are made between the C19 and C20-methyl groups of the retinal and uniformly 13C-labeled Trp265 6.48. The retinal C20-Trp2656.48 contact present in the dark-state of rhodopsin is lost in metarhodopsin II, and a new contact is formed with the C19 methyl group. We have previously shown that the retinal translates 4-5 Å toward H5 in metarhodopsin II. This motion, in conjunction with the Trp-C19 contact, implies that the Trp2656.48 side-chain moves significantly upon rhodopsin activation. NMR measurements also show that a packing interaction in rhodopsin between Trp2656.48 and Gly121 3.36 is lost in metarhodopsin II, consistent with H6 motion away from H3. However, a close contact between Gly1203.35 on H3 and Met86 2.53 on H2 is observed in both rhodopsin and metarhodopsin II, suggesting that H3 does not change orientation significantly upon receptor activation.
Using Fourier transform infrared (FTIR) difference spectroscopy, we have studied the impact of sites and extent of methylation of the retinal polyene with respect to position and thermodynamic parameters of the conformational equilibrium between the Meta I and Meta II photoproducts of rhodopsin. Deletion of methyl groups to form 9-demethyl and 13-demethyl analogues, as well as addition of a methyl group at C10 or C12, shifted the Meta I/Meta II equilibrium toward Meta I, such that the retinal analogues behaved like partial agonists. This equilibrium shift resulted from an apparent reduction of the entropy gain of the transition of up to 65%, which was only partially offset by a concomitant reduction of the enthalpy increase. The analogues produced Meta II photoproducts with relatively small alterations, while their Meta I states were significantly altered, which accounted for the aberrant transitions to Meta II. Addition of a methyl group at C14 influenced the thermodynamic parameters but had little impact on the position of the Meta I/Meta II equilibrium. Neutralization of the residue 134 in the E134Q opsin mutant increased the Meta II content of the 13-demethyl analogue, but not of the 9-demethyl analogue, indicating a severe impairment of the allosteric coupling between the conserved cytoplasmic ERY motif involved in proton uptake and the Schiff base/Glu 113 microdomain in the 9-demethyl analogue. The 9-methyl group appears therefore essential for the correct positioning of retinal to link protonation of the cytoplasmic motif with protonation of Glu 113 during receptor activation.
Acetylation of purple membranes ( PM) significantly enhances the surface photovoltage that they exhibit, if adsorbed as a monolayer on a solid surface; we suggest that this increase is due to the improved orientation of the PM on the surface.
Photochemistry of retinal protonated Schiff-base analogue mimicking opsin shift of bacteriorhodopsin is studied. Results rule out correlations between BR's absorption red shifting and internal conversion catalysis. Indications for the involvement of multiple excited states uncovered.
Spectral modulations induced by 6fsec photoexcitation of bacteriorhodopsin are Fourier analyzed. Long lived undulations are assigned to ground state vibrational coherences, while possible excited state contributions are very short lived consisting mainly of HOOP motions.
Halorhodopsin from Natronomonas pharaonis is a light-driven chloride pump which transports a chloride anion across the plasma membrane following light absorption by a retinal chromophore which initiates a photocycle. It was shown that the chloride anion bound in the vicinity of retinal PSB can be replaced by several inorganic anions, including azide which converts the chloride pump into a proton pump and induces formation of an M-like intermediate detected in the bR photocycle but not in native halorhodopsin. Here we have studied the possibility of replacing the chloride anion with organic anions and have followed the photocycle under several conditions. It is revealed that the chloride can be replaced with a formate anion but not with larger organic anions such as acetate. Flash photolysis experiments detected in the formate pigment an M-like intermediate characterized by a lifetime much longer than that of the O intermediate. The lifetime of the M-like intermediate depends on the pH, and its decay is significantly accelerated at low pH. The decay rate exhibited a titration-like curve, suggesting that the protonation of a protein residue controls the rate of M decay. Similar behavior was detected in N. pharaonis pigments in which the chloride anion was replaced with NU2- and OCN- anions. It is suggested that the formation of the M-like intermediate indicates branching pathways from the L intermediate or basic heterogeneity in the original pigment.
Sensory rhodopsin II, a repellent phototaxis receptor from Natronomonas (Natronobacterium) pharaonis (NpSRII), forms a complex with its cognate transducer (NpHtrII). In micelles the two proteins form a 1:1 heterodimer, whereas in membranes they assemble to a 2:2 complex. Similarly to other retinal proteins, sensory rhodopsin II undergoes a bleaching reaction with hydroxylamine in the dark which is markedly catalyzed by light. The reaction involves cleavage of the protonated Schiff base bond which covalently connects the retinal chromophore to the protein. The light acceleration reflects protein conformation alterations, at least in the retinal binding site, and thus allows for detection of these changes in various conditions. In this work we have followed the hydroxylamine reaction at different temperatures with and without the cognate transducer. We have found that light irradiation reduces the activation energy of the hydroxylamine reaction as well as the frequency factor. A similar effect was found previously for bacteriorhodopsin. The interaction with the transducer altered the light effect both in detergent and membranes. The transducer interaction decreased the apparent light effect on the energy of activation and the frequency factor in detergent but increased it in membranes. In addition, we have employed an artificial pigment derived from a retinal analog in which the critical C13=C14 double bond is locked by a rigid ring structure preventing its isomerization. We have observed light enhancement of the reaction rate and reduction of the energy of activation as well as the frequency factor, despite the fact that this pigment does not experience C13=C14 double bond isomerization. It is suggested that retinal excited state polarization caused by light absorption of the "locked" pigment polarizes the protein and triggers relatively long-lived protein conformational alterations.
Activation of the visual pigment rhodopsin is initiated by isomerization of its retinal chromophore to the all-trans geometry, which drives the conformation of the protein to the active state. We have examined by FTIR spectroscopy the impact of a series of modifications at the ring of retinal on the activation process and on molecular interactions within the binding pocket. Deletion of ring methyl groups at C1 and C5 or replacement of the ring in diethyl or ethyl-methyl acyclic analogues resulted in partial agonists, for which the conformational equilibrium between the Meta I and Meta II photoproduct is shifted from the active Meta II side to the inactive Meta I side. While the Meta II states of these artificial pigments had a conformation similar to those of native Meta II, the Meta I states were different. Modifications on the ring of retinal had a particular impact on the interaction of Glu 122 within the ring-binding pocket and are shown to interfere with the Glu 134-mediated proton uptake during formation of Meta II. We further found, upon partial deletion of ring constituents, a decrease of the entropy change of the transition from Meta I to Meta II by up to 50%, while the concomitant reduction of the enthalpy term was less pronounced. These findings underline the particular importance of the ring and the ring methyl groups and are discussed in a model of receptor activation.
Proteorhodopsin, a retinal protein of marine proteobacteria similar to bacteriorhodopsin of the archaea, is a light-driven proton pump. Absorption of a light quantum initiates a reaction cycle (turnover time of ca. 50 ms), which includes photoisomerization of the retinal from the all-trans to the 13-cis form and transient deprotonation of the retinal Schiff base, followed by recovery of the initial state. We report here that in addition to this fast cyclic conversion, illumination at high pH results in accumulation of a long-lived photoproduct absorbing at 362 nm. This photoconversion is much more efficient in the D227N mutant in which the anionic Asp227, which together with Asp97 constitutes the Schiff base counterion, is replaced with a neutral residue. Upon illumination at pH 8.5, most of the D227N pigment is converted to the 362 nm species, with a quantum efficiency of ca. 0.2. The pK(a) for this transition in the wild type is 9.6, but decreased to 7.5 after mutation of Asp227. The short wavelength of the absorption maximum of the photoproduct indicates that it has a deprotonated Schiff base. In the dark, this photoproduct is converted back to the initial pigment with a time constant of 30 min (in D227N, at pH 8.5), but it can be reconverted more rapidly by illumination with near-UV light. Experiments with "locked" retinal analogues which selectively exclude rotation around either the C9=C10, C11=C12, or C13=C14 bond show that formation of the 362 nm species involves isomerization around the C13=C14 bond. In agreement with this, retinal extraction indicates that the 362 nm photoproduct is 13-cis whereas the initial state is predominantly all-trans. A rapid shift of the pH from 8.5 to 4 greatly accelerates thermal reconversion of the 362 nm species to the initial pigment, suggesting that its recovery involving the thermal isomerization of the chromophore is controlled by ionizable residues, primarily the Schiff base and Asp97. The transformation to the long-li
The retinal protein protonated Schiff base linkage plays a key role in the function of bacteriorhodopsin (bR) as a light-driven proton pump. In the unphotolyzed pigment, the Schiff base (SB) is titrated with a pKa of ∼13, but following light absorption, it experiences a decrease in the pKa and undergoes several alterations, including a deprotonation process. We have studied the SB titration using retinal analogues which have intrinsically lower pKa's which allow for SB titrations over a much lower pH range. We found that above pH 9 the channel for the SB titration is perturbed, and the titration rate is considerably reduced. On the basis of studies with several mutants, it is suggested that the protonation state of residue Glu204 is responsible for the channel perturbation. We suggest that above pH 12 a channel for the SB titration is restored probably due to titration of an additional protein residue. The observations may imply that during the bR photocycle and M photointermediate formation the rate of Schiff base protonation from the bulk is decreased. This rate decrease may be due to the deprotonation process of the "proton-releasing complex" which includes Glu204. In contrast, during the lifetime of the O intermediate, the protonated SB is exposed to the bulk. Possible implications for the switch mechanism, and the directionality of the proton movement, are discussed.
The bacteriorhodopsin (bR) monolayers were prepared by a self-assembly procedure on a solid surface. The orientation of monolayers on an Al substrate was determined using a Kelvin probe. The good orientation of purple membrane (PM) patches to the electrostatic asymmetry between the two sides of the membrane protein was described. Such monolayers, made from WT bR, exhibited a photoelectric response that was quite different from that of the bR multilayer and the bR suspension. It was observed that upon green-light illumination, the characteristic absorption of bR, with a maximum at ∼560 nm disappeared and a maximum at ∼410 nm appeared, indicating the formation of the M intermediate.
Bacteriorhodopsin is a membrane protein of the purple membrane (PM) of Halobacterium salinarum, which is isolated as sheets of highly organized two-dimensional hexagonal micro-crystals and for which water molecules play a crucial role that affects its function as a proton pump. In this paper we used single- and double-quantum 2H NMR as well as 1H and 2H diffusion NMR to characterize the interaction of water molecules with the PM in D2O suspensions. We found that, under the influence of a strong magnetic field on a concentrated PM sample (0.61 mM), the PM sheets affect the entire water population and a residual quadrupolar splitting (υq ∼5.5 Hz, 298 K, at 11.7 T) is observed for the D 2O molecules. We found that the residual quadrupolar coupling, the creation time in which a maximal DQF signal was obtained (τmax), and the relative intensity of the 2H DQF spectrum of the water molecules in the PM samples (referred to herein as NMR order parameters) are very sensitive to temperature, dilution, and chemical modifications of the PM. In concentrated PM samples in D2O, these NMR parameters seem to reflect the relative organization of the PM. Interestingly, we have observed that some of these parameters are sensitive to the efficiency of the trimer packing, as concluded from the apo-membrane behavior. The data for dionized blue membrane, partially delipidated sample, and detergent-treated PM show that these D2O NMR order parameters, which are magnetic field dependent, are sensitive to the structural integrity of the PM. In addition, we revealed that heating the PM sample inside or outside the NMR magnet has, after cooling, a different effect on the NMR characteristics of the water molecules in the concentrated PM suspensions. The difference in the D2O NMR order parameters for the PM samples, which were heated and cooled in the presence and in the absence of a strong magnetic field, corroborates the conclusions that the above D2O order parameters are indirect reflections of both microscopic and macroscopic order of the PM samples. In addition, 1H NMR diffusion measurements showed that at least three distinct water populations could be identified, based on their diffusion coefficients. These water populations seem to correlate with different water populations previously reported for the PM system.
Meta III is an inactive intermediate thermally formed following light activation of the visual pigment rhodopsin. It is produced from the Meta I/Meta II photoproduct equilibrium of rhodopsin by a thermal isomerization of the protonated Schiff base C=N bond of Meta I, and its chromophore configuration is therefore all-trans 15-syn. In contrast to the dark state of rhodopsin, which catalyzes exclusively the cis to trans isomerization of the C11=C12 bond of its 11-cis 15-anti chromophore, Meta III does not acquire this photoreaction specificity. Instead, it allows for light-dependent syn to anti isomerization of the C15=N bond of the protonated Schiff base, yielding Meta II, and for trans to cis isomerizations of C11=C12 and C9=C10 of the retinal polyene, as shown by FTIR spectroscopy. The 11-cis and 9-cis 15-syn isomers produced by the latter two reactions are not stable, decaying on the time scale of few seconds to dark state rhodopsin and isorhodopsin by thermal C15=N isomerization, as indicated by time-resolved FTIR methods. Flash photolysis of Meta III produces therefore Meta II, dark state rhodopsin, and isorhodopsin. Under continuous illumination, the latter two (or its unstable precursors) are converted as well to Meta II by presumably two different mechanisms.
Thermal isomerization of the retinal Schiff base C=N double bond is known to trigger the decay of rhodopsin's Meta I/Meta II photoproduct equilibrium to the inactive Meta III state [Vogel, R., Siebert, F., Mathias, G., Tavan, P., Fan, G., and Sheves, M. (2003) Biochemistry 42, 9863-9874]. Previous studies have indicated that the transition to Meta III does not occur under conditions that strongly favor the active state Meta II but requires a residual amount of Meta I in the initial photoproduct equilibrium. In this study we show that the triggering event, the thermal isomerization of the protonated Schiff base, is independent of the presence of Meta II and occurs even under conditions where the transition to Meta II is completely prevented. We have examined two examples in which the transitions from Lumi to Meta I or from Meta I to Meta II are blocked. This was achieved using dry films of rhodopsin and rhodopsin reconstituted into rather rigid lipid bilayers. In both cases, the resulting fully inactive room temperature photoproducts decay specifically by thermal isomerization of the protonated Schiff base C=N double bond to an all-trans 15-syn chromophore isomer, corresponding to that of Meta III. This thermal isomerization becomes less efficient as the conformation of the respective photoproduct approaches that of Meta II and is fully absent in a pure Meta II state. These results indicate that the decay of the Meta I/Meta II photoproduct equilibrium to Meta III proceeds via Meta I and not via Meta II.
Activation of the visual pigment rhodopsin is caused by 11-cis to -trans isomerization of its retinal chromophore. High-resolution solid-state NMR measurements on both rhodopsin and the metarhodopsin II intermediate show how retinal isomerization disrupts helix interactions that lock the receptor off in the dark. We made 2D dipolar-assisted rotational resonance NMR measurements between 13C-labels on the retinal chromophore and specific 13C-labels on tyrosine, glycine, serine, and threonine in the retinal binding site of rhodopsin. The essential aspects of the isomerization trajectory are a large rotation of the C20 methyl group toward extracellular loop 2 and a 4- to 5-Å translation of the retinal chromophore toward transmembrane helix 5. The retinal-protein contacts observed in the active metarhodopsin II intermediate suggest a general activation mechanism for class A G protein-coupled receptors involving coupled motion of transmembrane helices 5, 6, and 7.
Two dimensional (2D) solid-state 13C...13C dipolar recoupling experiments are performed on a series of model compounds and on the visual pigment rhodopsin to establish the most effective method for long range distance measurements in reconstituted membrane proteins. The effects of uniform labeling, inhomogeneous B1 fields, relaxation and dipolar truncation on cross peak intensity are investigated through NMR measurements of simple amino acid and peptide model compounds. We first show that dipolar assisted rotational resonance (DARR) is more effective than RFDR in recoupling long-range dipolar interactions in these model systems. We then use DARR to establish 13C-13C correlations in rhodopsin. In rhodopsin containing 4-13C-Tyr and 8,19-13C retinal, we observe two distinct tyrosine-to-retinal correlations in the DARR spectrum. The most intense cross peak arises from a correlation between Tyr268 and the retinal 19-13CH3, which are 4.8 Å apart in the rhodopsin crystal structure. A second cross peak arises from a correlation between Tyr191 and the retinal 19-13CH3, which are 5.5 Å apart in the crystal structure. These data demonstrate that long range 13C...13C correlations can be obtained in non-crystalline integral membrane proteins reconstituted into lipid membranes containing less than 150 nmoles of protein. In rhodopsin containing 2-13C Gly121 and U-13C Trp265, we do not observe a Trp-Gly cross peak in the DARR spectrum despite their close proximity (3.6 Å) in the crystal structure. Based on model compounds, the absence of a 13C...13C cross peak is due to loss of intensity in the diagonal Trp resonances rather than to dipolar truncation.
Binding of arrestin to light-activated rhodopsin involves recognition of the phosphorylated C-terminus and several residues on the cytoplasmic surface of the receptor. These sites are in close proximity in dark, unphosphorylated rhodopsin. To address the position and mobility of the phosphorylated C-terminus in the active and inactive receptor, we combined high-resolution solution and solid state NMR spectroscopy of the intact mammalian photoreceptor rhodopsin in detergent micelles as a function of temperature. The 31P NMR resonance of rhodopsin phosphorylated by rhodopsin kinase at the C-terminal tail was observable with single pulse excitation using magic angle spinning until the sample temperature reached -40 °C. Below this temperature, the 31P resonance broadened and was only observable using cross polarization. These results indicate that the phosphorylated C-terminus is highly mobile above -40 °C and immobilized at lower temperature. To probe the relative position of the immobilized phosphorylated C-terminus with respect to the cytoplasmic domain of rhodopsin, 19F labels were introduced at positions 140 and 316 by the reaction of rhodopsin with 2,2,2-trifluoroethanethiol (TET). Solid state rotational-echo double-resonance (REDOR) NMR was used to probe the internuclear distance between the 19F and the 31P-labels. The REDOR technique allows 19F⋯31P distances to be measured out to ∼12 Å with high resolution, but no significant dephasing was observed in the REDOR experiment in the dark or upon light activation. This result indicates that the distances between the phosphorylated sites on the C-terminus and the 19F sites on helix 8 (Cys 316) and in the second cytoplasmic loop (Cys140) are greater than 12 Å in phosphorylated rhodopsin.
Low frequency excited state vibrational coherences induced by impulsive photoexcitation in bacteriorhodopsin are detected via femtosecond pump-probe spectroscopy, and compared with similar data in retinal protonated Schiff bases of native and locked retinals. At delays above ∼100 fs a single vibration below 200 fs dominates the detected spectral modulations. Its frequency of ∼120 in retinal protonated Schiff base is virtually unchanged by locking the C13=C14 bond in the trans or cis configurations, but is increased to 170 cm-1 within the protein environment. The implications of this result on the part played by the protein in directing the reactivity of the retinal within bacteriorhodopsin is discussed.
The special trimeric structure of bacteriorhodopsin (bR) in the purple membrane of Halobacterium salinarum, and especially, the still controversial question as to whether the three protein components are structurally and functionally identical, have been subject to considerable work. In the present work, the problem is approached by studying the reconstitution reaction of the bR apo-protein with all-trans retinal, paying special attention to the effects of the apo-protein/retinal (P:R) ratio. The basic observation is that at high P:R values, the reconstitution reaction proceeds via two distinct, fast and slow, pathways associated with two different pre-pigment precursors absorbing at 430 nm (P430) and 400 nm (P400), respectively. These two reactions, exhibiting 2:1 (P430/P400) amplitude ratios, are markedly affected by the P:R value. The principal feature is the acceleration of the P400 → bR transition at low P:R ratios. The data are interpreted in terms of a scheme in which the added retinal first occupies two protein retinal traps, R1 and R2, from which it is transferred to two spectroscopically distinct binding sites corresponding to the two pre-pigments, P430 and P400, respectively. Two noncovalently bound retinal molecules occupy two P430 sites of the bR trimer, while one (P400) occupies the third. Binding is completed by generating the retinal-protein covalent bond. Analogous experiments were also carried out with an aromatic bR chromophore and with the D85N bR mutant. The accumulated data clearly point out the heterogeneity of the binding reaction intermediates, in which two are clearly distinct from the third. However, CD spectroscopy strongly suggests that even the two P430 sites are not structurally identical. The heterogeneity of the P intermediates in the binding reaction can be accounted for, either by being induced by cooperativity or by an intrinsic heterogeneity that is already present in the apoprotein. The question as to whether the final reconstituted pigment, as well as native bR, are nonhomogeneous should be the subject of future studies.
Light-induced isomerization of rhodopsin's retinal chromophore to the activating all-trans geometry initializes the formation of the active receptor state, Meta II. In the absence of peripheral regulatory proteins, the activity of Meta II is switched off spontaneously by two independent pathways: either by hydrolysis of the retinal Schiff base and dissociation of the light receptor into apoprotein opsin plus free retinal or by formation of Meta III, an inactive species with intact retinal protonated Schiff base absorbing at 470 nm. By FTIR spectroscopy on rhodopsin reconstituted with isotopically labeled chromophores in combination with quantum mechanical DFT calculations, we show that the deactivating step during formation of Meta III involves a thermal isomerization of the chromophore C=N double bond, such that the chromophore in Meta III is all-trans-15-syn. This isomerization step is catalyzed by the protein environment and proceeds via Meta I, as suggested by its dependence on pH and on properties of the lipid/detergent environment of the protein. In the long term, Meta III decays likewise to opsin and free retinal by slow hydrolysis of the Schiff base.
Following light absorption, the retinal chromophore of bacteriorhodospin experiences very large dipolar changes in the vertically excited state. This light-induced dipole is at least 50% larger than that of the retinal chromophore in films or in solution. We have studied the origin of the protein effect by applying second harmonic generation measurements of artificial bacteriorhodopsin pigments derived from synthetic retinal analogues, characterized by a modified polyene chain length and ring-chain conformation. The studies demonstrated a significant influence of a protein domain in the vicinity of the retinal β-ionone. We suggest that tryptophane residues (specifically Trp 138 and 189) enhance the light-induced dipole in bacteriorhodopsin. The data also point to another protein domain (Trp 182) influencing the retinal chromophore. The effect of these tryptophane residues appears not only to stabilize the light-induced charge redistribution but also to enable the migration in the excited state of the positive charge into a region of the protein with a relatively low dielectric constant.
Femtosecond stimulated emission pumping experiments from bacteriorhodopsins fluorescent state show for the first time that it is a photocycle intermediate, with a constant nonisomerized structure throughout its 0.5 psec lifetime. Implications concerning internal conversion dynamics are discussed.
The visual pigment rhodopsin is characterized by an 11-cis retinal chromophore bound to Lys-296 via a protonated Schiff base. Following light absorption the C11=C12 double bond isomerizes to trans configuration and triggers protein conformational alterations. These alterations lead to the formation of an active intermediate (Meta II), which binds and activates the visual G protein, transducin. We have examined by UV-visible and Fourier transform IR spectroscopy the photochemistry of a rhodopsin analogue with an 11-cis-locked chromophore, where cis to trans isomerization around the C11=C12 double bond is prevented by a 6-member ring structure (Rh6.10). Despite this lock, the pigment was found capable of forming an active photoproduct with a characteristic protein conformation similar to that of native Meta II. This intermediate is further characterized by a protonated Schiff base and protonated Glu-113, as well as by its ability to bind a transducin-derived peptide previously shown to interact efficiently with native Meta II. The yield of this active photointermediate is pH-dependent and decreases with increasing pH. This study shows that with the C11=C12 double bond being locked, isomerization around the C9=C10 or the C13=C14 double bonds may well lead to an activation of the receptor. Additionally, prolonged illumination at pH 7.5 produces a new photoproduct absorbing at 385 nm, which, however, does not exhibit the characteristic active protein conformation.
Archaeal rhodopsins, e.g. bacteriorhodopsin, all have cyclic photoreactions. Such cycles are achieved by a light-induced isomerization step of their retinal chromophores, which thermally re-isomerize in the dark. Visual pigment rhodopsins, which contain in the dark state an 11-cis retinal Schiff base, do not share such a mechanism, and following light absorption, they experience a bleaching process and a subsequent release of the photo-isomerized all-trans chromophore from the binding pocket. The pigment is eventually regenerated by the rebinding of a new 11-cis retinal. In the artificial visual pigment, Rh6.10, in which the retinal chromophore is locked in an 11-cis geometry by the introduction of a six-member ring structure, an activated receptor may be formed by light-induced isomerization around other double bonds. We have examined this activation of Rh6.10 by UV-visible and FTIR spectroscopy and have revealed that Rh6.10 is a nonbleachable pigment. We could further show that the activated receptor consists of two different subspecies corresponding to 9-trans and 9-cis isomers of the chromophore. Both sub-species relax in the dark via separate pathways back to their respective inactive states by thermal isomerization presumably around the C13=C14 double bond. This nonbleachable pigment can be repeatedly photolyzed to undergo identical activation-relaxation cycles. The rate constants of these photocycles are pH-dependent, and the half-times vary between several hours at acidic pH and about 1.5 min at neutral to alkaline pH, which is several orders of magnitude longer than for bacteriorhodopsin.
Bacteriorhodopsin's photocycle is initiated by the retinal chromophore light absorption. It has usually been assumed that light primarily isomerizes a retinal double bond which in turn induces protein conformational alterations and biological activity. We have studied several artificial pigments derived from retinal analogues tailored to substantially reduce the light-induced chromophore polarization. The lack of chromophore polarization was reflected in an undetectable second harmonic generation (SHG) signal. It was revealed that these artificial pigments did not exhibit any detectable light-induced photocycle nor light acceleration of the hydroxylamine-bleaching reaction. We suggest that light-induced retinal polarization triggers protein polarization which controls the course of the isomerization reaction by determining the relative efficiency of forward versus back-branching processes.
New information concerning the photochemical dynamics of bacteriorhodopsin (BR) is obtained by impulsively stimulating emission from the reactive fluorescent state. Depletion of the excited-state fluorescence leads to an equal reduction in production of later photoproducts. Accordingly, chromophores which are forced back to the ground state via emission do not continue on in the photocycle, conclusively demonstrating that the fluorescent state is a photocycle intermediate. The insensitivity of depletion dynamics to the "dump" pulse timing, throughout the fluorescent states lifetime, and the biological inactivity of the dumped population suggest that the fluorescent-state structure is constant, well-defined, and significantly different than that where crossing to the ground state takes place naturally. In conjunction with conclusions from comparing the photophysics of BR with those of synthetic analogues containing "locked" retinals, present results show that large-amplitude torsion around C13=C14 is required to go between the above structures.
The retinal protonated Schiff base of bacteriorhodopsin is photoreactive to reducing agents such as NaBH4. In the present work we have studied the effect of different protein hydration levels on the photoreductive reaction, as well as the consequences of preventing isomerization around the critical C13=C14 retinal double bond. It was revealed that the rate of light-induced NaBH4 reaction can be fitted to three phases, between 100 and 87%, from 87 to 35% and below 35% relative humidities (r.h.). The three phases are attributed to three protein regions characterized by different water affinities. Furthermore, it is shown that the PSB reduction reaction is light catalyzed even in artificial pigments derived from retinal analogs, in which isomerization around the C13=C14 double bond is prevented. It is suggested that the protein experiences light-induced conformational alterations that are not associated with C13=C14 double bond isomerization. In the 13-cis locked pigment the rate of reduction reaction is affected by r.h. levels only below 35%. The relatively low r.h. required for withdrawing water from the protein is attributed to the increased protein-water affinity in this specific pigment.
Reaction-induced infrared difference spectra show characteristic amide I spectral changes, which indicate conformational changes of the protein backbone but which cannot be interpreted at a molecular level. To obtain some insights into their causes, we used bacteriorhodopsin as a model system and investigated its BR → N transition during which the largest amide I changes are observed. For the molecular interpretation, we labeled a single peptide C=O group at specific positions of the backbone with 13C and monitored the resulting isotope effects. This has been achieved by replacing specific amino acids with a cysteine. Because wild-type bacteriorhodopsin does not contain this amino acid, (1-13C)cysteine can be incorporated into the mutants for site-directed isotopic labeling. Although the isotope-induced spectral changes are very small, we observed clear isotope effects for the middle to extracellular part of helices B, C, and F, indicating that the backbone of these parts of the protein is distorted during the reaction, whereas no label effects could be identified for and E-F loop and for the cytosolic regions of helices E and F. The results are discussed within the framework of recent experimental and theoretical studies of the amide I band, and they are correlated to the structural changes observed by other methods.
The molecular mechanism describing the initial 200 ps of the room-temperature photocycle in the artificial bacteriorhodopsin (BR) pigment, BR6.9, is examined by both absorption and vibrational spectroscopy. The BR6.9 pigment contains a structurally modified retinal chromophore (retinal 6.9) having a six-membered carbon ring bridging the C9=C10-C11 bonds. Picosecond transient absorption (PTA) data show that the initial 200-ps interval of the BR6.9 photocycle contains two intermediates: J6.9 formed with a 5-ns lifetime). Resonantly enhanced vibrational spectra from the light- and dark-adapted ground states of BR6.9 are measured using picosecond resonance coherent anti-Stokes Raman scattering (PR/CARS). Each of these PR/CARS spectra (800-1700 cm-1) contains 33 features assignable to the vibrational degrees of freedom in the retinal chromophore. CARS spectra from the K6.9, obtained from picosecond time-resolved CARS (PTR/CARS) data using 10-ps, 50-ps, 100-ps, and 200-ps time delays following the 570-nm initiation of the BR6.9 photocycle, contain a comparable number of features assignable to the retinal in K6.9. The vibrational spectrum of J6.9 can be tentatively characterized by two bands observed in the 1120-1200-cm-1 region from the analysis of the 10-ps PTR/CARS data. Comparisons involving these PTA and CARS data from BR6.9, as well as analogous results obtained from the ground states and photocycle intermediates of native BR and other artificial BR pigments, demonstrate that restricting retinal motion at the C9=C10-C11 bonds does not generally change the initial 200-ps photocycle mechanism, but does alter the rates at which specific molecular processes occur. These vibrational CARS spectra show that the retinal structures in K6.9 and in both light- and dark-adapted BR6.9 are all distinct. However, the specific mechanistic role, if any, of C13=C14 isomerization cannot be directly identified from CARS data recorded from BR6.9 and its photocycle intermediates. Even though C13=C14 isomerization has been widely considered the primary retinal structural change underlying the proton-pumping mechanism in BR pigments, these results leave open the question of whether C13=C14 isomerization is required as a mechanistic precursor for biochemical activity in BR pigments such as BR6.9.
Absorbance difference spectra were recorded at 20 degreesC from 30 ns to milliseconds after photolysis of lauryl maltoside suspensions of artificial visual pigments derived from 9-cis isomers of 5-ethylretinal, 8,16-methanoretinal (a 6-s-trans-bicyclic analogue), or 5-demethyl-8-methylretinal. In all three pigments, the earliest intermediate that was detected had the characteristics of a mixture of bathorhodopsin and a blue-shifted intermediate, BSI, which is the first decay product of bathorhodopsin in bovine rhodopsin, The first decays resolved on the nanosecond time scale were the formation of the lumirhodopsin analogues. Subsequent decays were able to be fit with a mechanistic scheme which has been shown to apply to both membrane and detergent suspensions of rhodopsin. Large increases were seen in the amount of metarhodopsin I which appeared after photolysis of 5-ethylisorhodopsin and the bicyclic isorhodopsin analogue, while 5-demethyl-8-methylisorhodopsin more closely followed native rhodopsin in decaying through meta I-380, a 380 nm absorbing precursor to metarhodopsin 11, In addition to forming more metarhodopsin 1, the bicyclic analogue stabilized the metarhodopsin I-metarhodopsin 11 equilibrium similarly to what has been previously reported for 9-demethylrhodopsin in detergent, introducing the possibility that the bicyclic analogue could similarly be defective in transducin activation. These observations support the idea that long after initial photolysis, structural details or the retinylidene chromophore continue to play a decisive role in processes leading to the activated form, metarhodopsin II.
Time-integrated fluorescence experiments on native bacteriorhodopsin and on its non-isomerizing form bR5.12 are reported. The experimental set-up was designed such as to observe emission exclusively from the excited state intermediate I-460. We obtain the first systematic investigation of the fluorescence spectra as a function of the excitation wavelength tuned throughout the entire absorption band of bR. An important finding is that the position of the fluorescence maximum does not show a systematic shift when the excitation wavelength is shortened. For excitation with high excess energy, we observe a broadening of the blue wing of the bR fluorescence, indicating incomplete vibrational energy relaxation on the time scale of the lifetime of I-460. Due to a much longer excited state lifetime, vibrational energy relaxation is more e3ective in bR5.12 and the fluorescence spectra are much less dependent on excitation wavelength. The results are placed in the general framework of thermalization between the retinal chromophore and the protein environment, and are compared with information obtained by femtosecond experiments.
Bacteriorhodopsin (bR) is characterized by a retinal-protein protonated Schiff base covalent bond, which is stable for light absorption. We have revealed a light-induced protonated Schiff base hydrolysis reaction in a 13-cis locked bR pigment (bR5.13; λmax = 550 nm) in which isomerization around the critical C13=C14 double bond is prevented by a rigid ring structure. The photohydrolysis reaction takes place without isomerization around any of the double bonds along the polyene chain and is indicative of protein conformational alterations probably due to light-induced polarization of the retinal chromophore. Two photointermediates are formed during the hydrolysis reaction, H450 (λmax = 450 nm) and H430 (λmax = 430 nm), which are characterized by a 13-cis configuration as analyzed by high-performance liquid chromatography. Upon blue light irradiation after the hydrolysis reaction, these intermediates rebind to the apomembrane to reform bR5.13. Irradiation of the H450 intermediate forms the original pigment, whereas irradiation of H430 at neutral pH results in a red shifted species (P580), which thermally decays back to bR5.13. Electron paramagnetic resonance (EPR) spectroscopy indicates that the cytoplasmic side of bR5.13 resembles the conformation of the N photointermediate of native bR. Furthermore, using osmotically active solutes, we have observed that the hydrolysis rate is dependent on water activity on the cytoplasmic side. Finally, we suggest that the hydrolysis reaction proceeds via the reversed pathway of the binding process and allows trapping a new intermediate, which is not accumulated in the binding process.
Femtosecond stimulated emission pumping experiments from bacteriorhodopsins fluorescent state show for the first time that it is a photocycle intermediate, with a constant nonisomerized structure throughout its 0.5 psec lifetime. Implications concerning internal conversion dynamics are discussed.
The primary events in the photosynthetic retinal protein bacteriorhodopsin (bR) are reviewed in light of photophysical and photochemical experiments with artificial bR in which the native retinal polyene is replaced by a variety of chromophores. Focus is on retinals in which the "critical" C13=C14 bond is locked with respect to isomerization by a rigid ring structure. Other systems include retinal oxime and non-isomerizable dyes noncovalently residing in the binding site. The early photophysical events are analyzed in view of recent pump-probe experiments with sub-picosecond time resolution comparing the behavior of bR pigments with those of model protonated Schiff bases in solution. An additional approach is based on the light-induced cleavage of the protonated Schiff base bond that links retinal to the protein by reacting with hydroxylamine. Also described are EPR experiments monitoring reduction and oxidation reactions of a spin label covalently attached to various protein sites. It is concluded that in bR the initial relaxation out of the Franck-Condon (FC) state does not involve substantial C13=C14 torsional motion and is considerably catalyzed by the protein matrix. Prior to the decay of the relaxed fluorescent state (FS or I state), the protein is activated via a mechanism that does not require double bond isomerization. Most plausibly, it is a result of charge delocalization in the excited state of the polyene (or other) chromophores. More generally, it is concluded that proteins and other macromolecules may undergo structural changes (that may affect their chemical reactivity) following optical excitation of an appropriately (covalently or non-covalently) bound chromophore. Possible relations between the light-induced changes due to charge delocalization, and those associated with C13=C14 isomerization (that are at the basis of the bR photocycle), are discussed. It is suggested that the two effects may couple at a certain stage of the photocycle, and it is the combination of the two that drives the cross-membrane proton pump mechanism.
It has previously been shown that, in mutants lacking the Lys-216 residue, protonated Schiff bases of retinal occupy noncovalently the bacteriorhodopsin (bR) binding site. Moreover, the retinal-Lys-216 covalent bond is not a prerequisite for initiating the photochemical and proton pump activity of the pigment. In the present work, various Schiff bases of aromatic polyene chromophores were incubated with bacterioopsin to give noncovalent pigments that retain the Lys-216 residue in the binding site. It was observed that the pigment's absorption was considerably red-shifted relative to the corresponding protonated Schiff bases (PSB) in solution and was sensitive to Schiff base linkage substitution. Their PSB pKa is considerably elevated, similarly to those of related covalently bound pigments. However, the characteristic low-pH purple to blue transition is not observed, but rather a chromophore release from the binding site takes place that is characterized by a pKa of ∼6 (sensitive to the specific complex). It is suggested that, in variance with native bR, in these complexes Asp-85 is protonated and Asp-212 serves as the sole negatively charged counterion. In contrast to the bound analogues, no photocycle could be detected. It is suggested that a specific retinal-protein geometrical arrangement in the binding site is a prerequisite for achieving the selective retinal photoisomerization.
The primary events in the photosynthetic retinal protein bacteriorhodopsin (bR) are reviewed in light of photophysical and photochemical experiments with artificial bR in which the native retinal polyene is replaced by a variety of chromophores. Focus is on retinals in which the 'critical' C13=C14 bond is locked with respect to isomerization by a rigid ring structure. Other systems include retinal oxime and non-isomerizable dyes noncovalently residing in the binding site. The early photophysical events are analyzed in view of recent pump-probe experiments with sub-picosecond time resolution comparing the behavior of bR pigments with those of model protonated Schiff bases in solution. Also described are EPR experiments monitoring reduction and oxidation reactions of a spin label covalently attached to various protein sites. It is concluded that proteins and other macromolecules may undergo structural changes following optical excitation of an appropriately (covalently or non-covalently) bound chromophore. Possible relations between the light-induced changes due to charge delocalization, and those associated with C13=C14 isomerization (that are at the basis of the bR photocycle), are discussed. It is suggested that the two effects may couple at a certain stage of the photocycle, and it is the combination of the two that drives the cross-membrane proton pump mechanism.
In rhodopsin, the retinal chromophore is covalently bound to the apoprotein by a protonated Schiff base, which is stabilized by the negatively charged counterion Glu113, conferring upon it a pKa of presumably > 16. Upon photoexcitation and conformational relaxation of the initial photoproducts, the Schiff base proton neutralizes the counterion, a step that is considered a prerequisite for formation of the active state of the receptor, metarhodopsin II (MII). We show that the pKa of the Schiff base drops below 2.5 in MII. In the presence of solute anions, however, it may be increased considerably, thereby leading to the formation of a MII photoproduct with a protonated Schiff base (PSB) absorbing at 480 nm. This PSB is not stabilized by Glu113, which is shown to be neutral, but by stoichiometric binding of an anion near the Schiff base. Protonation of the Schiff base in MII changes neither coupling to G protein, as assessed by binding to a transducin-derived peptide, nor the conformation of the protein, as judged by FTIR and UV spectroscopy. A PSB and an active state conformation are therefore compatible, as suggested previously by mutants of rhodopsin. The anion specificity of the stabilization of the PSB follows the series thiocyanate > iodide > nitrate > bromide > chloride > sulfate in order of increasing efficiency. This specificity correlates inversely with the strength of hydration of the respective anion species in solution and seems therefore to be determined mainly by its partitioning into the considerably less polar protein interior.
Absorbance difference spectra were recorded from 20 ns to 1 mus after 20 T photoexcitation of artificial visual pigments derived either from 5-demethylretinal or from a mesityl analogue of retinal. Both pigments produced an early photointermediate similar to bovine bathorhodopsin (Batho). In both cases the Batho analogue decayed to a lumirhodopsin (Lumi) analogue via a blue-shifted intermediate, BSI, which formed an equilibrium with the Batho analogue. The stability of 5-demethyl Batho, even though the C8-hydrogen of the polyene chain cannot interact with a ring C5-methyl group to provide a barrier to Batho decay, raises the possibility that the 5-demethylretinal ring binds oppositely from normal to form a pigment with a 6-s-trans ring-chain conformation. If 6-s-trans binding occurred, the ring Cl-methyls could replace the C5-methyl in its interaction with the chain C8-hydrogen to preserve the steric barrier to Batho decay, consistent with the kinetic results. The possibility of 6-s-trans binding for 5-demethylretinal also could account for the unexpected blue shift of 5-demethyl visual pigments and could explain why 5-demethyl artificial pigments regenerate so slowly. Although the mesityl analogue BSI's absorption spectrum was blue-shifted relative to its pigment spectrum, the blue shift was much smaller than for rhodopsin's or 5-demethylisorhodopsin's BSI. This suggests that increased C6-C7 torsion may be responsible for some of BSI's blue shift, which is not the case for mesityl analogue BSI either because of reduced spectral sensitivity to C6-C7 torsion or because the symmetry of the mesityl retinal analogue precludes having 6-s-cis and 6-s-trans conformers. The similarity of the mesityl analogue BSI and native BSI pi (max) values supports the idea that BSI has a 6-s angle near 90 degrees, a condition which could disconnect the chain (and BSI's spectrum) from the double bond specifics of the ring.
In this study, the ultrafast pump-probe spectroscopy of the all-trans protonated Schiff base of retinal (trans-PSB) in solution, is compared to that of two retinal analogues, trans-PSB5.12 and 13-cis-PSB5.13, in which C13=C14 torsional motion is inhibited by a rigid five-membered ring structure. The objective is to obtain measures of internal conversion (IC) dynamics in these polyenes. Contrasting the results with those obtained for the same pigments when attached to their opsin protein, serve to appreciate the protein role in catalyzing energy transduction in bacteriorhodopsin. Several major features appear to be common to all three PSBs: (i) A 50-100 fs process due to a primary relaxation out of the Franck-Condon (FC) region, (ii) A subsequent biexponential decay (t1 = 1-2 ps and t2 = 4-7 ps) of the fluorescent state (FS) assumed to be due to IC, and (iii) Spectral modulations in the FS emission. The three are only marginally effected by locking of the C13=C14 bond. With respect to features (i) and (iii) the PSB model compounds behave analogously to the related retinal protein bacteriorhodopsin (bR). However, this does not apply to the FS decay. While in bR, the IC takes place with a 0.5 ps decay time, locking of the C13=C14 bond in bR markedly increases the FS lifetime to ∼ 15 ps. These observations demonstrate the crucial role played by the protein in directing the isomerization action to the active double bond and enhancing the rate of IC. They also prove that these coordinates are not exclusive pathways of IC in the isolated PSB of retinal. The mechanism of ground-state repopulation in the PSBs is discussed in light of these results.
The photoactivation of retinal proteins is usually interpreted in terms of C=C photoisomerization of the retinal moiety, which triggers appropriate conformational changes in the protein. In this work several dye molecules, characterized by a completely rigid structure in which no double-bond isomerization is possible, were incorporated into the binding site of bacteriorhodopsin (bR). Using a light-induced chemical reaction of a labeled EPR probe, it was observed that specific conformational alterations in the protein are induced following light absorption by the dye molecules occupying the binding site. The exact nature of these changes and their relationship to those occurring in the bR photocycle are still unclear. Nevertheless, their occurrence proves that C=C or C=NH+ isomerization is not a prerequisite for protein conformational changes in a retinal protein. More generally, we show that conformational changes, leading to changes in reactivity, may be induced in proteins by optical excitation of simple nonisomerizable dyes located in the macromolecular matrix.
We studied the salt dependence of both the stability and the equilibrium of the late photoproducts metarhodopsin I (MI) and II (MII) of the artificial visual pigment 9-demethyl rhodopsin (9dm-Rho). In the photoproducts of 9dm-Rho, all-trans-9-demethyl retinal acts only as a partial agonist, enabling us to study the photoproduct equilibrium of the pigment both in membranes and in detergent micelles. Chloride, bromide, and phosphate salts shift this equilibrium from the inactive MI to the active MII receptor conformation both in native membranes and even more with purified pigment in detergent micelles. In the presence of these salts, the induced MII state seems to be structurally intact, as judged by Fourier transform infrared (FTIR) and UV - vis spectroscopy. In the long term, however, we observe an increased instability of the photoproducts and a change in the decay pathways. Both MII enhancement and destabilization are particularly pronounced with the strong chaotropic salts KI and KSCN. The results fit into the framework of the Hofmeister effect and are assigned to an increased solvation of the peptide moiety of the solvent-exposed domains, their resulting partial disordering favoring MII over MI. In this picture, increased solvation also affects helix - helix interactions, thereby leading to a structural instability of the protein in the long term. The reported influences of salts on conformation and stability of this membrane protein are likely to be general and may therefore also apply to other transmembrane proteins and particularly to other G protein-coupled receptors.
The Asp-85 residue, located in the vicinity of the retinal chromophore, plays a key role in the function of bacteriorhodopsin (bR) as a light-driven proton pump. In the unphotolyzed pigment the protonation of Asp-85 is responsible for the transition from the purple form (λmax = 570 nm) to the blue form (λmax = 605 nm) of bR. This transition can also be induced by deionization (cation removal). It was previously proposed that the cations bind to the bR surface and raise the surface pH, or bind to a specific site in the protein, probably in the retinal vicinity. We have reexamined these possibilities by evaluating the interaction between Mn2+ and a nitroxyl radical probe covalently bound to several mutants in which protein residues were substituted by cystein. We have found that Mn2+, which binds to the highest-affinity binding site, significantly affects the EPR spectrum of a spin label attached to residue 74C. Therefore, it is concluded that the highest-affinity binding site is located in the extracellular side of the protein and its distance from the spin label at 74C is estimated to be ∼9.8± 0.7 Å. At least part of the three to four low-affinity cation binding sites are located in the cytoplasmic side, because Mn2+ bound to these binding sites affects spin labels attached to residues 103C and 163C located in the cytoplasmic side of the protein. The results indicate specific binding sites for the color-controlling cations, and suggest that the binding sites involve negatively charged lipids located on the exterior of the bR trimer structure.
The formation of the active rhodopsin state metarhodopsin II (MII) is believed to be partially governed by specific steric constraints imposed onto the protein by the 9-methyl group of the retinal chromophore. We studied the properties of the synthetic pigment 9-demethyl rhodopsin (9dm-Rho), consisting of the rhodopsin apoprotein regenerated with synthetic retinal lacking the 9-methyl group, by UV-vis and Fourier transform infrared difference spectroscopy. Low activation rates of the visual G-protein transducin by the modified pigment reported in previous studies are shown to not be caused by the reduced activity of its MII state, but to be due to a dramatic equilibrium shift from MII to its immediate precursor, MI. The MII state of 9dm-Rho displays only a partial deprotonation of the retinal Schiff base, leading to the formation of two MII subspecies absorbing at 380 and 470 nm, both of which seem to be involved in transducin activation. The rate of MII formation is slowed by 2 orders of magnitude compared to rhodopsin. The dark state and the MI state of 9dm-Rho are distinctly different from their respective states in the native pigment, pointing to a more relaxed fit of the retinal chromophore in its binding pocket. The shifted equilibrium between MI and MII is therefore discussed in terms of an increased entropy of the 9dm-Rho MI state due to changed steric interactions.
The mechanism by which bacteriorhodopsin is activated following light absorption is not completely clear. We have detected protein conformational alterations following light absorption by retinal-based chromophores in the bacteriorhodopsin binding site by monitoring the rate of reduction-oxidation reactions of covalently attached spin labels, using EPR spectroscopy. It was found that the reduction reaction with hydrolxylamine is light-catalyzed in the A103C-labeled pigment but not in E74C or M163C. The reaction is light- catalyzed even when isomerization of the C13=C14 bond of the retinal chromophore is prevented. The reverse oxidation reaction with molecular oxygen is effective only in apomembrane derived from the mutant A103C. This reaction is light-accelerated following light absorption of the retinal oxime, which occupies the binding site. The light-induced acceleration is evident also in 'locked' bacteriorhodopsin in which isomerization around the C13=C14 bond is prevented. It is evident that the chromophore-protein covalent bond is not a prerequisite for protein response. In contrast to the case of the retinal oxime, a reduced C=N bond A103C-labeled pigment did not exhibit acceleration of the oxidation reaction following light absorption. Acceleration was observed, however, following substitution of the polyene by groups that modify the excited stated charge delocalization. It is suggested that protein conformational alterations are induced by charge redistribution along the retinal polyene following light absorption.
The vibrational spectrum of an intermediate, T5.12, in the photoreaction of an artificial bacterio-rhodopsin (BR) pigment containing a five-membered carbon ring spanning the C12-C13=C14 bonds (BR5.12) is measured by picosecond time-resolved coherent anti-Stokes Raman spectroscopy (PTR/CARS). Observed initially by picosecond transient absorption (PTA) measurements, T5.12 is the only intermediate in the BR5.12 photoreaction (i.e., T5.12 decays only to BR5.12). BR5.12 does not have a photocycle analogous to that in native BR, presumably because the five-membered ring blocks the reaction coordinate leading to C13=C14 bond isomerization. Since T5.12 may therefore represent the molecular events (reaction coordinates) that precede C13=C14 bond isomerization, its vibrational spectrum may aid in elucidating the primary reaction coordinate(s) in the BR photocycle. Although T5.12 is identified via a red-shifted absorption (660 nm maximum,
The effects of pH on the yield (φ(r)), and on the apparent rise and decay constants (k(r), k(d)), of the O630 intermediate are important features of the bacteriorhodopsin (bR) photocycle. The effects are associated with three titration-like transitions: 1) A drop in k(r), k(d), and φ(r) at high pH [pK(a)(1) ~ 8]; 2) A rise in φ(r) at low pH [pK(a)(2) ~ 4.5]; and 3) A drop in k(r) and k(d) at low pH [pK(a)(3) ~ 4.5]. (pK(a) values are for native bR in 100 mM NaCl). Clarification of these effects is approached by studying the pH dependence of φ(r), k(r), and k(d) in native and acetylated bR, and in its D96N and R82Q mutants. The D96N experiments were carried out in the presence of small amounts of the weak acids, azide, nitrite, and thiocyanate. Analysis of the mutant's data leads to the identification of the protein residue (R1) whose state of protonation controls the magnitude of φ(r), k(r), and k(d) at high pH, as Asp-96. Acetylation of bR modifies the Lys-129 residue, which is known to affect the pK(a) of the group (XH), which releases the proton to the membrane exterior during the photocycle. The effects of acetylation on the O630 parameters reveal that the low-pH titrations should be ascribed to two additional protein residues R2 and R3. R2 affects the rise of φ(r) at low pH, whereas the state of protonation of R3 affects both k(r) and k(d). Our data confirm a previous suggestion that R(3) should be identified as the proton release moiety (XH). A clear identification of R(2), including its possible identity with R(3), remains open.
Stimulated emission from excited bacteriorhodopsin is compared with that from a isomerize. Ultrafast Stokes shifting of emission, and coherent vibrations in the excited state are observed for the first time. Biological relevance of coherent motions is discussed.
The evolution of stimulated emission from the reactive excited state of bacteriorhodopsin is compared with that of a modified protein containing a synthetic retinal which is unable to twist around the C-13=C-14 bond. The rise of the emission is demonstrated to be structured, multistaged and wavelength dependent, appearing later in the red edge of the emission bands in both proteins. Spectral modulations associated with vibronic wavepacket motion are also observed in both. The mechanism of strong Stokes shifting of the emission resolved here, and the nature of coherences observed in the excited state are discussed. (C) 1999 Elsevier Science B.V. All rights reserved.
We report the results of experiments on the application of electric fields across thin, dry films of a bacteriorhodopsin (BR) analog pigment in which the retinal chromophore has been replaced with 13-demethyl-11,14-epoxyretinal. As previously observed in other BR variants with low Schiff-base pK values, this pigment exhibits protonation and deprotonation of the Schiff base under an applied electric field, depending on the initial Schiffbase protonation state or effective pH. At low effective pH, a fast (
The primary light-induced events in the photosynthetic retinal protein bacteriorhodopsin (bR) are investigated by ultrafast optical spectroscopy over the 440-1000 nm spectral range. The study compares the early dynamics of the native all-trans pigment bR570 with those of two synthetic analogues, bR5.12 and bR5.13, in which isomerization around the critical C13=C14 bond is blocked by a five-membered ring into all-trans and 13-cis configurations, respectively. Nearly identical spectral evolution is observed in both native and artificial systems over the first 100-200 fs of probe delay. During this period stimulated near-IR (∼900 nm) emission, and intense ∼460 nm absorption bands, due to analogous fluorescent I states (denoted as I460, I5.12 and 15.13, respectively), appear concurrently within 30 fs. In all systems continuous spectral shifting over tens of femtoseconds is observed in the 500-700 nm range. Native bR goes on to produce the J625 absorption band within ∼1 ps, which is accompanied by disappearance of the I460 emission and absorption features. In bR5.12 and bR5.13, aside from minor spectral modifications, the analogous dramatic changes associated with I5.12 and I5.13 are arrested beyond the first ∼100 fs, reverting uniformly to the initial ground state with exponential time constants of 19 ps and 11 ps, respectively. Analysis of the data calls for a major revision of models previously put forward for the primary events in bacteriorhodopsin. The close likeness of initial transient spectral evolution in both native and artificial pigments, despite the locking of the active isomerization coordinate in the synthetic chromophores, demonstrates that in bR570 the ultrafast changes in transmission leading to I460, previously believed to involve C13=C14 torsion, must be associated with other modes. The detailed comparison conducted here also identifies which of the later spectral changes in the native system requires torsional flexibility in C13=C14. Similarity of 660 nm probing data in both synthetic and native chromophores demonstrates that the sub-picosecond dynamic features uncovered at this probing wavelength commonly attributed to the evolution of J625, are not, as previously thought, reliable measures of all-trans ⇔ 13-cis isomerization dynamics.
An outstanding problem relating to the structure and function of bacteriorhodopsin (bR), which is the only protein in the purple membrane of the photosynthetic microorganism Halobacterium salinarium, is the relation between the titration of Asp-85 and the binding/unbinding of metal cations. An extensively accepted working hypothesis has been that the two titrations are coupled, namely, protonation of Asp-85 (located in the vicinity of the retinal chromophore) and cation unbinding occur concurrently. We have carried out a series of experiments in which the purpleblue equilibrium and the binding of Mn2+ ions (monitored by electron spin resonance) were followed as a function of pH for several (1-4) R=[Mn2+]/[bR] molar ratios. Data were obtained for native bR, bR mutants, artificial bR and chemically modified bR. We find that in the native pigment the two titrations are separated by more than a pK(a) unit [ΔpK(a)=pK(a)(P/B)-pK(a)(Mn2+)=(4.2-2.8)=1.4]. In the non-native systems, ΔpK(a) values as high as 5 units, as well as negative ΔpK(a)s, are observed. We conclude that the pH titration of cation binding residues in bR is not directly related to the titration of Asp-85. This conclusion is relevant to the nature of the high affinity cation sites in bR and to their role in the photosynthetic function of the pigment. Copyright (C) 1999 Federation of European Biochemical Societies.
The last stages of the photocycle of the photosynthetic pigment all- trans bacteriorhodopsin (bR570), as well as its proton pump mechanism, are markedly pH dependent. We have measured the relative amount of the accumulated O630 intermediate (Φ(r)), as well as its rise and decay rate constants (k(r) and k(d), respectively), over a wide pH range. The experiments were carried out in deionized membrane suspensions to which varying concentrations of metal cations and of large organic cations were added. The observed pH dependencies, s-shaped curves in the case of Φ(r) and bell-shaped curves for k(r) and k(d), are interpreted in terms of the titration of three protein residues denoted as R1, R2, and R3. The R1 titration is responsible for the increase in Φ(r), k(r), and k(d) upon lowering the pH from pH ≃ 9.5 to 7. At low pH Φ(r) exhibits a secondary rise which is attributed to the titration of a low pK(a) group, R2. After reaching a maximum at pH ≃ 7, k(r) and k(d) undergo a decrease upon decreasing the pH, which is attributed to the titration of R3. All three titrations exhibit pK(a) values which decrease upon increasing the salt concentration. As in the case of the Purple (bR570) ⇆ Blue (bR605) equilibrium, divalent cations are substantially more effective than monovalent cations in shifting the pK(a) values. Moreover, bulky organic cations are as effective as small metal cations. It is concluded that analogously to the Purple ⇆ Blue equilibrium, the salt binding sites which control the pK(a) values of R1, R2, and R3 are located on, or close to, the membrane surface. Possible identifications of the three protein residues are considered. Experiments with the E204Q mutant show that the mutation has markedly affected the R2 (Φ(r)) titration, suggesting that R2 should be identified With Glu-204 or with a group whose pK(a) is affected by Glu-204. The relation between the R1, R2 and R3 titrations and the proton pump mechanism is discussed. It is evident that the pH dependence of Φ(r) is unrelated to the measured pK(a) of the group (XH) which releases the proton to the extracellular medium during the photocycle. However, since the same residue may exhibit different pK(a) values at different stages of the photocycle, it cannot be excluded that R2 or R3 may be identified with XH.
Replacing the chromophore of bacteriorhodopsin with chemically modified retinal analogs which cannot isomerize, allows to measure directly side effects from the laser pulse used for sample excitation in step-scan FT-IR measurements. Comparison with static temperature difference spectra and temperature-jump experiments shows that the observed effects can mainly be attributed to heating of the sample by the laser pulse. The size of resulting spectral changes is compared to difference bands of the photoreaction.
The light-driven proton pump bacteriorhodopsin (bR) undergoes a bleaching reaction with hydroxylamine in the dark, which is markedly catalyzed by light. The reaction involves cleavage of the (protonated) Schiff base bond, which links the retinyl chromophore to the protein. The catalytic light effect is currently attributed to the conformational changes associated with the photocycle of all-trans bR, which is responsible for its proton pump mechanism and is initiated by the all-trans → 13-cis isomerization. This hypothesis is now being tested in a series of experiments, at various temperatures, using three artificial bR molecules in which the essential C13=C14 bond is locked by a rigid ring structure into an all-trans or 13- cis configuration. In all three cases we observe an enhancement of the reaction by light despite the fact that, because of locking of the C13=C14 bond, these molecules do not exhibit a photocycle, or any proton- pump activity. An analysis of the rate parameters excludes the possibility that the light-catalyzed reaction takes place during the ~20-ps excited state lifetimes of the locked pigments. It is concluded that the reaction is associated with a relatively long-lived (μs-ms) light-induced conformational change that is not reflected by changes in the optical spectrum of the retinyl chromophore. It is plausible that analogous changes (coupled to those of the photocycle) are also operative in the cases of native bR and visual pigments. These conclusions are discussed in view of the light-induced conformational changes recently detected in native and artificial bR with an atomic force sensor.
Nanosecond laser photolysis measurements were conducted on digitonin extracts of artificial pigments prepared from the cone-type visual pigment, P521, of the Tokay gecko (Gekko gekko) retina. Artificial pigments were prepared by regeneration of bleached gecko photoreceptor membranes with 9- cis-retinal, 9-cis-14-methylretinal, or 9-cis-α-retinal. Absorbance difference spectra were recorded at a sequence of time delays from 30 ns to 60 μs following excitation with a pulse of 477-nm actinic light. Global analysis showed the kinetic data for all three artificial gecko pigments to be best fit by two-exponential processes. These two-exponential decays correspond to similar decays observed after photolysis of P521 itself, with the first process being decay of the equilibrated P521 Batho mutually implies P521 BSI mixture to P521 Lumi and the second process being the decay of P521 Lumi to P521 Meta I. In spite of its large blue shift relative to P521, iso- P521 displays a normal chloride depletion induced blue shift. Iso-P521's early intermediates up to Lumi were also blue-shifted, with the P521 Batho mutually implies P521 BSI equilibrated mixture being 15 nm blue-shifted and P521 Lumi being 8 nm blue-shifted relative to the intermediates formed after P521 photolysis. The blue shift associated with the iso-pigment is reduced or disappears entirely by P521 Meta I. Similar blue shifts were observed for the early intermediates observed after photolysis of bovine isorhodopsin, with the Lumi intermediate blue-shifted 5 nm compared to the Lumi intermediate formed after photolysis of bovine rhodopsin. These shifts indicate that a difference exists between the binding sites of 9- and 11-cis pigments which persists for microseconds at 20 °C.
The experiments reported in this paper, based on reconstitution of bacteriorhodopsin (bR) from apomembrane at varying environmental conditions, demonstrate that the presence of water is a controlling factor in generating a native wild-type bR conformation. If water is lacking during this reconstitution process, then a non-native bR structure is formed that exhibits altered M formation and decay kinetics, as well as different behavior following extensive dehydration. It is shown that mutants affecting the ability of bR to form appropriate structures of water in specific protein cavities also affect the ability to generate a native bR conformation. The results suggest that aspartic acid 96 plays a major role in anchoring the appropriate water structure conformation associated with bR. It is also demonstrated that the glutamic acid 204 residue is pivotal in controlling the protein/water affinity. This water affinity can be further controlled by modifying the charge environment of the protein with altered pH. These data, based on kinetic absorption spectroscopy and Fourier transform infrared spectroscopy, highlight the central role of water in this protein.
The spectrum (the purple⇆blue transition) and function of the light-driven proton pump bacteriorhodopsin are determined by the state of protonation of the Asp-85 residue located in the vicinity of the retinal chromophore. The titration of Asp-85 is controlled by the binding/unbinding of one or two divalent metal cations (Ca2+ or Mg2+). The location of such metal binding site(s) is approached by studying the kinetics of the cation-induced titration of Asp-85 using metal ions and large molecular cations, such as quaternary ammonium ions, R4N+ (R = Et, Pr, a divalent 'bolaform ion' [Et3N+-(CH-2)4-N+Et3] and the 1:3 molecular complex formed between Fe2+ and 1,10-phenanthroline (OF). The basic multi-component kinetic features of the titration, extending from 10-2 to 104 s, are unaffected by the charge and size of the cation. This indicates that cation binding to bR triggers the blue→purple titration in a fast step, which is not rate-determining. In view of the size of the cations involved, these observations indicate that the cation binding site is in an exposed location on, or close to, the membrane surface. This excludes previous models, which placed the color-controlling Ca2+ ion in the retinal binding pocket.
The Asp-85 residue, located in the vicinity of the retinal chromophore, plays a key role in the function of bacteriorhodopsin (bR) as a light-driven proton pump. In the unphotolyzed pigment the protonation of Asp-85 is responsible for the transition from the purple form (λ(max) = 570 nm) to the blue form (λ(max) = 605 nm) of bR (pK(a) = 3.5 in 20 mM NaCl). The Purple mutually implies Blue transition can also be induced by deionization (cation removal). These color changes offer a unique opportunity for time resolving the titration of a protein residue using conventional stopped-flow methodologies. We have studied the Purple mutually implies Blue equilibration kinetics in bR by exposing the system to pH and to cation jumps. Independently of the equilibration direction (Purple→Blue or Blue→Purple) and of the inducing concentration jump ([H+] or [cation]), the kinetics are found to exhibit analogous multicomponent features. Analysis of the data over a range of cation concentrations and pH values leads to the conclusion that the rate-determining step in the overall titration of Asp-85 is proton translocation through a specific proton channel. The multicomponent kinetics, extending over a wide time range (10-2 -104 s), are accounted for in terms of a pH-dependent heterogeneity of proton channels. A model is presented in which the relative weight of four proton channels is determined by the state of protonation of two interacting, channel-controlling, protein residues A1 and A2. These findings bear on the mechanism of the vectorial proton translocation associated with the photocycle of bR.
In this paper a new atomic force sensing technique is presented for dynamically probing conformational changes in proteins. The method is applied to the light-induced changes in the membrane-bound proton pump bacteriorhodopsin (bR). The microsecond time-resolution of the method, as presently implemented, covers many of the intermediates of the bR photocycle which is well characterized by spectroscopical methods. In addition to the native pigment, we have studied bR proteins substituted with chemically modified retinal chromophores. These synthetic chromophores were designed to restrict their ability to isomerize, while maintaining the basic characteristic of a large light-induced charge redistribution in the vertically excited Franck-Condon state. An analysis of the atomic force sensing signals lead us to conclude that protein conformational changes in bR can be initiated as a result of a light-triggered redistribution of electronic charge in the retinal chromophore, even when isomerization cannot take place. Although the coupling mechanism of such changes to the light- induced proton pump is still not established, our data question the current working hypothesis which attributes all primary events in retinal proteins to an initial trans mutually implies cis isomerization.
This paper reports on experiments that have monitored protein microsecond dynamics with a cantilevered near-field optical glass fiber. In these experiments two photoactive proteins, bacteriorhodopsin (bR) and the photosynthetic reaction center (PS I), are used to demonstrate that such probes can measure light-induced microsecond protein dynamics even though the resonance frequencies of the glass cantilevers used are in the order of a few hundred kilohertz. In the case of the light-driven proton pump, bR, the light-induced atomic force sensing (AFS) signal is negative (indicating contraction) in the microsecond time domain of the L photointermediate and becomes positive (corresponding to expansion) in the subsequent M intermediate that lives for milliseconds. Double pulse experiments from M to bR show that the latter process reverses the AFS signal. Thus, the AFS structural changes are coupled with the (optical) photocycle intermediates. Light-induced contraction and expansion phenomena are also observed in the case of PSI. In both systems the time regime of the dynamic phenomena that have been measured with AFS is five orders of magnitude faster than the fastest previously recorded atomic force detection of dynamic phenomena. This advance portends a new era in dynamic imaging of protein conformational changes.
The thermal re-isomerization of retinal from the 13-cis to the all- trans state is a key step in the final stages of the photocycle of the light- driven proton pump, bacteriorhodopsin. This step is greatly slowed upon replacement of Leu-93, a residue in van der Waals contact with retinal. The most likely role of this key interaction is that it restricts the flexibility of retinal. To test this hypothesis, we have exchanged native retinal in Leu- 93 mutants with bridged retinal analogs that render retinal less flexible by restricting free rotation around either the C10-C11 (9,11-bridged retinal) or C12-13 (11,13-bridged retinal) single bonds. The effect of the analogs on the photocycle was then determined spectroscopically by taking advantage of the previous finding that the decay of the O intermediate in the Leu-93 mutants provides a convenient marker for retinal re-isomerization. Time-resolved spectroscopic studies showed that both retinal analogs resulted in a dramatic acceleration of the photocycling time by increasing the rate of decay of the O intermediate. In particular, exchange of native retinal in the Leu-93 → Ala mutant with the 9,11-bridged retinal resulted in an acceleration of the decay of the O intermediate to a rate similar to that seen in wild-type bacteriorhodopsin. We conclude that the protein-induced restriction of conformational flexibility in retinal is a key structural requirement for efficient protein-retinal coupling in the bacteriorhodopsin photocycle.
Illumination of the Trp86 → Phe mutant of bacteriorhodopsin causes anomalous light adaptation, i.e., isomerization of the retinal from all- trans to 13-cis, 15-syn. FTIR spectral analysis shows that illumination at 250 K yields two 13-cis photoproducts, the conventional 13-cis, 15-syn state, BR(C), and another termed BR(X). BR(X) is different from BR(C) because it has a lower N-H in-plane bending frequency and a higher C14-C15 stretching frequency, as well as an absence of coupling between these modes. BR(X), which is stable at 275 K, is more abundant in the photosteady state produced by longer wavelength light and detected as the only photoproduct at 170 K. Its different structural features result from distortion of the C14-C15 bond of the chromophore. In the W86F mutant protein, the small structural changes of a water molecule in the conversion between the all-trans and 13- cis, 15-syn forms and in the formation of the K photointermediate are absent, but the larger changes of water molecule(s) that normally occur in the L and M intermediates are present. We propose that Trp86, together with Asp85, is involved in binding the water molecule and in preventing the formation of the 13-cis, 15-syn photoproducts, BR(C) and BR(X), when the wild type protein is illuminated.
Upon light adaptation by continuous (or pulsed) illumination, the artificial bacteriorhodopsin (bR) pigments, I and II, derived from synthetic 14F retinal and a short polyenal, respectively produce a long-lived red-shifted species denoted O-1. An analogous phenomenon was observed by Sonar, S., et al. [(1993) Biochemistry 32, 2263-2271], in the case of the Y185F mutant (pigment III). The nature of these O-1 species was investigated by studying a series of effects, primarily their red Light photoreversibility, the associated proton uptake and release processes, and the effects of pH on their relative amounts, which are interpreted in terms of pH-dependent acid-base equilibria. Experiments were also carried out with pigments I and II derived from the mutants D96A, E204Q, R82Q, and D85N. The O-1 species of pigments I and II. (and possibly also that of pigment III) are identified as an unusually long-lived (all-trans) intermediate of the photocycle of their 13-cis isomer. It is concluded that in O-1, Asp-85 is protonated, a process associated with proton uptake from the extracellular side. Subsequent proton release (to the same side of the membrane) occurs from Glu-204 (or from a group closely interacting with it) prior to the decay of O-1. At high pH (>9), O-1 reversibly converts to a purple form, due to deprotonation of Asp-85, while at still higher pH (>11), a blue-shifted species characterized by a deprotonated Schiff base is generated. These transitions constitute the first demonstration of the titration of a photocycle intermediate of a retinal protein. The respective pK(a) values are determined and discussed in relation to those pertaining to the unphotolyzed (dark-adapted) pigments. It appears that the pK, values are controlled by a hydrogen bond network involving water molecules, which binds the protonated Schiff base with Asp-85 and Glu-204. The disruption of this network in pigments I-III may also be responsible for the long lifetime of the O-1 species, due
Hydroretinochromes were reconstituted with aporetinochrome and hydroretinal analogues; 7,8-dihydroretinal, 5,6-dihydroretinal, dehydroretinal, and their analogues. The 'opsin shifts' were 2200 ± 100 cm-1 for trienals and pentaenals, whereas 1600 ± 100 cm-1 was the value for tetraenals.
The complexation between the photoreceptor sensory rhodopsin I (SRI) and its signal transducer protein HtrI was examined by assessing titration of the Schiff base chromophore of SRI with sodium hydroxide and reactivity with hydroxylamine in the presence or absence of HtrI. The apparent pKa of the protonated Schiff base of SRI is 12.2 in the presence and 9.5 in the absence of HtrI. Direct titration of the Schiff base proton was confirmed by titrating an artificial SRI reconstituted with a 14-fluororetinal which reduces the intrinsic pKa of the protonated Schiff base of the HtrI-complexed pigment from >12 to 9.0. The SRI chromophore exhibits high stability to hydroxylamine bleaching in the presence of HtrI; however, removal of HtrI accelerates the bleaching rate 2.4-fold. These results indicate that SRI is physically associated with HtrI in its unactivated (i.e., dark) state. In view of the previously identified association of the SRI signaling state (S373) with HtrI, we conclude that SRI transduces the signal to HtrI through its altered interaction with the prebound transducer protein. The effect of the altered SRI/HtrI interaction on resetting the signaling state of SRI was also examined. At neutral pH the decay of S373 is retarded by 20-fold when HtrI is absent. This effect was found to be due to a raised enthalpic barrier for the transition state during S373 decay. The energy barrier for S373 decay in this pigment can be lowered by providing extramembranous protons (lowering bulk pH). Therefore, light-induced alteration in SRI/HtrI interaction is important for reducing the energy barrier for S373 decay presumably by providing or assisting a proton supply for retinal Schiff base reprotonation.
Three experimental observations indicate that the pK(a) of the purple- to-blue transition (the pK(a) of Asp-85) is higher for all-trans-bR1 than for 13-cis-bR. First, light adaptation of bacteriorhodopsin (bR) at pHs near the pK(a) of Asp-85 causes an increase in the fraction of the blue membrane present. This transformation is reversible in the dark. Second, the pK(a) of the purple-to-blue transition in the dark is lower than that in the light- adapted bR (pK(a)/(DA) = 3.5, pK(a)/(LA) = 3.8 in 10 mM K2SO4). Third, the equilibrium fractions of 13-cis and all-trans isomers are pH dependent; the fraction of all-trans-bR increases upon formation of the blue membrane. Based on the conclusion that thermal all-trans 4⇆ 13-cis isomerization occurs in the blue membrane rather than in the purple, we have developed a simple model that accounts for all three observations. From the fit of experimental data we estimate that the pK(a) of Asp-85 in 13-cis-bR is 0.5 ± 0.1 pK(a) unit less than the pK(a) of all-trans-bR. Thus, in 10 mM K2SO4, pK(a)/(c) = 3.3, whereas pK(a)/(t) = 3.8.
The C-C stretching vibrations (1100-1400 cm-1) of the K-590 intermediate (containing a 13C14,15 retinal), formed during the room-temperature (RT) bacteriorhodopsin (BR) photocycle, are measured using picosecond time-resolved coherent anti-Stokes Raman scattering (PTR/CARS). Although time-resolved resonance Raman data have been published previously for intermediates in the room-temperature BR photocycle, these PTR/ CARS data are the first time-resolved vibrational spectra from a picosecond BR intermediate at RT containing an isotopically-labeled (13C) retinal. The C14 and C15 positions are selected for isotopic labeling because motions around the C13=C14 and C14-C15 bonds are thought to underlie the structural transformation from BR-570 to K-590 and, therefore, the energy storage and transduction mechanism in the RT/BR photocycle. These PTR/CARS data are recorded 50 ps after the BR photocycle is initiated with 570-nm (5 ps, fwhm) excitation and are fit to within -1 via third-order nonlinear susceptibility (χ(3)) relationships. Comparisons of these PTR/CARS data at RT with the results from earlier resonance Raman (RR) studies of K-590 at low temperature (LT) reveal new temperature effects. Specifically, three CARS bands (1197, 1184, and 1167 cm-1) are observed from 13C14,15 K-590 in H2O samples via PTR/CARS at RT, while only two bands (1189 and 1170 cm-1) are found in LT/RR measurements from 13C14,15 K-625. Analogous temperature-dependent differences are found in data measured from 13C14,15 K-590 in D2O samples. Independently, PTR/CARS data at RT demonstrate that deuteration of the Schiff-base nitrogen causes major changes in the fingerprint region: the 1197-cm-1 band decreases to 1193 cm-1 while diminishing in intensity by half and a new band appears at 1206 cm-1. No such deuterium effect is observed in the LT/RR data from 13C14,15 K-590. The previously unrecognized sensitivity of fingerprint bands to deuteration of the Schiff-base nitrogen suggests that the C-C stretching modes are highly mixed with each other and coupled to the N-H(D) retinal rocking mode. Although the temperature and Schiff-base deuteration effects reported here had not been previously identified in LT vibrational data from K-625, an analysis of the RT/CARS data continues to support the 13-cis, 14-trans retinal structure in K-590 proposed from LT results.
This paper demonstrates that an atomic force microscope can be used to directly monitor rapid membrane protein dynamics. For this demonstration the membrane-bound proton pump, bacteriorhodopsin, has been investigated. It has been unequivocally shown that the light-induced dynamic alterations that have been observed do not arise from external artifacts such as heating of the sample by the incident light, but that these changes can be directly linked to the light-induced protein conformational alterations in this membrane. In essence, it has been shown that the light energy absorbed by bacteriorhodopsin is converted not only to chemical energy but also to mechanical energy. In summary a new ultrasensitive tool is described for monitoring the molecular dynamics of materials with wide applicability to fundamental and applied science.
Vibrational spectra recorded by coherent anti-Stokes resonance Raman scattering (CARS) from bacteriorhodopsin (BR) samples containing isotopically substituted (2H and 13C) retinal chromophores were measured using high repetition rate, low-power, picosecond pulsed excitation (λ1 = 580 nm and λ8 = 640 ± 3 nm). These picosecond resonance CARS (PR/CARS) data were analyzed via third-order susceptibility relationships [χ(3)] to obtain band origins, bandwidths, relative intensities, and electronic phase factors assignable to all significant vibrational Raman features in the 1490-1700 cm-1 wavenumber region (the ethylenic stretching and C=N-H rocking or Schiff base modes). Isotopic substitution selectively places 2H at C15, 13C singly at the C10 position and at the C14 position, and 13C simultaneously in positions of C14 and C15. Each isotopic BR sample was examined not only in H2O, but also in D2O, which places a 2H at the Schiff base nitrogen of the retinal. In addition, PR/CARS data were recorded from each isotopic BR sample following either light adaptation [i.e. the BR sample contained a single retinal isomer (all-trans, 15-anti or BR-570)] or dark adaptation [i.e. the BR sample contained a mixture of comparable amounts of retinal isomers (BR-570 and 13-cis, 15-syn or BR-548)]. Excellent agreement was found between the vibrational features observed by PR/CARS and those obtained from spontaneous resonance Raman measurements from the same isotopically substituted BR pigments. Several new vibrational features were also found from the PR/CARS data. Vibrational Raman data from three of the isotopic BR samples in D2O are reported for the first time.
The hypothesis was tested whether in bacteriorhodopsin (BR) the reduction of the steric interaction between the 9-methyl group of the chromophore all-trans-retinal and the tryptophan at position 182 causes the same changes as observed in the photocycle of 9-demethyl-BR. For this, the photocycle of the mutant W182F was investigated by time-resolved UV-vis and pH measurements and by static and time-resolved FT-IR difference spectroscopy. We found that the second half of the photocycle was similarly distorted in the two modified systems: based on the amide-I band, the protonation state of D96, and the kinetics of proton uptake, four N intermediates could be identified, the last one having a lifetime of several seconds: no O intermediate could be detected; the proton uptake showed a pronounced biphasic time course; and the pK(a) of group(s) on the cytoplasmic side in N was reduced from 11 in wild type BR to around 7.5. In contrast to 9-demethyl-BR, in the W182F mutant the first part of the photocycle does not drastically deviate from that of wild type BR. The results demonstrate the importance of the steric interaction between W182 and the 9-methyl group of the retinal in providing tight coupling between chromophore isomerization and the late proton transfer steps.
The photocycle of bacteriorhodopsin (BR) regenerated with all-trans-9-demethylretinal was investigated by time-resolved rapid-scan Fourier transform infrared difference spectroscopy, by static lowtemperature difference spectroscopy at 80, 170, and 213 K and by static steady-state difference spectroscopy at 278 K. In addition, the formation and decay of M intermediate was monitored at 412 nm with conventional flash photolysis experiments. Our data show that the removal of the 9-methyl group strongly changes the photocycle of BR. The reaction cycle is slowed down about 250-fold. The photoreaction is characterized by a slow rise of the M intermediate and by a very long-lived N intermediate. No O intermediate could be observed. The low-temperature spectra indicate that already at 80 K a KL-like photoproduct is formed. L can be obtained as in native BR at 170 K, but its decay appears to be inhibited, since it can still be observed at 213 K and high pH, in addition to the M intermediate. As in native BR, the 15-hydrogen out-of-plane modes of the L and N intermediates (observed in 2H2O) are very similar. Evidence for the existence of three N substates which differ in the protonation state of Asp96 and in the amide I bands is presented. This is explained by the extremely slowed-down reisomerization of the chromophore. The results are discussed with respect to alterations in the chromophore-protein interaction, caused by the removal of the 9-methyl group.
During the L → M reaction of the bacteriorhodopsin photocycle the proton of the retinal Schiff base is transferred to the anionic D85. This step, together with the subsequent reprotonation of the Schiff base from D96 in the M → N reaction, results in the translocation of a proton across the membrane. The first of these critical proton transfers occurs in an extended hydrogen-bonded complex containing two negatively charged residues (D85 and D212), two positively charged groups (the Schiff base and R82), and coordinated water. We simplified this region by replacing D212 and R82 with neutral residues, leaving only the proton donor and acceptor as charged groups. The D212N/R82Q mutant shows essentially normal proton transport, but in the photocycle neither of this protein nor of the D212N/R82Q/D96N triple mutant does a deprotonated Schiff base (the M intermediate) accumulate. Instead, the photocycle contains only the K, L, and N intermediates. Infrared difference spectra of D212N/R82Q and D212N/ R82Q/D96N demonstrate that although D96 becomes deprotonated in N, D85 remains unprotonated. On the other hand, M is produced at pH > 8, where according to independent evidence the L ↔ M equilibrium should shift toward M. Likewise, M is restored in the photocycle when the retinal is replaced with the 14-fluoro analogue that lowers the p of the protonated Schiff base, and now D85 becomes protonated as in the wild type. We conclude from these results that the proton transfers to and from the Schiff base probably both occur after photoexcitation of D212N/R82Q, but the L ↔ M and M ↔ N equilibria are shifted away from M, and, untypically, D85 does not retain the proton it had gained. The mechanism of proton transport is not greatly changed when D85 is the only charged component of the Schiff base counterion, but the protonation equilibria in the proton transfer pathway across the protein are drastically altered.
Deprotonation/protonation processes involving the retinal Schiff base and the Asp85 residue play dominant roles in the light-induced proton pump of bacteriorhodopsin (bR). Although the pKa values of these two moieties in unphotolyzed bR are well established, the kinetics of the respective titrations in the native pigment are difficult to interpret, primarily due to the extreme (nonphysiological) pKa values of the two moieties (12.2 ± 0.2 and 2.7, in 0.1 M NaCl, for the Schiff base and for Asp85, respectively). These difficulties are circumvented by applying stopped-flow techniques, time resolving the titrations of several artificial bRs in which the p values of the above two residues are substantially modified: 13- CF3 bR, pATa (Schiff base) = 8.2 ± 0.2; 13-demethyl-11,14-epoxy bR, pKa (Schiff base) = 8.2 ± 0.1 (in 0.1 M NaCl); aromatic bR, p (Asp85) = 5.2 ±0.1 (in water). The R82Q bR mutant, pKa (Asp85) = 7.2 was also employed. A major objective was to verify whether the basic relationships of homogeneous kinetics obeyed by elementary acid/base systems in solution (primarily, the possibility to express the equilibrium constant as the ratio of the forward and back rate constants) are also obeyed by the Schiff base and Asp85 moieties. We found that this is the case for the Schiff base in the pH range between 7 and 9 but not at lower pH. These observations led to the conclusion that the Schiff base is titrable from the outside medium via a proton channel, which becomes saturated, and thus rate determining, below pH ss 7. The observed protonation rate constant in the pH = 7-9 range is K = 6.0 x 107 M-1 s-1, implying a reactivity that is lower by 3 orders of magnitude as compared to the diffusion-controlled rate constant of an elementary acid/base in homogeneous solutions. In the case of Asp85, fca could not be directly determined. The titration rates observed in the case of pigment IV are, however, consistent with a model in which the Schiff base and Asp85 are exposed to the extracellular side via the same proton channel. It is suggested that the rate-determining step in proton translocation via this channel is a transfer between Asp85 and the outside, rather than between Asp85 and the Schiff base. This conclusion applies independently of whether Asp85 is protonated or non-protonated. The results are relevant to basic questions related to the proton pump mechanism in bR, primarily (a) the exposure direction (to the outside or to the inside of the cell) of the Schiff base and of Asp85 in unphotolyzed bR and (b) the nature of the still unidentified protein residue (XH) whose proton is translocated to the outside during the bacteriorhodopsin photocycle. We conclude that, in variance with the Schiff base in unphotolyzed bR or with Asp85 (in photolyzed or unphotolyzed bR), during the photocycle the XH moiety is highly exposed to the outside medium. More generally, our study bears on the basic problem concerning the relationship between the kinetics of the titration of protein residues and their respective (\u201dthermodynamic\u201d) equilibrium constants.
The structure and function of the light-driven proton pump bacteriorhodopsin appear to be determined by the exact geometrical conformation of specific groups in the retinal binding site, including bound water molecules. This applies to the pKa values of the protonated Schiff base, which links the retinal chromophore to Lys216, and to Asp85. In the present work we show that the geometrical constraints imposed by the ring structures of several synthetic retináis can induce substantial changes in the pKa values of the Schiff base and of Asp85. Thus, the artificial pigments derived from 13-demethyl-11,14-epoxyretinal (2) and 13-demethyl-9,12-epoxyretinal (3) show protonated Schiff base pAa values of 8.2 ± 0.1 and 9.1 ± 0.1, respectively, as compared with 13.3 in the native (all-trans-tetinal) pigment. We also suggest that in both systems the pKa of Asp85 increases from 3.2 in the native bR to above 9. Analogous, though smaller, effects are obtained for artificial bR pigments derived from 12,14-ethanoretinal (4), 11,-13-propanoretinal (5), 11,13-ethanoretinal (6), and p-(CHR3.)2N-C6H4-HC=CH-C(CH3)=CH-CHO 7. The effects of geometry on the pKa values (those on Asp85 being more pronounced) are attributed to the disruption of the original, well-defined, structure in which the Schiff base and its Asp85 counterion are bridged by bound water molecules. These results are the first to show that it is possible to modify the pKa values of the Schiff base and Asp85 in appropriate artificial pigments, without inducing intrinsic pAa changes in the chromophore or introducing a mutation in the protein. The results bear on the structure of bR and on the mechanisms of its light-driven proton pump in which both Schiff base and Asp85 moieties play central roles.
Abstract aIsorhodopsin, an artificial visual pigment with a 9cis4,5dehydro5,6dihydro(a)retinal chromophore, was photolyzed at low temperatures and absorption difference spectra were collected as the sample was warmed. A bathorhodopsin (Batho)like intermediate absorbing at ca 495 nm was detected below 55 K, a blueshifted intermediate (BSI)like intermediate absorbing at ca 453 nm was observed when the temperature was raised to 60 K and a lumirhodopsin (Lumi)like intermediate absorbing at ca 470 nm was found when the sample was warmed to 115 K. Photointermediates from this pigment were compared to those of native rhodopsin and 5,6dihydroisorhodopsin. As in native rhodopsin, Batho is the first intermediate detected in aisorhodopsin, though unlike native rhodopsin at low temperatures BSI is observed prior to Lumi formation. aIsorhodopsin behaves similarly to 5,6dihydroisorhodopsin, with the same early intermediates observed in both artificial visual pigments lacking the C5C6 double bond. The transition temperature for BSI formation is higher in aisorhodopsin, suggesting an interaction involving the chromophore ring in BSI formation. The transition temperature for Lumi formation is similar for these two pigments as well as for native rhodopsin, suggesting comparable changes in the protein environment in that transition.
A system is described that allows for the delineation of the factors that effect the complexation of retinal to the apoprotein of bacteriorhodopsin. This complexation is investigated in various states of hydration, in H2O and D2O, at a variety of pH levels, with mutant membranes and labeled retinals. The complexation reaction was also investigated using absorption spectroscopy and vibrational spectra using difference Fourier transform infrared spectroscopy. The results demonstrate the crucial role of water in controlling the protein conformations that lead to protein/ligand binding reactions and begin to shed new light on the protein control of a reaction that normally cannot take place in an aqueous medium.
Nanosecond laser photolysis measurements were conducted on the cone-type visual pigment P521 in digitonin extracts of Tokay gecko (Gekko gekko) retina containing physiological chloride ion levels and also on samples which had been chloride depleted or which contained high levels (4 M) of chloride. Absorbance difference spectra were recorded at a sequence of time delays from 30 ns to 60 µs following excitation with a pulse of either 532- or 477-nm actinic light. Global analysis showed the kinetic decay data for gecko pigment P521 to be best fit by two exponential processes under all chloride conditions. The initial photoproduct detected had a broad spectrum characteristic of an equilibrated mixture of a Batho P521 intermediate with its blue-shifted intermediate (BSI P521) decay product. The first exponential process was assigned to the decay of this mixture to the Lumi P521 intermediate. The second exponential process was identified as the decay of Lumi P521 to Meta I P521. The initial photoproduct's spectrum exhibited a strong dependence on chloride concentration, indicating that chloride affects the composition of the equilibrated mixture of Batho P521 and BSI P521. These results suggest that the affinity for chloride is reduced ~5-fold in the Batho P521 intermediate and ~50-fold in the BSI P521 intermediate. Chloride concentration also affects the apparent decay rate of the equilibrated mixture. When the apparent decay rate is corrected for the composition of the equilibrated mixture, a relatively invariant microscopic rate constant is obtained for BSI decay (k = 1/55 ns-1). The rate constant obtained agrees with the value observed for the synthetic 9-m-α-retinal gecko pigment which has a completely forward-shifted equilibrium mixture, indicating that the BSI decay is controlled by a relaxation process independent of chromophore and chloride concentration and thus presumably characteristic of the gecko opsin protein.
The picosecond dynamics of the photoreaction of an artificial bacteriorhodopsin (BR) pigment containing a retinal in which a five-membered ring spans the C-12 to C-14 positions of the polyene chain (BR5.12) is examined by using time-resolved absorption and fluorescence and resonance Raman spectroscopy. The ring within the retinal chromophore of BR5.12 blocks the C-13=C-14 isomerization proposed to be a primary step in the energy storage/transduction mechanism in the BR photocycle. Relative to the native BR pigment (BR-570), the absorption spectrum of BR5.12 is red-shifted by 8 nm. The fluorescence spectrum of BR5.12 closely resembles that of BR-570 although the relative fluorescence yield is higher (≃10-fold). Picosecond transient absorption (4-ps pulses, 568-662 nm) measurements reveal an intermediate absorbing to the red side of BR5.12. Kinetic fits show that the red-absorbing intermediate appears within
Kinetic spectra of early photolysis intermediates were monitored after nanosecond laser photolysis of a series of artificial visual pigments containing retinal analogs with bulky substituents along the polyene chain. Time-resolved absorbance changes over the spectral range 400-700 nm were recorded at discrete times from 20 ns to 5 μs following room temperature excitation with a pulse of 477 nm light. Photolysis of bovine rhodopsin regenerated with 9-ethyl-9-cis-retinal, 19,11-ethano-11-cis-retinal, or 13-ethyl-9-cis-retinal produced intermediates similar to those seen after rhodopsin photolysis, i.e. bathorhodopsin (Batho) ⇆ blue-shifted intermediate (BSI) → lumirhodopsin (Lumi). In contrast to previously studied artificial pigments and rhodopsin itself, for these chromophores with bulky substituents, the equilibrium between Batho and BSI is back-shifted. The stability of BSI relative to Batho is most affected in the 13-ethyl pigment, which had an equilibrium constant of 0.4, approximately one-third of the value observed for rhodopsin. As the bulky substituent moves toward the G9 end of the chromophore, K(eq) moves toward the rhodopsin value, with the result for the locked 9-trans-rhodopsin pigment being intermediate between those of the 9-ethyl and 13-ethyl pigments. The presence of bulky substituents also slows the microscopic rate of Batho decay. This effect is largest for the 9-ethyl pigment whose Batho decay is slowed by a factor of 5. Freedom of movement of the 9-methyl (restricted in the 9-ethyl case) is proposed to control the rate of Batho decay in a mechanism involving passage of the chromophore's C8-hydrogen by the 5-methyl group of its β-ionone ring to form BSI. For all these pigments, the decay of BSI is substantially slower than for previous pigments, indicating that steric hindrance along the polyene chain interferes with the protein change triggered by BSI formation and suggesting that the protein change may involve side chains adjacent to this region of the chromophore.
The availability of the structure of bacteriorhodopsin from electron microscopy studies has opened up the possibility of exploring the proton pump mechanism of this protein by means of molecular dynamics simulations. In this review we summarize earlier theoretical investigations of the photocycle of bacteriorhodopsin including relevant quantum chemistry studies of retinal, structure refinement, molecular dynamics simulations, and evaluation of pKa values. We then review a series of recent modeling efforts which refined the structure of bacteriorhodopsin adding internal water, and which studied the nature of the J intermediate and the likely geometry of the K590 and L550 intermediates (strongly distorted 13cis) as well as the sequence of retinal geometry and protein conformational transitions which are conventionally summarized as the M412 intermediate. We also review simulations of the photocycle of lightadapted bacteriorhodopsin at T=77 K and of the photocycle of darkadapted bacteriorhodopsin, both cycles differing from the conventional photocycle through a nonfunctional (pure 13cis) retinal geometry of the corresponding K590 and L550 states. The simulations demonstrate a potentially critical role of water and of minute reorientations of retinal's Schiff base nitrogen in controlling proton pumping in bR568; the simulations also indicate the existence of heterogeneous photocycles. The results exemplify the important role of molecular dynamics simulations in extending investigations on bacteriorhodopsin to a level of detail which is presently beyond experimental resolution, but which needs to be known to resolve the pump mechanism of bacteriorhodopsin. Finally, we outline the major existing challenges in the field of bacteriorhodopsin modeling.
The picosecond molecular dynamics in an artificial bacteriorhodopsin (BR) pigment containing a structurally-modified retinal chromophore with a six-membered ring beginning at C9 to bridge the C9=C10-C11 region of the polyene chain (BR6.9) are measured by picosecond transient absorption (PTA). Time-dependent absorption intensity and spectral changes in the 560-670 nm region are monitored for delays as long as 54 ns after the 4-ps, 573-nm excitation of BR6.9. Within 600 nm) of the BR6.9 spectrum. The first intermediate decays with a time constant of 5 ± 1 ps to form the second, but no other absorption changes are found during the remainder of the initial 54-ns period of the BR6.9 photoreaction. Since these PTA properties are generally analogous to those measured in the native BR photocycle for J-625 and K-590, the two BR6.9 intermediates are denoted J6.9 and K6.9, respectively. The low-power energy, resonance Raman (RR) spectrum of ground-state BR6.9 is significantly different from that of native BR-570, thereby confirming that these PTA data are assignable to BR6.9 and its photoreaction alone and not to native BR species (BR-570 could remain in the reconstituted sample as a contaminant). The C-C stretching band structure in the RR spectrum of BR6.9 is similar to that of another of the artificial BR pigments in which the six-membered ring is incorporated to bridge the C11=C12-C13 bonds, namely BR6.11. Mechanistically, these results demonstrate that restricted motion in the C9=C10-C11 region does not change that part of the BR6.9 photoreaction involved in forming J6.9 and K6.9 but does alter the rate at which the J to K transformation occurs. A molecular model correlating the primary events and their rates in the native BR photocycle with those appearing in the BR6.9 photoreaction, as well as with other artificial BR pigments containing carbon rings, is presented.
The lightinduced proton pump in bacteriorhodopsin is reviewed with emphasis on acidbase equilibria of protein residues and of the retinal Schiff base moiety. Pump mechanisms in bR and in some of its mutants are classified in terms of lightinduced pKa changes (class I) or lightinduced exposure changes, in which the proton accessibility of the protein changes from the outside to the inside of the membrane (class II). A discussion of the theoretical basis of the factors which determine the pKa of ionizable protein groups is followed by a review of the experimental phenomena associated with the titration of residues in both unphotolyzed bR and during its photocycle. The timeresolved titrations of the Schiff base and of the Asp85 residue are discussed in terms of the accessibility of the two groups to external protons. Finally, the molecular aspects of the pHdependent proton pump in native bR and in various mutants are analyzed, focusing on the mechanism of the initial proton release reaction and on the subsequent molecular switch which allows reprotonation from the inside of the cell. Special attention is devoted to the question of coupling between the photocycle intermediates (primary M formation and decay) and the transmembrane proton translocation. Recent work with bR mutants raise the question as to whether proton transfer from the Schiff base to Asp85 at the M stage is directly responsible for proton translocation, as well as for the reprotonation switch.
The nonlinear optical properties of the bacteriorhodopsin chromophore in the bR568 and K states are investigated by second harmonic generation. The comparison of amplitudes and phases of the second-order nonlinear optical polarizabilities of the retinal chromophore in the two states has revealed a noticeable increase of the induced dipole of the retinal as a result of the bR568 → K transition. The results have been explained in terms of recent theoretical understandings of the nonlinear optical properties of polyenes. Within the context of these understandings we have discussed the molecular origins of the light-induced color changes and the possible mechanism of photon energy storage observed in this protein.
Molecular dynamics simulations have been carried out to study the M412 intermediate of bacteriorhodopsin's (bR) photocycle. The simulations start from two simulated structures for the L550 intermediate of the photocycle, one involving a 13-cis retinal with strong torsions, the other a 13,14-dicis retinal, from which the M412 intermediate is initiated through proton transfer to Asp-85. The simulations are based on a refined structure of bR568 obtained through all-atom molecular dynamics simulations and placement of 16 waters inside the protein. The structures of the L550 intermediates were obtained through simulated photoisomerization and subsequent molecular dynamics, and simulated annealing. Our simulations reveal that the M412 intermediate actually comprises a series of conformations involving 1) a motion of retinal; 2) protein conformational changes; and 3) diffusion and reconfiguration of water in the space between the retinal Schiff base nitrogen and the Asp-96 side group. (1) turns the retinal Schiff base nitrogen from an early orientation toward Asp-85 to a late orientation toward Asp-96; (2) disconnects the hydrogen bond network between retinal and Asp-85 and tilts the helix F of bR, enlarging bR's cytoplasmic channel; (3) adds two water molecules to the three water molecules existing in the cytoplasmic channel at the bR568 stage and forms a proton conduction pathway. The conformational change (2) of the protein involves a 60 degrees bent of the cytoplasmic side of helix F and is induced through a break of a hydrogen bond between Tyr-185 and a water-side group complex in the counterion region.
The early stages of the bacteriorhodopsin photocycle, including the J625, K590, and L550 intermediates and the role of water molecules within the protein interior, are studied by means of molecular dynamics simulations. Our calculations examine two models for the excited state potential surface governing the observed all-trans → 13-cis photoisomerization: one surface hindering a C14-C15 single-bond corotation and the other surface allowing such corotation. The investigations use as a starting structure a model of bacteriorhodopsin based on electron-microscopy studies and subsequent molecular dynamics refinement. The following questions are addressed: How does the binding site guide retinal's photoisomerization? How does the photoisomerization depend on features of the excited state potential surface? Can one recognize a J625 intermediate? How does water participate in the early part of the pump cycle? How is the initial photoreaction affected by a lowering of temperature? To model the quantum yield, i.e., the dependence of the dynamics on initial conditions, 50 separate isomerization trials are completed for each potential surface, at both 300 and 77 K, the trials being distinguished by different initial, random velocity distributions. From these trials emerge, besides all-trans-retinal, three different photoproducts as candidates for the K590 intermediate: (1) 13-cis-retinal, with the Schiff base proton oriented toward Asp-96; (2) 13-cis-retinal, highly twisted about the C6-C7 bond, with the Schiff base proton oriented perpendicular to the membrane normal; (3) 13,14-dicis-retinal, with the Schiff base proton oriented toward the extracellular side. Two candidates for the K590 intermediate, case 2 and case 3 above, were subjected to simulated annealing to determine corresponding L550 structures. We suggest that photoproduct 2 above most likely represents the true K590 intermediate. Water molecules near the Schiff base binding site are found to play a crucial role in stabilizing the K590 state and in establishing a pathway for proton transfer to Asp-85.
The M stage in the photocycle of bacteriorhodopsin (bR), a key step in its light-induced proton pump mechanism, is studied in water/glycerol suspensions over the temperature range between 20 and −60 °C. The biexponential decay of M is analyzed for wild-type (WT) bR and for its D96N, Y185F, and D115N mutants, at various pH values, according to the scheme: bR →(hv) L → M → (k1, k-1) N→ (k2) bR. The analysis leads to the conclusion that the N state is generated, with analogous rate parameters, in all cases, including the D96N mutant. Another approach involves probing the M state, generated by steady-state illumination at −60 °C, by fast cooling to −180 °C. Subsequent irradiation with blue light, followed by gradual warming up, induces the M→ (hv) M→ bR→ bR sequence of reactions. On the basis of characteristic difference spectra and transition temperatures observed for the M→ bR process, it is concluded that the initially observed M state at −60 °C, denoted as {M}a, is composed of three (or four) equilibrated substates, MI, MII, MIII, and MIV. During the M→ N equilibration, which corresponds to the fast phase of the M decay, {M}a transforms into a second state, (M}b, in which MIII has been replaced by a fifth M substate, denoted as Mv. Mv is identified as the protein state in which an appropriate structural change allows reprotonation of the Schiff base, generating the N state. The low-temperature heterogeneity in M is discussed in terms of the two M states (M1 and M2) previously postulated [Váró, G., & Lanyi, J. K. (1990) Biochemistry 29, 2241] for the room temperature photocycle. The following conclusions are derived for both low and room temperature photocycles: (a) The M population is highly heterogeneous and pH dependent, (b) At least three transitions are observed between the initially formed M state and the M state that is equilibrated with N. These are assigned to protein conformational changes and to water molecule rearrangements, (c) In an aqueous suspension of WT bR at room temperature, the Schiff base reprotonation is controlled by D96. However, our results show that the formation and stability of the N state do not require the D96 residue. Moreover, at low temperatures, the (M}a→ {M}b protein structural transformation, which has not yet been resolved at room temperature, becomes the rate-determining step in the protonation of the Schiff base.
Bacteriorhodopsin contains all-trans-retinal linked via a protonated Schiff base to K216. The proton transport in this pump is initiated by all-trans to 13-cis photoisomerization of the retinal and the ensuing transfer of the Schiff base proton to D85. Changed geometrical relationship of the Schiff base and D85 after the photoisomerization is a possible reason for the proton transfer. We introduced small volume/shape changes with site-specific mutagenesis of residues V49 and A53 that contact the side chain of K216, in order to force the Schiff base into somewhat different positions relative to D85. Earlier [Zimányi, L., Váró, G., Chang, M., Ni, B., Needleman, R., & Lanyi, J. K. (1992) Biochemistry 31, 8535-8543] we had described the kinetics of absorbance changes in the microsecond to millisecond time range after photoexcitation with the scheme L ⟺ M1 ⟺ M2 + H+ (where the first equilibrium is the internal proton transfer and the second is proton release on the extracellular surface). Testing it at various pH values with mutants, where selected rate constants are changed, now confirms the validity of this scheme. The kinetics of the M state thus allowed examination of the transient equilibrium that develops in the L ⟺ M1 reaction and represents the redistribution of the proton between the Schiff base and D85. From the structure of the protein, the V49A and V49M residue replacements were both predicted to cause decreased alignment of the Schiff base and D85, and indeed we found that they both changed the equilibrium toward the protonated Schiff base. In contrast, the residue replacements A53V and A53G were predicted to move the Schiff base in opposite directions, away from and closer to alignment with D85, respectively. The former indeed changed the equilibrium toward the protonated Schiff base and the latter toward the deprotonated Schiff base. In addition, the hydroxyl stretch band of a bound water in the L state was affected by all mutations that disfavor proton transfer to D85. We conclude that the geometry of the proton donor and acceptor in the Schiff base-D85 pair, mediated by bound water, is a determinant of the proton transfer equilibrium.
The light-induced proton pumping activity of bacteriorhodopsin (bR) is based on the photocycle of its light-adapted all-trans-retinal protein pigment. The photocycle of the 13-cis pigment lacks the M intermediate (which carries a deprotonated retinal Schiff base, characteristic of the all-trans photocycle) and is not associated with proton release and uptake. Aiming at establishing the reasons for the lack of light-induced Schiff base deprotonation and proton pumping in 13-cis-bR, we carried out pulsed-laser and continuous excitation experiments with artificial 13-cis-bR pigments derived from 13-demethylretinal, 13-demethyl-14-fluoro-bR, and 13-demethyl-12,14-difluoro-bR. Pulsed-laser photolysis shows that both M formation and proton pumping are restored in 13-cis-13-demethyl-bR by raising the pH to 8.5-9. M formation, but not proton pumping, is restored at neutral pH by 14-fluorine substitution. Continuous-illumination experiments lead, in all cases, to the generation of extremely long-lived (minutes to hours) M photoproducts. We show that such species are due to secondary photoreactions of late intermediates of the primary photolysis. Feasible mechanisms accounting for Schiff base deprotonation in the all-trans photocycle, but not in that of 13-cis-bR, are considered. Our findings favor a mechanism which attibutes the lack of light-induced Schiff base deprotonation of 13-cis-bR to an insufficient change in the relative pKa of the donor (Schiff base) and acceptor (probably Asp-85) groups and/or to a high activation barrier for the proton transfer. The required change in relative pKas may be achieved either by deprotonation of a protein moiety (YH) with pKa ≈ 8.5 or by fluorine substitution at position 14. Similarly, both YH titration and 14-fluorine substitution may reduce the barrier for proton transfer by affecting H-bonding interactions in the vicinity of the Schiff base linkage. The lack of proton release and uptake in the photocycle of 13-cis-13-demethyl-14-fluoro-bR, despite the presence of an M intermediate, is discussed. It appears that Schiff base deprotonation does not essentially imply proton release and uptake. Our conclusions bear on the molecular mechanism of the photocycle and of proton pumping in all-trans-bR.
The photoreactions of rhodopsin regenerated with three 9-cis retinal analogs, modified at or in the vicinity of the β-ionone ring (namely 5,6-epoxy, 7,8-diH, diethyl-acyclic) have been investigated by UV-vis and FTIR difference spectroscopy. In parallel, the ability to catalyze the GDP → GTP exchange of G-protein (transducin) has been monitored by time-dependent fluorescence spectroscopy. The first photoproduct obtained with all three pigments at liquid nitrogen temperature is a blue-shifted intermediate (BSI), followed by a lumi-like intermediate at 170 K. For the 5,6-epoxy-ISO and 7,8-diH-ISO pigment we obtain two further intermediates similar to the META-I and META-II states of native RHO. For the diethyl-acyclic-ISO pigment only one further intermediate can be stabilized at 280 K. As compared to META-II the respective photoproduct exhibits striking differences. The latter two pigments have also been investigated in the solubilized lipid-free state (detergent: dodecyl maltoside) at 280 K. For the 5,6-epoxy-ISO pigment, the UV-vis, FTIR, and activation data agree with the formation of a META-II-like photoproduct (81% activation). Less META-II formation is observed for the 7,8-dihydro-ISO pigment in membranes (65% activation), but full formation in detergent (100% activation). Neither the membrane-bound nor the solubilized diethyl-acyclic-ISO pigment forms a META-II-like intermediate (18% and 0% activation, respectively). Therefore, we conclude that the substitution of the β-ionone ring by two ethyl groups abolishes steric interactions with the protein, which are essential for META-II formation. The UV-vis and FTIR spectroscopic data are discussed in connection with the biochemical data and the molecular events are interpreted in terms of chromophore-protein interaction.
Following light absorption, at neutral pH the bacteriorhodopsin mutant Y57N does not show Schiff base deprotonation (no M intermediate) or proton pumping activity. We reasoned that this might be due to improper ΔpKa between the proton-donating Schiff base and the proton-accepting Asp-85 after light absorption. To test this, we reduced the intrinsic pKa of the protonated Schiff base in the pigment (and thus in the photointermediates) by replacing the retinal chromophore with an analogue, 14-F retinal. This substitution restores light-induced M formation, strongly suggesting that light-induced Schiff base deprotonation is accomplished by lowering its pKa during the photochemical cycle. Thus, while it is generally accepted that the Schiff base deprotonation during the photocycle takes place because of the light-induced reduction in its pKa, we provide here the first experimental evidence of this phenomenon.
Bacteriorhodopsin pigments lacking the retinal-Lys-216 covalent bond were prepared by reconstituting the K216G mutant protein with retinal alkylamine Schiff bases. The procedure follows the approach of Zhukovsky et al. [Zhukovsky, E., Robinson, P., & Oprian, D. (1991) Science 251, 558-560] in the case of visual (rhodopsin) pigments. Reconstitution leads to a mixture of three pigments. One of them, bR(K216G)/566a, absorbs (pH = 6.9) at 566 nm. Its absorption is pH-dependent, exhibiting a purple to blue transition. The pigment's laser-induced photocycle patterns are similar to those of wild-type all-trans-bR. A second component, bR(K216G)/566b, exhibits an independent photocycle reminiscent of that of wild-type 13-cis-bR. A third pigment component, bR(K216G)/630, absorbs around 630 nm. Experiments in the presence of a pH dye indicator show that illumination of bR(K216G)/566 produces a detectable proton gradient. It is concluded that a covalent bond between the retinal chromophore and the protein backbone is not a prerequisite for the basic structure and photochemical features of bR or for its proton pump activity.
The structure of bacteriorhodopsin based on electron microscopy (EM) studies, as provided in Henderson et al. (1990), is refined using molecular dynamics simulations. The work is based on a previously refined and simulated structure which had added the interhelical loops to the EM model of bR. The present study applies an all-atom description to this structure and constraints to the original Henderson model, albeit with helix D shifted. Sixteen waters are then added to the protein, six in the retinal Schiff base region, four in the retinal-Asp-96 interstitial space, and six near the extracellular side. The root mean square deviation between the resulting structure and the Henderson et al. (1990) model measures only 1.8 Å. Further simulations of retinal analogues for substitutions at the 2- and 4-positions of retinal and an analogue without a β-ionone ring agree well with observed spectra. The resulting structure is characterized in view of bacteriorhodopsin's function; key features are (1) a retinal Schiff base-counterion complex which is formed by a hydrogen bridge network involving six water molecules, Asp-85, Asp-212, Tyr-185, Tyr-57, Arg-82, and Thr-89, and which exhibits Schiff base nitrogen-Asp-85 and -Asp-212 distances of 6 and 4.6 Å; (2) retinal assumes a corkscrew twist as one views retinal along its backbone; and (3) a deviation from the usual α-helical structure of the cytoplasmic side of helix G.
Results are presented demonstrating that the backbone of the active site lysine of bacteriorhodopsin undergoes light-induced structural alterations during bacteriorhodopsin-mediated light-induced proton pumping. This conclusion is based on difference Fourier transform infrared spectroscopy of isotopically labeled bacteriorhodopsin. The data demonstrate that the backbone carbonyl of lysine achieves an extremely low vibrational frequency during M(412) intermediate formation. This is preceded by a structural transition in the lysine backbone that leads to an active site lysine carbonyl with the observed low vibrational frequency, probably due to a high degree of solvation.
The factors that red shift the absorption maximum of the retinal Schiff base chromophore in the M412 intermediate of bacteriorhodopsin photocycle relative to absorption in solution were investigated using a series of artificial pigments and studies of model compounds in solution. The artificial pigments derived from retinal analogs that perturb chromophoreprotein interactions in the vicinity of the ring moiety indicate that a considerable part of the red shift may originate from interactions in the vicinity of the Schiff base linkage. Studies with model compounds revealed that hydrogen bonding to the Schiff base moiety can significantly red shift the absorption maximum. Furthermore, it was demonstrated that although strans ringchain planarity prevails in the M412 intermediate it does not contribute significantly (only ca 750 cm−1) to the opsin shift observed in M412. It is suggested that in M412, the Schiff base linkage is hydrogen bonded to bound water and/or protein residues inducing a considerable red shift in the absorption maximum of the retinal chromophore.
A visual pigment is composed of retinal bound to its apoprotein by a protonated Schiff base linkage. Light isomerizes the chromophore and eventually causes the deprotonation of this Schiff base linkage at the meta II stage of the bleaching cycle. The meta II intermediate of the visual pigment is the active form of the pigment that binds to and activates the G protein transducin, starting the visual cascade. The deprotonation of the Schiff base is mandatory for the formation of meta II intermediate. We studied the proton binding affinity, pKa, of the Schiff base of both octopus rhodopsin and the gecko cone pigment P521 by spectral titration. Several fluorinated retinal analogs have strong electron withdrawing character around the Schiff base region and lower the Schiff base pKa in model compounds. We regenerated octopus and gecko visual pigments with these fluorinated and other retinal analogs. Experiments on these artificial pigments showed that the spectral changes seen upon raising the pH indeed reflected the pKa of the Schiff base and not the denaturation of the pigment or the deprotonation of some other group in the pigment. The Schiff base pKa is 10.4 for octopus rhodopsin and 9.9 for the gecko cone pigment. We also showed that although the removal of Cl- ions causes considerable blue-shift in the gecko cone pigment P521, it affects the Schiff base pKa very little, indicating that the lambda max of visual pigment and its Schiff base pKa are not tightly coupled.
The second order nonlinear polarizability and dipole moment changes upon light excitation of light-adapted bacteriorhodopsin (BR), dark-adapted BR, blue membrane, and acid purple membrane have been measured by second harmonic generation. Our results indicate that the dipole moment changes of the retinal chromophore, delta mu, are very sensitive to both the chromophore structure and protein/chromophore interactions. Delta mu of light-adapted BR is larger than that of dark-adapted BR. The acid-induced formation of the blue membrane results in an increase in the delta mu value, and formation of acid purple membrane, resulting from further reduction of pH to 0, returns the delta mu to that of light-adapted BR. The implications of these findings are discussed.
The active site of an ion pump must communicate alternately with the two opposite membrane surfaces. In the light-driven proton pump, bacteriorhodopsin, the retinal Schiff base is first the proton donor to D85 (with access to the extracellular side), and then it becomes the acceptor of the proton of D96 (with access to the cytoplasmic side). This "reprotonation switch" has been associated with a protein conformation change observed during the photocycle. When D85 is replaced with asparagine, the pKR value of the Schiff base is lowered from above 13 to about 9. We determined the direction of the loss or gain of the Schiff base protin in unphotolyzed and in photoexcited D85N, and the D85N/D96N and D85N/D96A double mutants, in order to understand the intrinsic and the induced connectivities of the Schiff base to the two membrane surfaces. The influence of D96 mutations on proton exchange and on acceleration of proton shuttling to the surface by azide indicated that in either case the access of the Schiff base on D85N mutants is to the cytoplasmic side. In the wild-type protein (but with the pKa of the Schiff base lowered by 13-trifluoromethyl retinal substitution) the results suggested that the Schiff base can communicate also with the extracellular side. Raising the pH without illumination of D85N so as to deprotonate the Schiff base caused the same, or nearly the same, change of X-ray scattering as observed when the Schiff base deprotonates during the wild-type photocycle. The results link the charge state of the active site of the global protein conformation and to the connectivity of the Schiff base proton to the membrane surfaces. Their relationship suggests that the conformation of the unphotolyzed wild-type protein is stabilized by coulombic interaction of the Schiff base with its counter-ion. A proton is translocated across the membrane after light-induced transfer of the Schiff base proton to D85, because the protein assumes an alternative conformation that separates the donor from the acceptor and opens new conduction pathways between the active site and the two membrane surfaces.
The Schiff base linkage bond configuration of bacteriorhodopsin was studied using model compounds consisting of all-trans- and 13-cis-retinal-protonated Schiff bases bearing CN anti and syn bond configurations. The CN configuration was analyzed using a combination of Fourier transform infrared spectroscopy and isotopically labeled chromophores. It was found that, in the model compounds, the coupling between the C14C15 stretching frequency and the NH rock is weak in the all-trans-retinal-protonated Schiff base in both the anti and syn CN configurations. However, this coupling is relatively strong in the 13-cis-retinal-protonated Schiff base in both the anti and syn CN configurations. Thus, it is concluded that, in model compounds, the C14C15 mode can serve as a marker for the C13C14 bond configuration but not for the CN. A different situation may prevail in bacteriorhodopsin due to different conformations of the retinal chromophore in the protein binding site and in solution. This difference suggests that the C14C15/NH coupling in retinal-protonated Schiff bases is affected by the retinal conformation.
The resonance Raman (RR) spectrum of a K-intermediate formed during the photoreaction of an artificial bacteriorhodopsin (BR) pigment (derived from E-11,20 ethanoretinal) containing a six-membered ring spanning the C11=C12-C13 region of the retinal chromophore (BR6.11) is recorded by picosecond time-resolved resonance Raman (PTR3) spectroscopy. A recent study of the BR6.11 photoreaction utilizing picosecond transient absorption and picosecond time-resolved fluorescence measurements revealed that (i) a J-intermediate (J6.11) appears within
The picosecond molecular dynamics in an artificial bacteriorhodopsin (BR) pigment containing a structurally modified all-trans retinal chromphore with a six-membered ring bridging the C11=C12-C13 positions (BR6.11) are measured by picosecond transient absorption and picosecond time-resolved fluorescence spectroscopy. Time-dependent intensity and spectral changes in absorption in the 570650-nm region are monitored for delays as long as 5 ns after the 7-ps, 573-nm excitation of BR6.11. Two intermediates, J6.11 and K6.11/1, both with enhanced absorption to the red (> 600 nm) of the BR6.11 spectrum are observed within approximately 50 ps. The J6.11 intermediate decays with a time constant of 12 +/- 3 ps to form K6.11/1. The K6.11/1 intermediate decays with an approximately 100-ps time constant to form a third intermediate, K6.11/2, which is observed through diminished 650-nm absorption (relative to that of K6.11/1). No other transient absorption changes are found during the remainder of the initial 5-ns period of the BR6.11 photoreaction. Fluorescence in the 650900-nm region is observed from BR6.11, K6.11/1, and K6.11/2, but no emission assignable to J6.11 is found. The BR6.11 fluroescence spectrum has a approximately 725-nm maximum which is blue-shifted by approximately 15 nm relative to that of native BR-570 and is 4.2 +/- 1.5 times larger in intensity (same sample optical density). No differences in the profile of the fluorescence spectra of BR6.11 and the intermediates K6.11/1 and K6.11/2 are observed. Following ground-state depletion of the BR6.11 population, the time-resolved fluroescence intensity monitored at 725 nm increases with two time constants, 12 +/- 3 and approximately 100 ps, both of which correlate well with changes in the picosecond transient absorption data.(ABSTRACT TRUNCATED AT 250 WORDS)
Artificial bovine rhodopsin pigments derived from synthetic retinal analogues carrying electron-withdrawing substituents (fluorine and chlorine) were prepared. The effects of the electron withdrawing substituents on the pKa values of the pigments and on the corresponding Schiff bases in solution were analyzed. The data suggest that the apparent pKa of the protonated Schiff base is above 16. However, the alternative possibility that the retinal Schiff base linkage in bovine rhodopsin is not accessible for titration from the aqueous bulk medium cannot be definitely ruled out.
The back photoreaction of the M intermediate in the photocycle of bacteriorhodopsin is investigated both for the native pigment and its D96N mutant. The experimental setup is based on creating the M intermediate by a first pulse, followed by a (blue) laser pulse which drives the back photoreaction of M. Experiments are carried out varying the delay between the two pulses, as well as the temperature over the -25-degrees-C-20-degrees-C range. It is found that the kinetic patterns of the M back photoreaction change with time after the generation of this intermediate. The data provide independent evidence for the suggestion of a photocycle mechanism based on two distinct M intermediates. They are thus in keeping with the consecutive model of Varo and Lanyi (Biochemistry 30, 5016-5022; 1991), although they cannot exclude other models such as those based on branched or parallel cycles. More generally, we offer a ''photochemical'' approach to discriminating between intermediate stages in the photocycle which does not depend on spectroscopic and/or kinetic data. While markedly affecting the rate of the M --> N transition in the photocycle, the rate of the thermal step in the back photoreaction of M, at both room and low temperatures, is not significantly affected by the D96N mutation. It is proposed that while Asp 96 is the Schiff-base protonating moiety in the M --> N transition, another residue (most probably Asp 85) reprotonates the Schiff base following light absorption by M.
Absorption maxima and C-13 NMR chemical shifts were measured for retinal iminium salts. A good correlation was found between the absorption maxima and the C-13 chemical shifts of the retinal polyene carbons within the same solvent system. The chemical shifts of the odd-membered carbons of the polyene are affected much more than the even carbons by pi-electron delocalization caused by perturbations in the Schiff base linkage vicinity. The absorption maxima of bacteriorhodopsin (bR) (568 nm) is closely mimicked by protonated Schiff base chromophores bearing ring-chain s-trans planarity and weak hydrogen bonding between their positively charged Schiff base linkage and its counteranion. These chromophores exhibit a C5 chemical shift similar to the unusual one found in bacteriorhodopsin. These results indicate that it is possible to closely mimic the absorption maximum of bR and its C5 chemical shift without requiring a nonconjugated negative charge in the vicinity of the retinal ring. The effect of nonconjugated positive and negative charges on the C-13 chemical shifts of the retinal polyene is evaluated using synthetic retinal chromophores. The charges affect the chemical shift in an alternating fashion (namely, upfield and downfield shifts) and mainly affect the double bond located in the immediate vicinity of the charge. The influence of the charge is diminished as its distance is increased. The spatial arrangement of the charge, relative to the polyene, is crucial for its effect. A symmetric C = C/charge arrangement causes only a minor change in the chemical shift, still, however, affecting the absorption maximum of the retinal protonated Schiff base. The implications of these measurements for bacteriorhodopsin are discussed.
We have applied low temperature difference FTIR spectroscopy to investigate intermediates produced from the M intermediate upon blue light excitation (
Bacteriorhodopsin (bR) has been biosynthetically prepared with lysine deuterated at its o carbon (Cα - H). The labeled membranes containing bR were investigated by difference Fourier transform infrared (FTIR) spectroscopy. It has been derived from K/bR and M/bR difference spectra (K and M are photocycle intermediates) that several bands previously assigned to the retinal chromophore are coupled to the Cα - H. The vibrational modes that exhibit this coupling are principally associated with C15 - H and N - H vibrations. [Cα-2H]Lysine-labeled bR was fragmented enzymatically, and bR structures were regenerated with the Cα - 2H label either on lysine-216 and -172 or on the remaining five lysine residues of the protein. FTIR studies of the regenerated bR system, together with methylation of all lysines except the active-site lysine, reveal that the changes observed due to backbone labeling arise from the active-site lysine. The intensity of the C15 - H out-of-plane wag is interpreted as a possible indication of a twist around the C15=N bond.
Abstract The isomer composition and spectral properties of 15 artificial bacteriorhodopsin (bR) pigments, based on a series of retinal analogs with polyene residue modified below C9 are determined for both darkadapted (DA) and lightadapted (LA) forms. Similarly to native bR, in all cases only two isomers, C13=C14cis (13cis) and Mtrans, are observed. However, the artificial DA pigments have a lower 13d.s content than native DA bR (˜ 66%) while the corresponding LA pigments have a much higher 13cis content (1169%) than native LA bR (
In variance with chlorophyll-based photosynthetic pigments, the triplet states of rhodopsins, either visual or photosynthetic, have not been observed experimentally. This is due to the ultrafast crossing from S1 to S0, which effectively competes with intersystem crossing to the triplet (T1) state. In order to populate T1 indirectly, laser photolysis experiments are performed with model protonated Schiff bases of retinal in solution, in which both inter- and intramolecular energy transfer to the polyene chromophore are carried out from an appropriate triplet energy donor. The experiments are then extended to bacteriorhodopsin (bR) by detaching the native retinal chromophore from the protein-binding site and replacing it by an analogous (synthetic) protonated Schiff base polyene, attached in a nonconjugated way to a naphthone triplet donor. Pulsed laser excitation of the latter moiety led, for the first time, to the observation of the triplet state of a rhodopsin. Possible locations and roles of the T1 state in bR and in visual pigments are discussed briefly.
FTIR studies of the BSI photoproduct and of the later intermediates lumirhodopsin and metarhodopsin-I of 5,6-dihydroisorhodopsin are reported on. Evidence is presented that in the BSI intermediate the retinal chromophore adopts a relaxed conformation in contrast to the bathorhodopsin intermediate of native rhodopsin. Whereas for the modified pigment, the Schiff base C=N stretching mode and its deuteration-induced isotopic shifts are similar to those of unmodified isorhodopsin, the corresponding values of the photoproducts differ. In addition, alterations in the carbonyl spectral range are observed (protonated carboxyl groups and amide-I). This shows that the chromophore-protein interaction is influenced by this modification. Some molecular events of the thermal decay of the bleached pigment occur at lower temperatures or even at an earlier intermediate of the photoreaction than in native rhodopsin.
Nanosecond time-resolved and continuous illumination, low-temperature, spectroscopic studies reveal a new photolysis intermediate in a wide variety of artificial visual pigments as well as in native rhodopsin. This new intermediate, BSI, has a blue-shifted spectrum relative to the pigments as well as to their batho and lumi intermediates. At room temperature BSI is formed subsequent to batho and approaches an equilibrium with batho before decaying to the lumi intermediate. Chromophore modifications, which modify the j8-ionone ring, eliminate conjugation between the ring and the polyene chain, add bulky groups to the C4 position on the ring, or remove the 13-methyl group all yield time-resolved spectra which lead to the general scheme [equation omitted] The same mechanism is shown to be valid in isorhodopsin and in the native bovine pigment rhodopsin. Chromophore modifications described above affect the batho s=t BSI equilibrium as well as the kinetics of approach to equilibrium but have little effect on the spectra of the intermediates or on the rate of the BSI to lumi transition. Implications for the nature of the BSI intermediate are discussed. Though BSI has a spectrum blue-shifted from that of batho, BSI is higher in enthalpy. It is proposed that this apparent conflict may be due to the fact that the photon energy, initially stored in chromophore-protein interactions, is transmitted to the protein during the batho-to-BSI transition. If energy at the BSI stage is still stored in the chromophore, models simply relating energy storage to bathochromic shifts must be ruled out.
The surface potential of the purple membrane was measured by a novel method by using an artificial bacteriorhodopsin whose chromophore was 13-CF3 retinal instead of retinal. When attached to the apoprotein by a Schiff base, the intrinsic pK of the 13-CF3 chromophore is around 7.3. The apparent pK of this pigment depends on the surface potential and thus on the electrolyte concentration. This allowed us to determine the surface charge density using the Gouy-Chapman equation. The surface charge density was found to be -1.65 ± 0.15 × 10-3 electronic charges per Å2 or about 2 negative charges/bacteriorhodopsin. This large value for the surface potential probably explains both part of the strong apparent association of divalent cations with the membrane and the effect of low salt concentrations on light-induced proton release from the purple membrane.
Protonated Schiff bases of retinal (RSBH+), of its (planar) linear polyene analogue 1,1-didemethylretinal (LRSBH+), and of an analogous cyanine dye (CyIII) are submitted to pulsed laser photolysis over a range of solvents and temperatures. Transient phenomena observed with the CyIIIdye are attributed to trans → cis isomerization, followed by secondary excitation which induces rotation about an additional bond. In the cases of RSBH+ and LRSBH+ (photostationary mixtures of cis- trans isomers), laser excitation of deaerated solutions leads to the observation of triplet states. The latter are formed via intersystem crossing (ISC) from a short-lived excited state, generated by multiple excitations of the ground state during the (same) intense laser pulse. 02 saturation of the solutions suppresses the ISC route, giving rise to a short-lived phototransient observed at low temperatures, which is identified as a C-C conformer. The observations are discussed in light of the possibility that C-C conformers may play a role in the photocycles of visual rhodopsins and of bacteriorhodopsin. Experiments were also per formed with an artificial bacteriorhodopsin pigment (bRcy) carrying a cyanine chromophore analogous to CyIII. A single photointermediate (bRcy/I), reminiscent of the K phototransient of bR, is observed and is attributed to a cis isomer. The low activation and preexponential parameters which characterize the thermal relaxation of bRcy/I are discussed in terms of cis trans isomerization in a rhodopsin binding site. The results bear on the thermal 13-cis all-trans relaxation in the final stages of the bR photocycle and on the inefficiency of a back (all-trans → 11-cis) reaction at the early (bathorhodopsin) stage of the visual photocycle.
The photolysis intermediates of an artificial bovine rhodopsin pigment, cis-5,6-dihydro-isorhodopsin (cis-5,6,-diH-ISORHO, lambda max 461 nm), which contains a cis-5,6-dihydro-9-cis-retinal chromophore, are investigated by room temperature, nanosecond laser photolysis, and low temperature irradiation studies. The observations are discussed both in terms of low temperature experiments of Yoshizawa and co-workers on trans-5,6-diH-ISORHO (Yoshizawa, T., Y. Shichida, and S. Matuoka. 1984. Vision Res. 24: 14551463), and in relation to the photolysis intermediates of native bovine rhodopsin (RHO). It is suggested that in 5,6-diH-ISORHO, a primary bathorhodopsin intermediate analogous to the bathorhodopsin intermediate (BATHO) of the native pigment, rapidly converts to a blue-shifted intermediate (BSI, lambda max 430 nm) which is not observed after photolysis of native rhodopsin. The analogs from lumirhodopsin (LUMI) to meta-II rhodopsin (META-II) are generated subsequent to BSI, similar to their generation from BATHO in the native pigment. It is proposed that the retinal chromophore in the bathorhodopsin stage of 5,6-diH-ISORHO is relieved of strain induced by the primary cis to trans isomerization by undergoing a geometrical rearrangement of the retinal. Such a rearrangement, which leads to BSI, would not take place so rapidly in the native pigment due to ring-protein interactions. In the native pigment, the strain in BATHO would be relieved only on a longer time scale, via a process with a rate determined by protein relaxation.
The absorption maximum (568 nm) of light-adapted bacteriorhodopsin bR568 undergoes reversible changes after acidification. At pH 2.9, the absorption shifts to 605 nm (forming bR605) and it blue shifts to 565 nm, after further acidification to pH approximately 0.5 (forming bR565). Molecular models accounting for such acid-induced changes are relevant to the structure and function of bacteriorhodopsin. In the present study we approached the problem by applying artificial bR pigments based on selectively modified synthetic retinals. This may allow direct identification of the specific regions in the retinal binding site where the above changes in the protein-retinal interactions take place. We investigated the spectroscopic effects of acid in a variety of artificial pigments, including cyaninelike retinals, retinals bearing bulky groups at C4, short polyenes, and retinals in which the beta-ionone ring was substituted by aromatic rings. The results provide direct evidence for the hypothesis that the generation of bR605 is due to changes in polyene-opsin interactions in the vicinity of the Schiff base linkage. The second transition (to bR565) was not observed in artificial pigments bearing major changes in the ring structure of the retinal. Two approaches accounting for this observation are presented. One argues that the generation of bR565 is associated with acid-induced changes in retinal-protein interactions in the vicinity of the retinal ring. The second involves changes in polyene-opsin interactions in the vicinity of the Schiff base linkage.(ABSTRACT TRUNCATED AT 250 WORDS)
Using twodimensional NMR spectroscopy, the spatial location of various carboxylate anions relative to the polyene chain of the protonated Schiff base of alltransretinal was determined. The observed intermolecular NOE crosspeaks between a proton on the counter ion and a proton near the nitrogen atom indicate the existence of ionpair formation between the protonated retinal Schiff base and various counter ions in chloroform. The results suggest that the most likely site of the carboxylate group of the counter ion is in the immediate vicinity of the positively charged nitrogen atom of the retinal Schiff base.
Factors affecting the C=N stretching frequency of protonated retinal Schiff base (RSBH+) were studied with a series of synthetic chromophores and measured under different conditions. Interaction of RSBH+ with nonconjugated positive charges in the vicinity of the ring moiety or a planar polyene conformation (in contrast to the twisted retinal conformation in solution) shifted the absorption maxima but did not affect the 0=N stretching frequency. The latter, however, was affected by environmental perturbations in the vicinity of the Schiff base linkage. Diminished ion pairing (i.e., of the positively charged nitrogen to its anion) achieved either by substituting a more bulky counteranion or by designing models with a homoconjugation effect lowered the C=N stretch energy. Decreasing solvation of the positively charged nitrogen leads to a similar trend. These effects in the vicinity of the Schiff base linkage also perturb the deuterium isotope effect observed upon deuteriation of the Schiff base. The results are interpreted by considering the mixing of the C=N stretching and C=NH bending vibration. The C=N mode is shifted due to electrostatic interaction with nonconjugated positive charges in the vicinity of the Schiff base linkage, an interaction that does not influence the isotope effect. Weak hydrogen bonding between the Schiff base linkage in bacteriorhodopsin (bR) and its counteranion or, alternatively, poor solvation of the positively charged Schiff base nitrogen can account for the C=N stretching frequency of 1640 cm-1 and the deuterium isotope effect of 17 cm-1 observed in this pigment. Conversion of bR to the photochemically induced intermediate K610 involves environmental perturbation in the vicinity of the C=N linkage, lowering the C=N stretch energy. The C=N stretching frequency (1660 cm-1) observed for rhodopsin indicates very effective hydrogen bonding with the Schiff base counteranion and/or effective solvation by protein dipoles or residual water.
Factors influencing the Pka value of retinal orotonated Schiff base (RSBH+l are examined by using fluorinated alcohols and series of retinals bearing nonconjugated positive charges along the polyene. It is shown that the effective pKa of RSBH+ is increased by a solvent, forming a strong hydrogen bond, that stabilizes the anion but weakly interacts with the Schiff-base proton. A positive charge in the vicinity of the Schiff-base linkage markedly reduces the effective pKa. The effect is significantly enhanced in fluorinated alcohols in which positive charges are weakly solvated. It is suggested that drastic pKa reduction might take place during bacteriorhodopsin (bR) photocycle either by elimination of hydrogen-bonding stabilization or by a positive charge approaching the Schiff-base linkage. Weak solvation of the positively charged Schiff-base nitrogen (relative to ethanol solution) and strong solvation with its counterion lead to a red shift in the absorption maximum of retinal protonated Schiff base up to ca. 2400 cm-1 in hexafluoro-2-propanol relative to ethanol. This mechanism of introducing red shift in the absorption maximum of RSBH+ might play a role in determining part of the opsin shift found in bR and the red shift observed in the transformation from the bR570 to K610 intermediate following light absorption. Nonconjugated positive charges shift the absorption maximum of RSBH+. Their influence is further enhanced with fluorinated alcohols as solvents.
Do the absorption maxima of the cyanines 13 shift in dependence of the position of the counterions? In C2H5OH and CH2Cl2 no such interaction could be established. This finding should contribute, inter alia, to an understanding of the role of the natural bacteriorhodopsins. (Figure Presented.)
Artificial bacteriorhodopsin pigments based on synthetic retinal analogues carrying an electron-withdrawing CF3 substituent group were prepared. The effects of CF3 on the spectra, photocycles, and Schiff base pK(a) values of the pigments were analyzed. A reduction of 5 units in the pK(a) of the Schiff base is observed when the CF3 substituent is located at the C-13 polyene position, in the vicinity of the protonated Schiff base nitrogen. The results lead (i) to the unambiguous characterization of the (direct) titration of the Schiff base in bacteriorhodopsin and (ii) to the conclusion that the deprotonation rate of the Schiff base during the photocycle (i.e., the generation of the M412 intermediate) is determined by a structural change in the protein.
Artificial bacteriorhodopsin (bR) pigments based on synthetic retinal analogues with selectively blocked single and double bonds were prepared. It was shown that rotations around single bonds C12-C13 and C10-C11 and isomerizations of C11=C12 and C9=C10 are not required either for initiating the photocycle of all-trans-bR or for forming its M412 intermediate. The results are discussed in light of mechanisms for the primary event (based on the C13=C14 isomerization) involving a concerted double-bond and single-bond rotation around adjacent C,C bonds. Similarly, the photoreaction of the 13-cis isomer of bacteriorhodopsin does not require isomerization about the C11=C12 double bond or rotation around C12-C13. It is also shown that 13-cis ⇔ all-trans (light-dark adaptation) reaction of bacteriorhodopsin does not involve additional rotations or isomerizations involving the C9-C13 section of the molecule.
A series of modified retinals bearing nonconjugated positive charges along the polyene were synthesized. It was found that nonconjugated charges shifted the absorption maxima of retinal chromophore as well as protonated retinal Schitf bases. The magnitude of shift observed in bacteriorhodopsin (bR), 5170 cm-1, could be found in our models by the additivity of two factors: (1) interaction through space with a positive charge located in the vicinity of the ring operating in nonprotic solvents, provided that the interaction between the charge and its counteranion is weakened by a homoconjugation effect; (2) weakening the interaction of the Schiff base positively charged nitrogen with its counteranion. A shift of ca. 5000 cm-1 can also be achieved by interaction through space with two nonconjugated positive charges. The absorption maximum of protonated retinal Schiff base is influenced significantly by an interaction with a nonconjugated charge located in the vicinity of the ring moiety or carbon 9. The influence of a charge located in the vicinity of carbon 12 and carbon 14 is minor. Nonconjugated positive charges have a remarkable effect on C=C stretching frequencies as well. It is suggested that the different C=C stretching frequencies found in bR, visual pigments, as well as their photochemically induced intermediates, may originate from interaction with external charges, the C=N+ stretching frequency does no exhibit similar sensitivity to external nonconjugated charges, and it is practically unaffected by them.
For the first time linear dichroism spectroscopy has been extended to the picosecond time regime. 11 -cis retinal, all-trans retinal and l,8-diphenyl-l,3,5,7-octatetraene (DPOT) are incorporated into polyethylene films and oriented by stretching the films. By measuring picosecond transient absorption spectra polarized parallel and perpendicular to the stretching direction an calculating the dichroic ratio we get informations about the molecular geometry in excited singlet and triplet states. The results may have relevance to vision. For the first time linear dichroism spectroscopy has been extended to the picosecond time regime. 11 -cis retinal, all-trans retinal and l,8-diphenyl-l,3,5,7-octatetraene (DPOT) are incorporated into polyethylene films and oriented by stretching the films. By measuring picosecond transient absorption spectra polarized parallel and perpendicular to the stretching direction and calculating the dichroic ratio we get informations about the molecular geometry in excited singlet and triplet states. The results may have relevance to vision vision.
Artificial bacteriorhodopsin (bR) pigments based on synthetic retinal analogues with selectively blocked single and double bonds are prepared and submitted to pulsed laser photolysis. Similar experiments are carried out with short-chain aromatic analogues. It is concluded that only the C13=C14 double bond can be isomerized in the primary photoprocess. It is shown also that this process is accompanied by separation of the Schiff base from its protein counterion. The effective dielectric constant at the binding site and the nature of the Schiff base counterion play an important role in determining the absorption maximum of bR.
The influence of external positive charges on the absorption maximum of protonated retinal Schiff base is markedly enhanced by weakening the interaction between the external positive charge and its counterion.
Linear dichroism spectra of several retinoids and related polyenes incorporated in stretched polyethylene films were determined. It is suggested that the retinoids are oriented with the plane of the ring parallel to the stretching direction of the film, the long polyene chain being displaced from that direction.
Do the changes in ν(CC) in visual pigments and bacteriorhodopsin orginate from interaction of the chromophore with charges in the protein moiety? This question was investigated by FTIR investigations on the model compounds 13. That ν(CC) in them is significantly higher than in the unprotonated parent compounds suggests that the answer to the question is \u201cyes\u201d. (Figure Presented.)
A number of retinoid derivatives have been synthesized for use as labels for cellular retinol-binding protein. Introduction of substituents abolished the binding of the derivatives to the protein, except in the case of the photo-reactive derivative, 4-azidoretinol. This compound was found to compete successfully with all-trans-retinol for binding to cellular retinol-binding protein, with a high relative binding affinity. Irradiation of a complex of 4-azidoretinol and a semi-purified preparation of cellular retinol-binding protein from liver resulted in a firm attachment stable to SDS-gel electrophoresis. It is therefore suggested that the irradiated product is held together covalently. A method for the synthesis of 4-azidoretinol is described.
Abstract Three artificial bacteriorhodopsins are prepared [from synthetic aromatic and bicyclic analogues of retinal and exposed to spectroscopic and pulsed lader photolysis studies. The spectra of the pigments, all perturbed in the ring region of the molecule, are markedly blue shifted in respect to natural bacteriorhodopsin. The shift is attributed to a decreased effect of a protein charge in the vicinity of the ring, in agreement with the pointcharge model of Nakanishi et al., 1980. The photocycles of the synthetic pigments exhibit a primary redshifted (K) intermediate and a blue shifted (M) transient, analogous to those observed for the natural pigment. Such observations impose considerable limitations, both on the possible chromophore conformational changes and on the effects of neighbouring protein charges associated with the photocycle. It is concluded that only the Schiff base counterion, but not the ring charge, may be associated with the generation of the primary red shifted K species. Moreover, the rigidity imposed on the polyene by the additional ring in the bicyclic analogue shows that the photocycle can not be initiated by conformational changes in the retinyl moiety up to the C9 carbon in the polyene chain. It is also observed that the K→L process in the photocycle is considerably slower in the case of the synthetic pigments. The observation is rationalized by attributing the process to a conformational change in the polyene moiety catalyzed by the ring protein charge.
Large shifts of the maxima in the absorption spectra of protonated retinal Schiff bases and their benzenoid analogues were observed on changing the counter ion from CF3CO2- to Cl-.
A blue shift was observed in the absorption maxima of protonated retinal Schiff base. The shift is due to electrostatic interaction of a non-conjugated positive charge, located in the vicinity of the ionone moiety, with the polyene chromophore.
The absorption maxima of retinyl iminium polyene are more strongly affected by non-conjugated positive charge located in the vicinity of the β-ionyl moiety (2) than by those located in the vicinity of carbon atoms 12-14(1).
This paper presents our attempts to utilize polarized (linear dichroic) spectroscopy of compounds oriented in stretched films for the conformational analysis of labile systems.
1α-Hydroxy[7-3H]cholecalciferol (specific radioactivity of 2Ci/mmol) was synthesized, and its metabolism in chicks studied. 2. 1α-Hydroxy[7-3H]cholecalciferol was metabolized very rapidly in the chick to 1α,25-dihydroxy[7-3H]cholecalciferol and to a metabolite less polar than 1α-hydroxycholecalciferol. Intestine exhibited highest accumulation of 1α-25-dihydroxy[7-3H]cholecalciferol, and liver exhibited highest accumulation of the non-polar metabolite. Tissue uptake of 1α-hydroxy[7-3H]cholecalciferol and its metabolites in chicks that were dosed continuously for 16 days with 1α-hydroxy[7-3H]cholecalciferol did not exceed by very much that observed in tissues obtained from chicks that were dosed with a single injection of 1α-hydroxy[7-3H]cholecalciferol 24h before killing, except for liver and kidney. Lowest accumulation of metabolites was noted in muscle and bone, and for the latter, highest uptake of 1α,25-dihydroxy[7-3H]cholecalciferol was noted in the epiphysial periosteum and the metaphysis. Formation of 1α,24,25-trihydroxy[7-3H]cholecalciferol was not observed in the chicks that were dosed continuously with 1α-hydroxy[7-3H]cholecalciferol, despite the fact that plasma calcium and phosphorus were normal and despite the presence of renal 24-hydroxylase activity. The vitamin D status of the chicks did not appear to affect the metabolic profile of the administered 1α-hydroxy[7-3H]cholecalciferol.
The title compounds were synthesized and their dynamic properties investigated by variable temperature 1H NMR. Each of these compounds gave separate signals, at low temperature, for ring A conformers. The temperature-dependent spectra allowed the determination of the activation parameters characteristic of ring A chair-chair interconversion. The free energies of activation (Δ G∗@r@n) for the chair inversion in 4,4-dimethylvitamin D3 (4a), 4,4-dimethyl-1α-hydroxyvitamin D3 (5), and 4,4-dimethyl-lα-hydroxyepivitamin D3 (6) were found to be 10.1, 11.0, and 12.0 kcal/mol, respectively. The 13C NMR spectrum of 4a was recorded at room temperature and at low temperature (ca. -90 °C). The chemical shift separation of the two observed C3 signals, at low temperature, was used for conformational analysis.
(6R)-Hydroxy-3,5-cyclovitamin D3 was converted with HF, HCl, and HBr into 3β-fluoro-, 3β-chloro-, and 3β-bromo-3-deoxyvitamin D3 respectively, and with NaI-ZnCl2 into the corresponding 3β-iodo derivative; a 3β-fluoro-1α-hydroxyvitamin D3 analogue was prepared from 1α-hydroxyvitamin D3 tosylate using the 3,5-cyclovitamin derivative as an intermediate.
Complete and self-consistent assignment of the 13C NMR spectra of the C3-epimeric pairs of vitamin D3, trans-vitamin D3, its keto analogue, and dihydrotachysterol2 were made. The conformational flexibility of ring A in these compounds and their esters was investigated using the 13C as well as1H NMR data. The merits and the complementary nature of each approach are discussed in terms of the accuracy and reliability of the results. The relative excess of the equatorial conformer in the C3 epimeric pairs of vitamin D3 and its analogues was determined by both methods. This analysis indicates that in the case of vitamin D3 and its C3 epimer the methylene group affects the equilibrium population by stabilizing the chair conformation where the hydroxy group is axially oriented.
1 β-Hydroxyvitamin D3 was prepared from 1α-hydroxyvitamin D3 by oxidation to 1-ketoprevitamin D3, followed by sodium borohydride reduction and subsequent thermal isomerization. The conformational equilibria in 1β-hydroxyvitamin D3 were established using 1H NMR technique. These data indicate that in nonpolar solvent this compound assumes mainly the conformation in which hydroxy groups are both axial, while in H-bonding solvent mainly the conformation where these groups are both diequatorial.
6-Methylvitamin D3 and its isomers, the corresponding previtamin, trans-vitamin, and tachysterol were prepared from 6-oxo-3,5-cyclovitamin D3; their relative thermodynamic stabilities were established, and compared with the stabilities of the respective vitamin D3 isomers.
The ration of the two conformers of 1α-hydroxy-3-epivitamin D 3, which has been synthesized from 1α,3β-dihydroxycholest- Δ6-ene, has been established.