Publications
2024
Self-healing materials can become game changers for developing sustainable (opto)electronics. APbX3 halide (=X-) perovskites, HaPs, have shown a remarkable ability to self-heal damage. While we demonstrated self-healing in pure HaP compounds, in single crystals, and in polycrystalline thin films (as used in most devices), HaP compositions with multiple A+ (and X-) constituents are preferred for solar cells. We now show self-healing in mixed A+ HaPs. Specifically, if at least 15 atom % of the methylammonium (MA+) A cation is substituted for by guanidinium (Gua+) or acetamidinium (AA+), then the self-healing rate after damage is enhanced. In contrast, replacing MA+ with dimethylammonium (DMA+), comparable in size to Gua+ or AA+, does not alter this rate. Based on the times for self-healing, we infer that the rate-determining step involves short-range diffusion of A+ and/or Pb2+ cations and that the self-healing rate correlates with the strain in the material, the A+ cation dipole moment, and H-bonding between A+ and I-. These insights may offer clues for developing a detailed self-healing mechanism and understanding the kinetics to guide the design of self-healing materials. Fast recovery kinetics are important from the device perspective, as they allow complete recovery in devices during operation or when switched off (LEDs)/in the dark (photovoltaics).
Detoxification of heme in Plasmodium depends on its crystallization into hemozoin. This pathway is a major target of antimalarial drugs. The crystalline structure of hemozoin was established by X-ray powder diffraction using a synthetic analog, β-hematin. Here, we apply emerging methods of in situ cryo-electron tomography and 3D electron diffraction to obtain a definitive structure of hemozoin directly from ruptured parasite cells. Biogenic hemozoin crystals take a striking polar morphology. Like β-hematin, the unit cell contains a heme dimer, which may form four distinct stereoisomers: two centrosymmetric and two chiral enantiomers. Diffraction analysis, supported by density functional theory analysis, reveals a selective mixture in the hemozoin lattice of one centrosymmetric and one chiral dimer. Absolute configuration has been determined by morphological analysis and confirmed by a novel method of exit-wave reconstruction from a focal series. Atomic disorder appears on specific facets asymmetrically, and the polar morphology can be understood in light of water binding. Structural modeling of the heme detoxification protein suggests a function as a chiral agent to bias the dimer formation in favor of rapid growth of a single crystalline phase. The refined structure of hemozoin should serve as a guide to new drug development.
4D STEM is an emerging approach to electron microscopy. While it was developed principally for high-resolution studies in materials science, the possibility to collect the entire transmitted flux makes it attractive for cryomicroscopy in application to life science and radiation-sensitive materials where dose efficiency is of utmost importance. We present a workflow to acquire tomographic tilt series of 4D STEM data sets using a segmented diode and an ultrafast pixelated detector, demonstrating the methods using a specimen of a T4 bacteriophage. Full integration with the SerialEM platform conveniently provides all the tools for grid navigation and automation of the data collection. Scripts are provided to convert the raw data to mrc format files and further to generate a variety of modes representing both scattering and phase contrasts, including incoherent and annular bright field, integrated center of mass, and parallax decomposition of a simulated integrated differential phase contrast. Principal component analysis of virtual annular detectors proves particularly useful, and axial contrast is improved by 3D deconvolution with an optimized point spread function. Contrast optimization enables visualization of irregular features such as DNA strands and thin filaments of the phage tails, which would be lost upon averaging or imposition of an inappropriate symmetry.
Plants undergo substantial biomineralization of silicon, which is deposited primarily in cell walls as amorphous silica. The mineral formation could be moderated by the structure and chemistry of lignin, a polyphenol polymer that is a major constituent of the secondary cell wall. However, the reactions between lignin and silica have not yet been well elucidated. Here, we investigate silica deposition onto a lignin model compound. Polyphenyl propanoid was synthesized from coniferyl alcohol by oxidative coupling with peroxidase in the presence of acidic tetramethyl orthosilicate, a silicic acid precursor. Raman, Fourier transform infrared, and X-ray photoelectron spectroscopies detected changes in lignin formation in the presence of silicic acid. Bonds between the Si-O/Si-OH residues and phenoxyl radicals and lignin functional groups formed during the first 3 h of the reaction, while silica continued to form over 3 days. Thermal gravimetric analysis indicated that lignin yields increased in the presence of silicic acid, possibly via the stabilization of phenolic radicals. This, in turn, resulted in shorter stretches of the lignin polymer. Silica deposition initiated within a lignin matrix via the formation of covalent Si-O-C bonds. The silica nucleants grew into 2-5 nm particles, as observed via scanning transmission electron microscopy and energy-dispersive X-ray spectroscopy. Additional silica precipitated into an extended gel. Collectively, our results demonstrate a reciprocal relation by which lignin polymerization catalyzes the formation of silica, and at the same time silicic acid enhances lignin polymerization and yield.
We demonstrate the use of a 4-dimensional scanning transmission electron microscope (4D-STEM) to extract atomic cross section information in amorphous materials. We measure the scattering amplitudes of 200 keV electrons in several representative specimens: amorphous carbon, silica, amorphous ice of pure water, and vitrified phosphate buffer solution. Diffraction patterns are recorded by 4D-STEM with or without energy filter at the zero-loss peak. In addition, Electron Energy Loss Spectroscopy (EELS) data are acquired at several thicknesses and energies. Mixed elastic and inelastic contributions for thick samples can be decoupled based on a convolution model. Measured differential cross sections between 1 and 3 mrad are due primarily to plasmon excitations and follow precisely a 1/θ2 angular distribution. The measured intensities match Inokuti's calculations of total dipole matrix elements for discrete dipole transitions alone, i.e., transitions to bound states of the atom and not to continuum states. We describe the fundamental mechanism of plasmon excitation in insulators as a two-step interaction process with a fast electron. First, a target electron in the specimen is excited, the probability for which follows from the availability of atomic transitions, with a strong dependence on the column of the periodic table. Second, the dielectric response of the material determines the energy loss. The energy of the loss peak depends primarily on the valence electrons. Elastic scattering is dominant at higher angles, and can be fitted conveniently to 1/θ3.7 with a linear dependence on atomic number for light atoms. In order to facilitate the interpretation of 4D STEM measurements in terms of material composition, we introduce two key parameters. Zeta is an analytical equivalent of classical STEM Z-contrast, determined by the ratio of elastic to inelastic scattering coefficients, while eta is the elastic coefficient divided by thickness. The two parameters may serve for identification of basic classes of materials in biological and other amorphous organic specimens.
2023
Visualization of organelles and their interactions with other features in the native cell remains a challenge in modern biology. We have introduced cryo-scanning transmission electron tomography (CSTET), which can access 3D volumes on the scale of 1 micron with a resolution of nanometers, making it ideal for this task. Here we introduce two relevant advances: (a) we demonstrate the utility of multi-color super-resolution radial fluctuation light microscopy under cryogenic conditions (cryo-SRRF), and (b) we extend the use of deconvolution processing for dual-axis CSTET data. We show that cryo-SRRF nanoscopy is able to reach resolutions in the range of 100 nm, using commonly available fluorophores and a conventional widefield microscope for cryo-correlative light-electron microscopy. Such resolution aids in precisely identifying regions of interest before tomographic acquisition and enhances precision in localizing features of interest within the 3D reconstruction. Dual-axis CSTET tilt series data and application of entropy regularized deconvolution during post-processing results in close-to-isotropic resolution in the reconstruction without averaging. The integration of cryo-SRRF with deconvolved dual-axis CSTET provides a versatile workflow for studying unique objects in a cell.
Arsenic (As) is a toxic heavy metal widely found in the environment that severely undermines the integrity of water resources. Bioremediation of toxic compounds is an appellative sustainable technology with a balanced cost-effective setup. To pave the way for the potential use of Deinococcus indicus, an arsenic resistant bacterium, as a platform for arsenic bioremediation, an extensive characterization of its resistance to cellular insults is paramount. A comparative analysis of D. indicus cells grown in two rich nutrient media conditions (M53 and TGY) revealed distinct resistance patterns when cells are subjected to stress via UV-C and methyl viologen (MV). Cells grown in M53 demonstrated higher resistance to both UV-C and MV. Moreover, cells grow to higher density upon exposure to 25 mM As(V) in M53 in comparison with TGY. This analysis is pivotal for the culture of microbial species in batch culture bioreactors for bioremediation purposes. We also demonstrate for the first time the presence of polyphosphate granules in D. indicus which are also found in a few Deinococcus species. To extend our analysis, we also characterized DiArsC2 (arsenate reductase) involved in arsenic detoxification and structurally determined different states, revealing the structural evidence for a catalytic cysteine triple redox system. These results contribute for our understanding into the D. indicus resistance mechanism against stress conditions.
A 4-dimensional modality of a scanning transmission electron microscope (4D-STEM) acquires diffraction images formed by a coherent and focused electron beam scanning the specimen. Newly developed ultrafast detectors offer a possibility to acquire high throughput diffraction patterns at each pixel of the scan, enabling rapid tilt series acquisition for 4D-STEM tomography. Here we present a solution to the problem of synchronizing the electron probe scan with the diffraction image acquisition, and demonstrate on a fast hybrid-pixel detector camera (ARINA, DECTRIS). Image-guided tracking and autofocus corrections are handled by the freely-available microscope-control software SerialEM, in conjunction with a high angle annular dark field (HAADF) image acquired simultaneously. The open source SavvyScan system offers a versatile set of scanning patterns, operated by commercially available multi-channel acquisition and signal generator computer cards (Spectrum Instrumentation GmbH). Images are recorded only within a sub-region of the total field, so as to avoid spurious data collection during flyback and/or acceleration periods in the scan. Hence, the trigger of the fast camera follows selected pulses from the scan generator clock gated according to the chosen scan pattern. Software and protocol are provided for gating the trigger pulses via a microcontroller (ST Microelectronics ARM Cortex). We demonstrate the system on a standard replica grating and by diffraction imaging of a ferritin specimen.
Cryogenic electron microscopy (cryo-EM) relies on the imaging of biological or organic specimens embedded in their native aqueous medium; water is solidified into a glass (i.e., vitrified) without crystallization. The cryo-EM method is widely used to determine the structure of biological macromolecules recently at a near-atomic resolution. The approach has been extended to the study of organelles and cells using tomography, but the conventional mode of wide-field transmission EM imaging suffers a severe limitation in the specimen thickness. This has led to a practice of milling thin lamellae using a focused ion beam; the high resolution is obtained by subtomogram averaging from the reconstructions, but three-dimensional relations outside the remaining layer are lost. The thickness limitation can be circumvented by scanned probe imaging, similar to the scanning EM or the confocal laser scanning microscope. While scanning transmission electron microscopy (STEM) in materials science provides atomic resolution in single images, the sensitivity of cryogenic biological specimens to electron irradiation requires special considerations. This protocol presents a setup for cryo-tomography using STEM. The basic topical configuration of the microscope is described for both two-and three-condenser systems, while automation is provided by the non-commercial SerialEM software. Enhancements for batch acquisition and correlative alignment to previously-acquired fluorescence maps are also described. As an example, we show the reconstruction of a mitochondrion, pointing out the inner and outer membrane and calcium phosphate granules, as well as surrounding microtubules, actin filaments, and ribosomes. Cryo-STEM tomography excels in revealing the theater of organelles in the cytoplasm and, in some cases, even the nuclear periphery of adherent cells in culture.
Two-dimensional (2D) halide perovskites, HaPs, can provide chemical stability to three-dimensional (3D) HaP surfaces, protecting them from exposure to ambient species and from reacting with contacting layers. Both actions occur with 2D HaPs, with the general stoichiometry R2PbI4 (R: long or bulky organic amine) covering the 3D ones. Adding such covering films can also boost power conversion efficiencies of photovoltaic cells by passivating surface/interface trap states. For maximum benefit, we need conformal ultrathin and phase-pure (n = 1) 2D layers to enable efficient tunneling of photogenerated charge carriers through the 2D film barrier. Conformal coverage of ultrathin (
In terms of sustainable use, halide perovskite (HaP) semiconductors have a strong advantage over most other classes of materials for (opto)electronics, as they can self-heal (SH) from photodamage. While there is considerable literature on SH in devices, where it may not be clear exactly where damage and SH occur, there is much less on the HaP material itself. Here we perform \u201cfluorescence recovery after photobleaching\u201d (FRAP) measurements to study SH on polycrystalline thin films for which encapsulation is critical to achieving complete and fast self-healing. We compare SH in three photoactive APbI3 perovskite films by varying the A-site cation ranging from (relatively) small inorganic Cs through medium-sized MA to large FA (the last two are organic cations). While the A cation is often considered electronically relatively inactive, it significantly affects both SH kinetics and the threshold for photodamage. The SH kinetics are markedly faster for γ-CsPbI3 and α-FAPbI3 than for MAPbI3. Furthermore, γ-CsPbI3 exhibits an intricate interplay between photoinduced darkening and brightening. We suggest possible explanations for the observed differences in SH behavior. This studys results are essential for identifying absorber materials that can regain intrinsic, insolation-induced photodamage-linked efficiency loss during its rest cycles, thus enabling applications such as autonomously sustainable electronics.
2022
Malaria is a potentially fatal infectious disease caused by the obligate intracellular parasite Plasmodium falciparum. The parasite infects human red blood cells (RBC) and derives nutrition by catabolism of hemoglobin. As amino acids are assimilated from the protein component, the toxic heme is released. Molecular heme is detoxified by rapid sequestration to physiologically insoluble hemozoin crystals within the parasite's digestive vacuole (DV). Common antimalarial drugs interfere with this crystallization process, leaving the parasites vulnerable to the by-product of their own metabolism. A fundamental debate with important implications on drug mechanism regards the chemical environment of crystallization in situ, whether aqueous or lipid. This issue had been addressed previously by cryogenic soft X-ray tomography. We employ cryo-scanning transmission electron tomography (CSTET) to probe parasite cells throughout the life cycle in a fully hydrated, vitrified state at higher resolution. During the acquisition of CSTET data, Bragg diffraction from the hemozoin provides a uniquely clear view of the crystal boundary at nanometer resolution. No intermediate medium, such as a lipid coating or shroud, could be detected surrounding the crystals. The present study describes a unique application of CSTET in the study of malaria. The findings can be extended to evaluate new drug candidates affecting hemozoin crystal growth.
Cryoelectron tomography of the cell nucleus using scanning transmission electron microscopy and deconvolution processing technology has highlighted a large-scale, 100-to 300-nm interphase chromosome structure, which is present throughout the nucleus. This study further documents and analyzes these chromosome structures. The paper is divided into four parts: 1) evidence (preliminary) for a unified interphase chromosome structure; 2) a proposed unified interphase chromosome architecture; 3) organization as chromosome territories (e.g., fitting the 46 human chromosomes into a 10-μm-diame-ter nucleus); and 4) structure unification into a polytene chromosome architecture and lampbrush chromosomes. Finally, the paper concludes with a living light microscopy cell study showing that the G1 nucleus contains very similar structures throughout. The main finding is that this chromosome structure appears to coil the 11-nm nucleosome fiber into a defined hollow structure, analogous to a Slinky helical spring [https://en.wikipedia.org/wiki/Slinky; motif used in Bowerman et al., eLife 10, e65587 (2021)]. This Slinky architecture can be used to build chromosome territories, extended to the polytene chromosome structure, as well as to the structure of lampbrush chromosomes.
A molecular architecture is proposed for a representative mitotic chromosome, human chromosome 10. This architecture is built on an interphase chromosome structure based on cryo-electron microscopy (cryo-EM) cellular tomography [J. Sedat et al., Proc. Natl. Acad. Sci. U.S.A., in press], thus unifying chromosome structure throughout the complete mitotic cycle. The basic organizational principle for mitotic chromosomes is specific coiling of the 11-nm nucleosome fiber into large scale, ∼200-nm interphase structures, a Slinky [https://en.wikipedia.org/wiki/Slinky; motif cited in S. Bowerman et al., eLife 10, e65587 (2021)], then further modified with subsequent additional coiling for the final mitotic chromosome structure. The final mitotic chromosome architecture accounts for the dimensional values as well as the well-known cytological configurations. In addition, proof is experimentally provided by digital PCR technology that G1 T cell nuclei are diploid with one DNA molecule per chromosome. Many nucleosome linker DNA sequences, the promotors and enhancers, are suggestive of optimal exposure on the surfaces of the large-scale coils.
Thick specimens, as encountered in cryo-scanning transmission electron tomography, offer special challenges to conventional reconstruction workflows. The visibility of features, including gold nanoparticles introduced as fiducial markers, varies strongly through the tilt series. As a result, tedious manual refinement may be required in order to produce a successful alignment. Information from highly tilted views must often be excluded to the detriment of axial resolution in the reconstruction. We introduce here an approach to tilt series alignment based on identification of fiducial particle clusters that transform coherently in rotation, essentially those that lie at similar depth. Clusters are identified by comparison of tilted views with a single untilted reference, rather than with adjacent tilts. The software, called ClusterAlign, proves robust to poor signal to noise ratio and varying visibility of the individual fiducials and is successful in carrying the alignment to the ends of the tilt series where other methods tend to fail. ClusterAlign may be used to generate a list of tracked fiducials, to align a tilt series, or to perform a complete 3D reconstruction. Tools to evaluate alignment error by projection matching are included. Execution involves no manual intervention, and adherence to standard file formats facilitates an interface with other software, particularly IMOD/etomo, tomo3d, and tomoalign.
2021
Recent advances in scanning transmission electron microscopy (STEM) have rekindled interest in multi-channel detectors and prompted the exploration of unconventional scan patterns. These emerging needs are not yet addressed by standard commercial hardware. The system described here incorporates a flexible scan generator that enables exploration of low-acceleration scan patterns, while data are recorded by a scalable eight-channel array of nonmultiplexed analog-to-digital converters. System integration with SerialEM provides a flexible route for automated acquisition protocols including tomography. Using a solid-state quadrant detector with additional annular rings, we explore the generation and detection of various STEM contrast modes. Through-focus bright-field scans relate to phase contrast, similarly to wide-field TEM. More strikingly, comparing images acquired from different off-axis detector elements reveals lateral shifts dependent on defocus. Compensation of this parallax effect leads to decomposition of integrated differential phase contrast (iDPC) to separable contributions relating to projected electric potential and to defocus. Thus, a single scan provides both a computationally refocused phase contrast image and a second image in which the signed intensity, bright or dark, represents the degree of defocus.
Cryo-electron tomography (cryo-ET) allows for the high-resolution visualization of biological macromolecules. However, the technique is limited by a low signal-to-noise ratio (SNR) and variance in contrast at different frequencies, as well as reduced Z resolution. Here, we applied entropy-regularized deconvolution (ER-DC) to cryo-ET data generated from transmission electron microscopy (TEM) and reconstructed using weighted back projection (WBP). We applied deconvolution to several in situ cryo-ET datasets and assessed the results by Fourier analysis and subtomogram analysis (STA).
Electron microscopy (EM) is the most versatile tool for the study of matter at scales ranging from subatomic to visible. The high vacuum environment and the charged irradiation require careful stabilization of many specimens of interest. Biological samples are particularly sensitive due to their composition of light elements suspended in an aqueous medium. Early investigators developed techniques of embedding and staining with heavy metal salts for contrast enhancement. Indeed, the Nobel Prize in 1974 recognized Claude, de Duve, and Palade for establishment of the field of cell biology, largely due to their developments in separation and preservation of cellular components for electron microscopy. A decade later, cryogenic fixation was introduced. Vitrification of the water avoids the need for dehydration and provides an ideal matrix in which the organic macromolecules are suspended; the specimen represents a native state, suddenly frozen in time at temperatures below −150 °C. The low temperature maintains a low vapor pressure for the electron microscope, and the amorphous nature of the medium avoids diffraction contrast from crystalline ice. Such samples are extremely delicate, however, and cryo-EM imaging is a race for information in the face of ongoing damage by electron irradiation. Through this journey, cryo-EM enhanced the resolution scale from membranes to molecules and most recently to atoms. Cryo-EM pioneers, Dubochet, Frank, and Henderson, were awarded the Nobel Prize in 2017 for high resolution structure determination of biological macromolecules.
Plant organs initiate as a group of tiny meristematic cells. After expansion, three basic shapes of organs may be defined: cylindrical, laminar, and spherical (Trinh et al., 2021). The development of a lamina can be followed by various surface and subsurface microscopy methods. However, organs shaped as opaque spheres are most conveniently studied in sections. Antreich et al. (2021) applied 3D reconstructions based on optical and scanning electron microscopy to study the development of cells building the walnut shell. Restricted by cellulose, the growing cells bulge and interdigitate with neighboring cells, leaving gaps at the regions of high curvature. Examining the cell interfaces with Raman microspectroscopy, they show that these gaps are lined with pectin.
We find significant differences between degradation and healing at the surface or in the bulk for each of the different APbBr3 single crystals (A = CH3NH3+, methylammonium (MA); HC(NH2)2+, formamidinium (FA); and cesium, Cs+). Using 1- and 2-photon microscopy and photobleaching we conclude that kinetics dominate the surface and thermodynamics the bulk stability. Fluorescence-lifetime imaging microscopy, as well as results from several other methods, relate the (damaged) state of the halide perovskite (HaP) after photobleaching to its modified optical and electronic properties. The A cation type strongly influences both the kinetics and the thermodynamics of recovery and degradation: FA heals best the bulk material with faster self-healing; Cs+ protects the surface best, being the least volatile of the A cations and possibly through O-passivation; MA passivates defects via methylamine from photo-dissociation, which binds to Pb2+. DFT simulations provide insight into the passivating role of MA, and also indicate the importance of the Br3- defect as well as predicts its stability. The occurrence and rate of self-healing are suggested to explain the low effective defect density in the HaPs and through this, their excellent performance. These results rationalize the use of mixed A-cation materials for optimizing both solar cell stability and overall performance of HaP-based devices, and provide a basis for designing new HaP variants.
The biogenic formation of hemozoin crystals, a crucial process in heme detoxification by the malaria parasite, is reviewed as an antimalarial drug target. We first focus on the in-vivo formation of hemozoin. A model is presented, based on native-contrast 3D imaging obtained by X-ray and electron microscopy, that hemozoin nucleates at the inner membrane leaflet of the parasitic digestive vacuole, and grows in the adjacent aqueous medium. Having observed quantities of hemoglobin and hemozoin in the digestive vacuole, we present a model that heme liberation from hemoglobin and hemozoin formation is an assembly-line process. The crystallization is preceded by reaction between heme monomers yielding hematin dimers involving fewer types of isomers than in synthetic hemozoin; this is indicative of protein-induced dimerization. Models of antimalarial drugs binding onto hemozoin surfaces are reviewed. This is followed by a description of bromoquine, a chloroquine drug analogue, capping a significant fraction of hemozoin surfaces within the digestive vacuole and accumulation of the drug, presumably a bromoquinehematin complex, at the vacuole's membrane.
Based on a model of protein denaturation rate limited by an entropy-related barrier, we derive a simple formula for virus inactivation time as a function of temperature. Loss of protein structure is described by two reaction coordinates: conformational disorder of the polymer and wetting by the solvent. These establish a competition between conformational entropy and hydrophobic interaction favoring random coil or globular states, respectively. Based on the Landau theory of phase transition, the resulting free energy barrier is found to decrease linearly with the temperature difference T − Tm, and the inactivation rate should scale as U to the power of T − Tm. This form recalls an accepted model of thermal damage to cells in hyperthermia. For SARS-CoV-2 the value of U in Celsius units is found to be 1.32. Although the fitting of the model to measured data is practically indistinguishable from Arrhenius law with an activation energy, the entropy barrier mechanism is more suitable and could explain the pronounced sensitivity of SARS-CoV-2 to thermal damage. Accordingly, we predict the efficacy of mild fever over a period of ∼24 h in inactivating the virus.
2020
The complex environment of biological cells and tissues has motivated development of three-dimensional (3D) imaging in both light and electron microscopies. To this end, one of the primary tools in fluorescence microscopy is that of computational deconvolution. Wide-field fluorescence images are often corrupted by haze due to out-of-focus light, i.e., to cross-talk between different object planes as represented in the 3D image. Using prior understanding of the image formation mechanism, it is possible to suppress the cross-talk and reassign the unfocused light to its proper source post facto. Electron tomography based on tilted projections also exhibits a cross-talk between distant planes due to the discrete angular sampling and limited tilt range. By use of a suitably synthesized 3D point spread function, we show here that deconvolution leads to similar improvements in volume data reconstructed from cryoscanning transmission electron tomography (CSTET), namely a dramatic in-plane noise reduction and improved representation of features in the axial dimension. Contrast enhancement is demonstrated first with colloidal gold particles and then in representative cryotomograms of intact cells. Deconvolution of CSTET data collected from the periphery of an intact nucleus revealed partially condensed, extended structures in interphase chromatin.
2019
Plant transformation mediated by Agrobacterium tumefaciens is a well-studied phenomenon in which a bacterial DNA fragment (T-DNA), is transferred to the host plant cell, as a single strand, via type IV secretion system and has the potential to reach the nucleus and to be integrated into its genome. While Agrobacterium-mediated transformation has been widely used for laboratory-research and in breeding, the time-course of its journey from the bacterium to the nucleus, the conversion from single- to double-strand intermediates and several aspects of the integration in the genome remain obscure. In this study, we sought to follow T-DNA infection directly using single-molecule live imaging. To this end, we applied the LacO-LacI imaging system in Nicotiana benthamiana, which enabled us to identify double-stranded T-DNA (dsT-DNA) molecules as fluorescent foci. Using confocal microscopy, we detected progressive accumulation of dsT-DNA foci in the nucleus, starting 23 h after transfection and reaching an average of 5.4 and 8 foci per nucleus at 48 and 72 h post-infection, respectively. A time-course diffusion analysis of the T-DNA foci has demonstrated their spatial confinement.
It is an open question whether the conformations of proteins sampled in dilute solutions are the same as in the cellular environment. Here we address this question by double electron-electron resonance (DEER) distance measurements with Gd(III) spin labels to probe the conformations of calmodulin (CaM) in vitro, in cell extract, and in human HeLa cells. Using the CaM mutants N53C/T110C and T34C/T117C labeled with maleimide-DOTA-Gd(III) in the N- and C-terminal domains, we observed broad and varied interdomain distance distributions. The in vitro distance distributions of apo-CaM and holo-CaM in the presence and absence of the IQ target peptide can be described by combinations of closed, open, and collapsed conformations. In cell extract, apo- and holo-CaM bind to target proteins in a similar way as apo- and holo-CaM bind to IQ peptide in vitro. In HeLa cells, however, in the presence or absence of elevated in-cell Ca2+ levels CaM unexpectedly produced more open conformations and very broad distance distributions indicative of many different interactions with in-cell components. These results show-case the importance of in-cell analyses of protein structures.
The ESCRT machinery mediates scission of the intercellular bridge that connects two daughter cells at the end of cytokinesis. Structured illumination microscopy (SIM) and cryo-soft-X-ray tomography (cryo-SXT) have been used in recent years to study the topology of ESCRT-driven cytokinetic abscission. These studies revealed that the intercellular bridge is occupied by cortical rings and spiral-like filaments and that ESCRTs form ring-like structures in this region during abscission. In this chapter, we provide two protocols: a protocol for determining the spatial organization of specific ESCRT components at the intercellular bridge using SIM and a protocol for resolving the ultrastructural organization of cortical filaments at the intercellular bridge using cryo-SXT.
Electron cryo-tomography using the scanning transmission modality (STEM)enables 3D reconstruction of unstained, vitrified specimens as thick as 1 μm or more. Contrast is related to mass/thickness and atomic number, providing quantifiable chemical characterization and mass mapping of intact prokaryotic and eukaryotic cells. Energy dispersive X-ray spectroscopy by STEM provides a simple, on-the-spot chemical identification of the elemental composition in sub-cellular organic bodies or mineral deposits. This chapter provides basic background and practical information for performing cryo-STEM tomography on vitrified biological cells.
2018
Electron tomography provides a detailed view into the 3D structure of biological cells and tissues. Physical fixation by vitrification of the aqueous medium provides the most faithful preservation of biological specimens in the native, fully hydrated state. Cryo-microscopy is challenging, however, because of the sensitivity to electron irradiation and due to the weak electron scattering of organic material. Tomography is even more challenging because of the dependence on multiple exposures of the same area. Tomographic imaging is typically performed in wide-field transmission electron microscopy (TEM) mode with phase contrast generated by defocus. Scanning transmission electron microscopy (STEM) is an alternative mode based on detection of scattering from a focused probe beam, without imaging optics following the specimen. While careful configuration of the illumination and detectors is required to generate useful contrast, STEM circumvents the major restrictions of phase contrast TEM to very thin specimens and provides a signal that is more simply interpreted in terms of local composition and density. STEM has gained popularity in recent years for materials science. The extension of STEM to cryomicroscopy and tomography of cells and macromolecules is summarized herein.
Plasmodium falciparum, the causative agent of the deadliest form of human malaria, alternates expression of variable antigens, encoded by members of a multi-copy gene family named var. In var2csa, the var gene implicated in pregnancy-associated malaria, translational repression is regulated by a unique upstream open reading frame (uORF) found only in its 5' UTR. Here, we report that this translated uORF significantly alters both transcription and posttranslational protein trafficking. The parasite can alter a protein's destination without any modifications to the protein itself, but instead by an element within the 5' UTR of the transcript. This uORF-dependent localization was confirmed by single molecule STORM imaging, followed by fusion of the uORF to a reporter gene which changes its cellular localization from cytoplasmic to ER-associated. These data point towards a novel regulatory role of uORF in protein trafficking, with important implications for the pathology of pregnancy-associated malaria.
The three dimensional ultrastructure of cells and tissues comes to light with tomography. There is an inherent tension between representing molecular detail at the highest possible resolution, on one hand, and visualizing spatial relations between large organelles or even neighboring cells in large volumes, on the other. Together with its advantages for pristine sample preservation, cryo-tomography brings particular constraints. A major challenge has been the restriction to specimens thinner than the typical cell. New imaging modalities are now available to extend cryo-tomography to thicker specimens: cryo-scanning transmission electron tomography (CSTET), soft X-ray tomography (SXT), and serial surface imaging using the focused ion beam scanning electron microscope (FIB-SEM). Each one offers specific advantages so the optimal choice depends on priorities among resolution, composition, and volume.
Using a combination of fluorescence microscopy and electron tomography, Peskett et al. (2018), in this issue of Molecular Cell, explore the nucleation of amyloid-like filaments from liquid-like condensates of huntingtin protein exon1 with disease-related polyQ extensions. Using a combination of fluorescence microscopy and electron tomography, Peskett et al. (2018), in this issue of Molecular Cell, explore the nucleation of amyloid-like filaments from liquid-like condensates of huntingtin protein exon1 with disease-related polyQ extensions.
Salmonella enterica induces membrane ruffling and genesis of macropinosomes during its interactions with epithelial cells. This is achieved through the type three secretion system-1, which first mediates bacterial attachment to host cells and then injects bacterial effector proteins to alter host behaviour. Next, Salmonella enters into the targeted cell within an early membrane-bound compartment that matures into a slow growing, replicative niche called the Salmonella Containing Vacuole (SCV). Alternatively, the pathogen disrupts the membrane of the early compartment and replicate at high rate in the cytosol. Here, we show that the in situ formed macropinosomes, which have been previously postulated to be relevant for the step of Salmonella entry, are key contributors for the formation of the mature intracellular niche of Salmonella. We first clarify the primary mode of type three secretion system-1 induced Salmonella entry into epithelial cells by combining classical fluorescent microscopy with cutting edge large volume electron microscopy. We observed that Salmonella, similarly to Shigella, enters epithelial cells inside tight vacuoles rather than in large macropinosomes. We next apply this technology to visualise rupturing Salmonella containing compartments, and we use extended time-lapse microscopy to establish early markers that define which Salmonella will eventually hyper replicate. We show that at later infection stages, SCVs harbouring replicating Salmonella have previously fused with the in situ formed macropinosomes. In contrast, such fusion events could not be observed for hyper-replicating Salmonella, suggesting that fusion of the Salmonella entry compartment with macropinosomes is the first committed step of SCV formation.
Self-healing, where a modification in some parameter is reversed with time without any external intervention, is one of the particularly interesting properties of halide perovskites. While there are a number of studies showing such self-healing in perovskites, they all are carried out on thin films, where the interface between the perovskite and another phase (including the ambient) is often a dominating and interfering factor in the process. Here, self-healing in perovskite (methylammonium, formamidinium, and cesium lead bromide (MAPbBr3, FAPbBr3, and CsPbBr3)) single crystals is reported, using two-photon microscopy to create damage (photobleaching) ≈110 µm inside the crystals and to monitor the recovery of photoluminescence after the damage. Self-healing occurs in all three perovskites with FAPbBr3 the fastest (≈1 h) and CsPbBr3 the slowest (tens of hours) to recover. This behavior, different from surface-dominated stability trends, is typical of the bulk and is strongly dependent on the localization of degradation products not far from the site of the damage. The mechanism of self-healing is discussed with the possible participation of polybromide species. It provides a closed chemical cycle and does not necessarily involve defect or ion migration phenomena that are often proposed to explain reversible phenomena in halide perovskites.
STEM modality provides major advantages for electron tomography of thicker (>300 nm) biological specimens, both for plastic-embedded, heavy-metal stained samples, and for vitrified, unstained cells. With the proliferation of modern TEM microscopes that allow for switching between TEM and STEM modes with relative ease, we expect the use of STEM tomography to increase. The concepts for STEM imaging are significantly different than for TEM, and therefore we will describe in detail the STEM imaging modality, followed by STEM tomography concepts and applications.
2017
The entry of calcium into mitochondria is central to metabolism, inter-organelle communication, and cell life/death decisions. Long-sought transporters involved in mitochondrial calcium influx and efflux have recently been identified. To obtain a unified picture of mitochondrial calcium utilization, a parallel advance in understanding the forms and quantities of mitochondrial calcium stores is needed. We present here the direct 3D visualization of mitochondrial calcium in intact mammalian cells using cryo-scanning transmission electron tomography (CSTET). Amorphous solid granules containing calcium and phosphorus were pervasive in the mitochondrial matrices of a variety of mammalian cell types. Analysis based on quantitative electron scattering revealed that these repositories are equivalent to molar concentrations of dissolved ions. These results demonstrate conclusively that calcium buffering in the mitochondrial matrix in live cells occurs by phase separation, and that solid-phase stores provide a major ion reservoir that can be mobilized for bioenergetics and signaling.
Metal ions play essential roles in many aspects of biological chemistry. Detecting their presence and location in proteins and cells is important for understanding biological function. Conventional structural methods such as X-ray crystallography and cryo-transmission electron microscopy can identify metal atoms on protein only if the protein structure is solved to atomic resolution. We demonstrate here the detection of isolated atoms of Zn and Fe on ferritin, using cryogenic annular dark-field scanning transmission electron microscopy (cryo-STEM) coupled with single-particle 3D reconstructions. Zn atoms are found in a pattern that matches precisely their location at the ferroxidase sites determined earlier by X-ray crystallography. By contrast, the Fe distribution is smeared along an arc corresponding to the proposed path from the ferroxidase sites to the mineral nucleation sites along the twofold axes. In this case the single-particle reconstruction is interpreted as a probability distribution function based on the average of individual locations. These results establish conditions for detection of isolated metal atoms in the broader context of electron cryo-microscopy and tomography.
VirE2 is a ssDNA binding protein essential for virulence in Agrobacterium tumefaciens. A tetracysteine mutant (VirE2-TC) was prepared for in vitro and in vivo fluorescence imaging based on the ReAsH reagent. VirE2-TC was found to be biochemically active as it binds both ssDNA and the acidic secretion chaperone VirE1. It was also biologically functional in complementing virE2 null strains transforming Arabidopsis thaliana roots and Nicotiana tabacum leaves. In vitro experiments demonstrated a two-color fluorescent complex using VirE2-TC/ReAsH and Alexa Fluor 488 labeled ssDNA. In vivo, fluorescent VirE2-TC/ReAsH was detected in bacteria and in plant cells at time frames relevant to transformation.
Living cells display a remarkable capacity to compartmentalize their functional biochemistry. A particularly fascinating example is the cell nucleus. Exchange of macromolecules between the nucleus and the surrounding cytoplasm does not involve traversing a lipid bilayer membrane. Instead, large protein channels known as nuclear pores cross the nuclear envelope and regulate the passage of other proteins and RNA molecules. Beyond simply gating diffusion, the system of nuclear pores and associated transport receptors is able to generate substantial concentration gradients, at the energetic expense of guanosine triphosphate hydrolysis. In contrast to conventional approaches to demixing such as reverse osmosis and dialysis, the biological system operates continuously, without application of cyclic changes in pressure or solvent exchange. Abstracting the biological paradigm, we examine this transport system as a thermodynamic machine of solution demixing. Building on the construct of free energy transduction and biochemical kinetics, we find conditions for the stable operation and optimization of the concentration gradients as a function of dissipation in the form of entropy production.
Grasses take up silicic acid from soil and deposit it in their leaves as solid silica. This mineral, comprising 110% of the grass dry weight, improves plants' tolerance to various stresses. The mechanisms promoting stress tolerance are mostly unknown, and even the mineralization process is poorly understood. To study leaf mineralization in sorghum (Sorghum bicolor), we followed silica deposition in epidermal silica cells by in situ charring and air-scanning electron microscopy. Our findings were correlated to the viability of silica cells tested by fluorescein diacetate staining. We compared our results to a sorghum mutant defective in root uptake of silicic acid. We showed that the leaf silicification in these plants is intact by detecting normal mineralization in leaves exposed to silicic acid. Silica cells were viable while condensing silicic acid into silica. The controlled mineral deposition was independent of water evapotranspiration. Fluorescence recovery after photobleaching suggested that the forming mineral conformed to the cellulosic cell wall, leaving the cytoplasm well connected to neighboring cells. As the silicified wall thickened, the functional cytoplasm shrunk into a very small space. These results imply that leaf silica deposition is an active, physiologically regulated process as opposed to a simple precipitation.
2016
Scanning transmission electron microscope (STEM) imaging has recently been applied to the cryo-tomography of thick biological specimens. As previously shown for plastic sections, STEM has a number of advantages for cryo-imaging compared to conventional wide-field TEM imaging. STEM is insensitive to phase coherence and is therefore suitable for much thicker specimens than TEM. Imaging in focus, with a long depth of field, also circumvents the complications of an oscillatory contrast transfer function and missing information at low spatial frequencies. Moreover the image signal represents a quantitative measurement of the electron scattering pixel by pixel, so that absolute intensities can be interpreted in terms of material properties in the specimen. Resolution, however, is undoubtedly compromised for thick samples, especially in the regime of multiple elastic scattering. In this work we address the specific issues that arise in cryo-tomography of thick biological specimens. We formulate an imaging model based on a Boltzmann transport equation, complemented by Monte Carlo simulations. Using these theoretical tools, we identify conditions for image acquisition that will be compatible with the basic presumption of tomographic reconstruction, i.e., that for a given composition the imaging signal varies monotonically with thickness. For optimal resolution, contrast, and signal strength, we propose to generalize the on-axis bright field detector to collect at angles well beyond the illumination cone. Our results justify the generation of 3D images for micron thicknesses and beyond.
Foraminifera are marine protozoans that are widespread in oceans throughout the world. Understanding biomineralization pathways in foraminifera is particularly important because their calcitic shells are major components of global calcium carbonate production. We introduce here a novel correlative approach combining cryo-SEM, cryo-fluorescence imaging and cryo-EDS. This approach is applied to the study of ion transport processes in the benthic foraminifer genus Amphistegina. We confirm the presence of large sea water vacuoles previously identified in intact and partially decalcified Amphistegina lobifera specimens. We observed relatively small vesicles that were labelled strongly with calcein, and also identified magnesium (Mg)-rich mineral particles in the cytoplasm, as well as in the large sea water vacuoles. The combination of cryo-microscopy with elemental microanalysis and fluorescence imaging reveals new aspects of the biomineralization pathway in foraminifera which are, to date, unique in the world of biomineralization. This approach is equally applicable to the study of biomineralization pathways in other organisms.
A fusion construct between Citrine (a YFP variant) and human ferritin (H-chain) was recently shown to form supramolecular assemblies of micrometer size when expressed in mammalian cells. The assembly process is driven by weak hydrophobic interactions leading to dimerization of YFP. Protein assembly could be suppressed at the gene level by mutation in the primary sequence of the construct. In this work, we describe the engineering of a self-assembly interface sensitive to redox state in the cell. Key hydrophobic residues of YFP were mutated systematically to cysteines. Supramolecular assembly of the Citrine-ferritin construct was in some cases preserved by formation of disulfide bonds in place of hydrophobic interactions. In others cases, assembly was abolished, resulting in a diffuse distribution of the expressed protein. A specific variant that remained diffuse under normally reducing intracellular conditions was found to self-assemble rapidly upon exposure to a thiol-specific oxidizing reagent.
The realization of high-quality optoelectronic properties in halide perovskite semiconductors through low-temperature, low energy processing is unprecedented. Understanding the unique aspects of the formation chemistry of these semiconductors is a critical step toward understanding the genesis of high quality material via simple preparation procedures. The toolbox of preparation procedures for halide perovskites grows rapidly. The prototypical reaction is that between lead iodide (PbI2) and methylammonium iodide (CH3NH3I, abbr. MAI) to form the perovskite CH3NH3PbI3 (MAPbI3), which we discuss in this work. We investigate the conversion of small, single-crystalline PbI2 crystallites to MAPbI3 by two commonly used synthesis processes: reaction with MAI in solution or as a vapor. The single crystal nature of the PbI2 precursor allows definitive conclusions to be made about the relationship between the precursors and the final product, illuminating previously unobserved aspects of the reaction process. From in situ photoluminescence microscopy, we find that the reaction in solution begins via isolated nucleation events followed by growth from the nuclei. We observe via X-ray diffraction and morphological characterization that there is a strong orientational and structural relationship between the final stage of the solution-reacted MAPbI3 product and the initial PbI2 crystallite. In all these measurements, we find that the reaction does not proceed below a certain MAI threshold concentration, which allows the first experimental determination of a free energy of formation for a widely used synthetic procedure of ∼0.1 eV. From these conclusions, we present a more detailed hypothesis about the reaction pathway than has yet been proposed: Our results suggest that the reaction in solution begins with a topotactic nucleation event followed by grain growth by dissolution-reconstruction. By similar techniques, we find the reaction via vapor phase produces material lacking a preferred orientation, suggesting the transformation is dominated by a deconstruction-reconstruction process due to the higher thermal energy involved. We also find that the crystal lattice structure of the vapor-reacted material is clearly different from that of the solution-phase reaction due to the temperature conditions of the synthesis.
The electron microscope has made paramount contributions to understanding the structure of biological molecules, cells, and tissues. In general, the most faithful preservation of biological specimens and other soft-organic materials is achieved through cryogenic fixation. The embedding medium is the native aqueous environment itself, immobilized in vitrified form by rapid or pressurized cooling. Until recently, imaging of such vitrified thin specimens by electron cryo-microscopy has been nearly synonymous with wide-field transmission electron microscopy (TEM). Several new approaches have entered the cryo-microscopy field, including soft x-ray imaging, serial surface imaging using focused ion beam scanning electron microscopy, phase plates, and scanning TEM (STEM). In this article, we focus on the STEM method and its adaptation to biological cryo-microscopy. Cryogenic imaging of unstained specimens by STEM introduces specific challenges. Difficulties were long considered insurmountable, and the potential advantages were underappreciated. Future developments in experimental setup and detector technologies will allow for extension of the method to thicker specimens with improved resolution and analytic capabilities.
We evaluate the temporal relation between protein expression by cationic lipid-mediated transfection and cell division using time lapse fluorescence microscopy. Detailed image analysis provides new insights on the single cell level while simultaneously achieving appropriate statistics. Earlier evidence by less direct methods such as flow cytometry indicates a primary route for transfection involving nuclear envelope breakdown, but also suggests the existence of a pathway independent of mitosis. We confirm and quantify both mechanisms. We found the timing for successful transfection to be unexpectedly flexible, contrary to assertions of a narrow time window. Specifically, cells dividing more than 24 h after exposure to the transfection medium express the probed protein at a comparable level to cells in a mitotic state during or shortly after transfection. This finding can have a profound impact on the guidance and development of non-viral gene delivery materials.
Mammalian cytokinetic abscission is mediated by the ESCRT membrane fission machinery. While much has been clarified on the topology and kinetics of abscission through high-resolution microscopy, key questions regarding the mechanism of abscission remain open. Here we apply cryogenic soft-X-ray tomography to elucidate new ultrastructural details in the intercellular membrane bridge connecting cells undergoing abscission. In particular, we resolve defined ring-like structures inside the midbody dark zone that have been inaccessible to EM, and identify membrane extrusions at the abscission sites. In cells at late stages of abscission we resolve a complex array of helical spirals, extending the structural information obtained by EM. Our results highlight the advantages of soft-X-ray tomography and emphasize the importance of using complementary approaches for characterizing cellular structures. Notably, by providing new structural data from intact cells we present a realistic view on the topology of abscission and suggest new mechanistic models for ESCRT mediated abscission.
We recently demonstrated that cryo-scanning transmission electron tomography (CSTET) provides tomographic reconstructions of vitrified cells with superior information transfer at high tilts and for thicker specimens than defocus phase contrast (Wolf et al., 2014). In cryoSTEM, there are no image-forming lenses after the electron beam passes through the sample; detection is incoherent and inelastically scattered electrons provide usable contrast information. By obviating the need for zero-loss energy filtration, the STEM modality provides efficient use of electron dose, thereby minimizing specimen damage. Here we demonstrate the use of CSTET for obtaining highly detailed 3D architectures of organelles and macromolecular complexes in unstained, unfixed, and unsectioned cultured fibroblasts while simultaneously collecting analytical information from high-angle, incoherently scattered electrons. As a case in point, cryoSTEM tomograms revealed characteristic patterns of dense deposits sequestered in mitochondria. Energy-dispersive X-ray (EDX) spectroscopy of these deposits revealed calcium and phosphorus. Once the elemental identification was made, the STEM scattering signal could be interpreted quantitatively as a three-dimensional map of mitochondrial calcium deposition. This approach can be extended to identify and map other concentrations of elements in the cell heavier than the pervasive carbon, nitrogen, and oxygen, as we demonstrated for phosphorus in bacterial cells (Wolf et al., 2015). This study provides an example of how imaging with sensitivity to atomic number in whole cells will provide a new dimension in structural cell biology by correlating elemental composition to organelle morphology.
2015
Bacterial cells often contain dense granules. Among these, polyphosphate bodies (PPBs) store inorganic phosphate for a variety of essential functions. Identification of PPBs has until now been accomplished by analytical methods that required drying or chemically fixing the cells. These methods entail large electron doses that are incompatible with low-dose imaging of cryogenic specimens. We show here that Scanning Transmission Electron Microscopy (STEM) of fully hydrated, intact, vitrified bacteria provides a simple means for mapping of phosphorus-containing dense granules based on quantitative sensitivity of the electron scattering to atomic number. A coarse resolution of the scattering angles distinguishes phosphorus from the abundant lighter atoms: carbon, nitrogen and oxygen. The theoretical basis is similar to Z contrast of materials science. EDX provides a positive identification of phosphorus, but importantly, the method need not involve a more severe electron dose than that required for imaging. The approach should prove useful in general for mapping of heavy elements in cryopreserved specimens when the element identity is known from the biological context.
A genetically encoded system for expression of supramolecular protein assemblies (SMPAs) based on a fusion construct between ferritin and citrine (YFP) was transferred from a mammalian to a bacterial host. The assembly process is revealed to be independent of the expression host, while dimensions and level of order of the assembled structures were influenced by the host organism. An additional level of interactions, namely, coalescence between the preformed SMPAs, was observed during the purification process. SAXS investigation revealed that upon coalescence, the local order of the individual SMPAs was preserved. Finally, the chaotropic agent urea effectively disrupted both the macroscopic coalescence and the interactions at the nanoscale until the level of the single ferritin cage.
VirE2 is the major secreted protein of Agrobacterium tumefaciens in its genetic transformation of plant hosts. It is co-expressed with a small acidic chaperone VirE1, which prevents VirE2 oligomerization. After secretion into the host cell, VirE2 serves functions similar to a viral capsid in protecting the single-stranded transferred DNA en route to the nucleus. Binding of VirE2 to ssDNA is strongly cooperative and depends moreover on protein-protein interactions. In order to isolate the protein-DNA interactions, imaging surface plasmon resonance (SPRi) studies were conducted using surface-immobilized DNA substrates of length comparable to the protein-binding footprint. Binding curves revealed an important influence of substrate rigidity with a notable preference for poly-T sequences and absence of binding to both poly-A and double-stranded DNA fragments. Dissociation at high salt concentration confirmed the electrostatic nature of the interaction. VirE1-VirE2 heterodimers also bound to ssDNA, though by a different mechanism that was insensitive to high salt. Neither VirE2 nor VirE1-VirE2 followed the Langmuir isotherm expected for reversible monomeric binding. The differences reflect the cooperative self-interactions of VirE2 that are suppressed by VirE1.
Cryo-tomography of intact, vitrified cells provides a three dimensional view of their structure and organization in a snapshot of the living state. Lacking heavy metal stains, tilt series images are typically produced by defocus phase contrast. Recently, a number of other methods have been introduced for 3D cryo-imaging. These include phase plate imaging, soft X-ray tomography, serial surface imaging using the focused ion beam-scanning electron microscope, and cryo-STEM tomography (CSTET). Here we explain the basis of the STEM setup and demonstrate the capabilities of CSTET to study unfixed, fully hydrated mammalian cells. Numerous cellular features are recognized in CSTET reconstructions, including membranes, vesicles, cytoskeleton, extracellular matrix, coated pits, and ribosomes. STEM signal acquisition configuration is more flexible than defocus phase contrast, and it imposes a much less severe spatial filter on the original images. Because low spatial frequency information is retained, the STEM tomographic reconstruction more faithfully represents the mass density distribution in the specimen.
2014
Cryo-electron tomography (CET) of fully hydrated, vitrified biological specimens has emerged as a vital tool for biological research. For cellular studies, the conventional imaging modality of transmission electron microscopy places stringent constraints on sample thickness because of its dependence on phase coherence for contrast generation. Here we demonstrate the feasibility of using scanning transmission electron microscopy for cryo-tomography of unstained vitrified specimens (CSTET). We compare CSTET and CET for the imaging of whole bacteria and human tissue culture cells, finding favorable contrast and detail in the CSTET reconstructions. Particularly at high sample tilts, the CSTET signals contain more informative data than energy-filtered CET phase contrast images, resulting in improved depth resolution. Careful control over dose delivery permits relatively high cumulative exposures before the onset of observable beam damage. The increase in acceptable specimen thickness broadens the applicability of electron cryo-tomography.
Genetically encoded supramolecular protein assemblies (SMPAs) are induced to form in living cells by combination of distinct self-assembly properties. A single fusion construct contains genes encoding the heavy chain (H) of human ferritin and the citrine fluorescent protein, the latter exposing a weak dimerization interface, as well as a nuclear localization signal. Upon expression in HeLa cells, in vivo confocal fluorescence and differential interference contrast imaging revealed extended SMPA structures exclusively in the nuclei. Assemblies were typically round and took alveolar, shell-like, or hybrid structure. Transmission electron microscopy revealed a crystalline packing. Site-specific mutagenesis of the citrine dimerization interface clarified the mechanism of SMPA formation. The constituent proteins retained their activity in iron binding and fluorescence emission, thus suggesting a general strategy for formation of synthetic cellular bodies with specific biochemical function. The fluorescent protein citrine and the H subunits of human ferritin were genetically fused to combine their self-assembly properties. As a result, a three-dimensional network of interactions was established to form extended, fluorescent, and crystalline supramolecular protein assemblies (SMPAs) in live HeLa cells. With the addition of a genetically encoded nuclear localization signal, SMPA formation was targeted exclusively to the cell nucleus.
2013
Crystallization of the malaria pigment hemozoin sequesters the toxic heme byproduct of hemoglobin digestion in Plasmodium-infected red blood cells (RBCs). Recently, we applied electron and X-ray imaging and diffraction methods to elucidate this process. We observed crystals oriented with their {100} faces at the inner membrane surface of the digestive vacuole (DV) of Plasmodium falciparum in parasitized RBCs. Modeling of the soft X-ray tomographic (SXT) images of a trophozoite-stage parasite indicated a 4-16 nm DV membrane thickness, suggesting a possible role for lipid multilayers. Here, we reanalyzed the trophozoite SXT images quantitatively via X-ray absorption to map the DV membrane thickness. Making use of the chemical structure and crystal density of the lipid, we found, predominantly, a bilayer 4.2 nm thick, and the remainder was interpreted as patches ∼8 nm thick. Image analysis of electron micrographs also yielded a 4-5 nm DV membrane thickness. The DV lipid membrane is thus mainly a bilayer, so induced hemozoin nucleation occurs primarily via the inner of the membrane's two leaflets. We argue that such a leaflet embodying mono- and di-acyl lipids with appropriate OH or NH bearing head groups may catalyse hemozoin nucleation by stereochemical and lattice match to the {100} crystal face, involving a two-dimensional nucleation aggregate of ∼100 molecules.
Nuclear import and export are often considered inverse processes whereby transport receptors ferry protein cargo through the nuclear pore. In contrast to import, where the reversible binding of receptor to nuclear RanGTP leads to a balanced bidirectional exchange, termination of export by physiologically irreversible hydrolysis of the Ran-bound GTP leads to unidirectional transport. We present a concise mathematical model that predicts protein distributions and kinetic rates for receptor-mediated nuclear export, which further exhibit an unexpected pseudolinear relation one to the other. Predictions of the model are verified with permeabilized and live cell measurements.
Molecular exchange between the cell nucleus and cytoplasm is one of the most fundamental features of eukaryotic cell biology. The nuclear pores act as a conduit of this transport, both for cargo that crosses the pore autonomously as well as that whose translocation requires an intermediary receptor. The major class of such receptors is regulated by the small GTPase Ran, via whose interaction the nucleo-cytoplasmic transport system functions as a selective molecular pump. We propose a simple analytical model for transport that includes both translocation and receptor binding kinetics. The model is suitable for steady-state kinetics such as fluorescence recovery after photobleaching. Time constants appear as a combination of parameters whose effects on measured kinetics are not separable. Competitive cargo binding to receptors and large cytoplasmic volume buffer the transport properties of any particular cargo. Specific limits to the solutions provide a qualitative insight and interpretation of nuclear transport in the cellular context. Most significantly, we find that under realistic conditions receptor binding, rather than permeability of the nuclear pores, may be rate-limiting for nucleo-cytoplasmic exchange.
Agrobacterium is known for gene transfer to plants. In addition to a linear ssDNA oligonucleotide, Agrobacterium tumefaciens secretes an abundant ssDNA-binding effector, VirE2. In many ways VirE2 adapts the conjugation mechanism to transform the eukaryotic host. The crystal structure of VirE2 shows two compact domains joined by a flexible linker. Bound to ssDNA, VirE2 forms an ordered solenoidal shell, or capsid known as the T-complex. Here, we present a three-dimensional reconstruction of the VirE2-ssDNA complex using cryo-electron microscopy and iterative helical real-space reconstruction. High-resolution refinement was not possible due to inherent heterogeneity in the protein structure. By a combination of computational modeling, chemical modifications, mass spectroscopy, and electron paramagnetic resonance, we found that the N-terminal domain is tightly constrained by both tangential and longitudinal links, while the C terminus is weakly constrained. The quaternary structure is thus rigidly assembled while remaining locally flexible. This flexibility may be important in accommodating substrates without sequence specificity.
In Plasmodium falciparum, the deadliest form of human malaria, the nuclear periphery has drawn much attention due to its role as a subnuclear compartment involved in virulence gene expression. Recent data have implicated components of the nuclear envelope in regulating gene expression in several eukaryotes. Special attention has been given to nucleoporins that compose the nuclear pore complex (NPC). However, very little is known about components of the nuclear envelope in Plasmodium parasites. Here we characterize PfSec13, an unusual nucleoporin of P. falciparum, which shows unique structural similarities suggesting that it is a fusion between Sec13 and Nup145C of yeast. Using super resolution fluorescence microscopy (3D-SIM) and in vivo imaging, we show that the dynamiclocalization of PfSec13 during parasites' intra-erythrocytic development corresponds with that of the NPCs and that these dynamics are associated with microtubules rather than with F-actin. In addition, PfSec13 does not co-localize with the heterochormatin markers HP1 and H3K9me3, suggesting euchromatic location of the NPCs. The proteins associated with PfSec13 indicate that this unusual Nup is involved in several cellular processes. Indeed, ultrastructural and chromatin immunoprecipitation analyses revealed that, in addition to the NPCs, PfSec13 is found in the nucleoplasm where it is associated with chromatin. Finally, we used peptide nucleic acids (PNA) to downregulate PfSec13 and show that it is essential for parasite proliferation in human erythrocytes.
Soft X-ray cryo-microscopy (cryo-XT) offers an ideal complement to electron cryo-microscopy (cryo-EM). Cryo-XT is applicable to samples more than an order of magnitude thicker than cryo-EM, albeit at a more modest resolution of tens of nanometers. Furthermore, the natural contrast obtained in the "water-window" by differential absorption by organic matter vs water yields detailed images of organelles, membranes, protein complexes, and other cellular components. Cryo-XT is thus ideally suited for tomography of eukaryotic cells. The increase in sample thickness places more stringent demands on sample preparation, however. The standard method for cryo-EM, i.e., plunging to a cryogenic fluid such as liquid ethane, is no longer ideally suited to obtain vitrification of thick samples for cryo-XT. High pressure freezing is an alternative approach, most closely associated with freeze-substitution and embedding, or with electron cryo-microscopy of vitreous sections (CEMOVIS). We show here that high pressure freezing can be adapted to soft X-ray tomography of whole vitrified samples, yielding a highly reliable method that avoids crystallization artifacts and potentially offers improved imaging conditions in samples not amenable to plunge-freezing.
2012
Heme detoxification is a critical step in the life cycle of malariaca-using parasites, achieved by crystallization into physiologically insoluble hemozoin. The mode of nucleation has profound implications for understanding the mechanism of action of antimalarial drugs that inhibit hemozoin growth. Several lines of evidence point to involvement of acylglycerol lipids in the nucleation process. Hemozoin crystals have been reported to form within lipid nanospheres; alternatively, it has been found in vitro that they are nucleated at an acylglycerol lipid-water interface.We have applied cryogenic soft X-ray tomography and three-dimensional electron microscopy to address the location and orientation of hemozoin crystals within the digestive vacuole (DV), as a signature of their nucleation and growth processes. Cryogenic soft X-ray tomography in the "water window" is particularly advantageous because contrast generation is based inherently on atomic absorption. We find that hemozoin nucleation occurs at the DV inner membrane, with crystallization occurring in the aqueous rather than lipid phase. The crystal morphology indicates a common {100} orientation facing the membrane as expected of templated nucleation. This is consistent with conclusions reached by X-ray fluorescence and diffraction in a companion work. Uniform dark spheres observed in the parasite were identified as hemoglobin transport vesicles. Their analysis supports a model of hemozoin nucleation primarily in the DV. Modeling of the contrast at the DV membrane indicates a 4-nm thickness with patches about three times thicker, possibly implicated in the nucleation.
Bidirectional transport is a key issue in cellular biology. It requires coordination between microtubule-associated molecular motors that work in opposing directions. The major retrograde and anterograde motors involved in bidirectional transport are cytoplasmic dynein and conventional kinesin, respectively. It is clear that failures in molecular motor activity bear severe consequences, especially in the nervous system. Neuronal migration may be impaired during brain development, and impaired molecular motor activity in the adult is one of the hallmarks of neurodegenerative diseases leading to neuronal cell death. The mechanisms that regulate or coordinate kinesin and dynein activity to generate bidirectional transport of the same cargo are of utmost importance. We examined how Ndel1, a cytoplasmic dynein binding protein, may regulate nonvesicular bidirectional transport. Soluble Ndel1 protein, Ndel1-derived peptides or control proteins were mixed with fluorescent beads, injected into the squid giant axon, and the bead movements were recorded using time-lapse microscopy. Automated tracking allowed for extraction and unbiased analysis of a large data set. Beads moved in both directions with a clear bias to the anterograde direction. Velocities were distributed over a broad range and were typically slower than those associated with fast vesicle transport. Ironically, the main effect of Ndel1 and its derived peptides was an enhancement of anterograde motion. We propose that they may function primarily by inhibition of dynein-dependent resistance, which suggests that both dynein and kinesin motors may remain engaged with microtubules during bidirectional transport.
2011
The deadliest form of human malaria is caused by the protozoan parasite Plasmodium falciparum. The complex life cycle of this parasite is associated with tight transcriptional regulation of gene expression. Nuclear positioning and chromatin dynamics may play an important role in regulating P. falciparum virulence genes. We have applied an emerging technique of electron microscopy to construct a 3D model of the parasite nucleus at distinct stages of development within the infected red blood cell. We have followed the distribution of nuclear pores and chromatin throughout the intra-erythrocytic cycle, and have found a striking coupling between the distributions of nuclear pores and chromatin organization. Pore dynamics involve clustering, biogenesis, and division among daughter cells, while chromatin undergoes stage-dependent changes in packaging. Dramatic changes in heterochromatin distribution coincide with a previously identified transition in gene expression and nucleosome positioning during the mid-to-late schizont phase. We also found a correlation between euchromatin positioning at the nuclear envelope and the local distribution of nuclear pores, as well as a dynamic nuclear polarity during schizogony. These results suggest that cyclic patterns in gene expression during parasite development correlate with gross changes in cellular and nuclear architecture.
2009
Delivery of DNA to the cell nucleus is an essential step in many types of viral infection, transfection, gene transfer by the plant pathogen Agrobacterium tumefaciens and in strategies for gene therapy. Thus, the mechanism by which DNA crosses the nuclear pore complex (NPC) is of great interest. Using nuclei reconstituted in vitro in Xenopus egg extracts, we previously studied DNA passage through the nuclear pores using a single-molecule approach based on optical tweezers. Fluorescently labeled DNA molecules were also seen to accumulate within nuclei. Here we find that this import of DNA relies on a soluble protein receptor of the importin family. To identify this receptor, we used different pathway-specific cargoes in competition studies as well as pathway-specific dominant negative inhibitors derived from the nucleoporin Nup153. We found that inhibition of the receptor transportin suppresses DNA import. In contrast, inhibition of importin β has little effect on the nuclear accumulation of DNA. The dependence on transportin was fully confirmed in assays using permeabilized HeLa cells and a mammalian cell extract. We conclude that the nuclear import of DNA observed in these different vertebrate systems is largely mediated by the receptor transportin. We further report that histones, a known cargo of transportin, can act as an adaptor for the binding of transportin to DNA.
The nuclear pore supports molecular communication between cytoplasm and nucleus in eukaryotic cells. Selective transport of proteins is mediated by soluble receptors, whose regulation by the small GTPase Ran leads to cargo accumulation in, or depletion from, the nucleus, i.e., nuclear import or nuclear export. We consider the operation of this transport system by a combined analytical and experimental approach. Provocative predictions of a simple model were tested using cell-free nuclei reconstituted in Xenopus egg extract, a system well suited to quantitative studies. We found that accumulation capacity is limited, so that introduction of one import cargo leads to egress of another. Clearly, the pore per se does not determine transport directionality. Moreover, different cargo reach a similar ratio of nuclear to cytoplasmic concentration in steady-state. The model shows that this ratio should in fact be independent of the receptor-cargo affinity, though kinetics may be strongly influenced. Numerical conservation of the system components highlights a conflict between the observations and the popular concept of transport cycles. We suggest that chemical partitioning provides a framework to understand the capacity to generate concentration gradients by equilibration of the receptor-cargo intermediary.
Passage of polymers through pores narrower than the hydrodynamic diameter is impeded by an entropic penalty for their confinement. This might be balanced by an attractive interaction with the pore walls. We found that the hydrogen-bonding polymer, poly(isopropylacrylamide) (pNIPAM), diffused readily through narrow pores in polycarbonate track-etched membranes. The trans side accumulation of pNIPAM followed a stretched exponential behavior. By contrast, a much smaller dextran diffused at a comparable or slower rate and showed ordinary Fick-like behavior. Comparison between the influence of pNIPAM surface adsorption and chemical grafting to the pores points to weak interpolymeric bonds as the source for the transport-accelerating surface interactions. We interpret the results as evidence for anomalous diffusion of pNIPAM inside the pores.
2008
Plasmodesmata (Pd) are trans-wall membrane channels that permit cell-to-cell transport of metabolites and other small molecules, proteins, RNAs, and signaling molecules. The transport of cytoplasmic soluble macromolecules is a function of the electrochemical gradient between adjacent cells, the number of Pd per interface between adjacent cells, Stokes radius (RS), area of the cytoplasmic annulus, and channel length. The size of the largest molecule that can pass through Pd defines the Pd size exclusion limit. However, since the shape and size of a molecule determines its capacity to diffuse through pores or tubes, RS is a better measure. Relatively small changes in RS can cause large differences in the mobility of molecular probes, particularly if the pore size is close to that of the probe. In addition, as the dimensions of a macromolecule approach that of the channel, membrane charge effects may become important. We employed quantitative tools and molecular modeling to measure the apparent coefficient of conductivity of Pd, C(Pd), for the non-targeted transport of macromolecules. This method allowed us to examine the influence of protein charge and RS on C(Pd) in Nicotiana benthamiana. The C(Pd) of modified green fluorescent proteins (GFPs) of different sizes but with the same charge as native GFP and of a more negatively charged derivative were determined. We found that the C(Pd) of cytoplasmic soluble GFP and cytoplasmic forms of modified GFP were the most strongly correlated with RS and that the apparent aberrant increase in C(Pd) of a negatively charged GFP derivative was, at least in part, the result of the charge effect on RS.
Abnormal neuronal migration is manifested in brain malformations such as lissencephaly. The impairment in coordinated cell motility likely reflects a faulty mechanism of cell polarization or coupling between polarization and movement. Here we report on the relationship between the polarity kinase MARK2/Par-1 and its substrate, the well-known lissencephaly-associated gene doublecortin (DCX), during cortical radial migration. We have previously shown using in utero electroporation that reduced MARK2 levels resulted in multipolar neurons stalled at the intermediate zone border, similar to the phenotype observed in the case of DCX silencing. However, whereas reduced MARK2 stabilized microtubules, we show here that knock-down of DCX increased microtubule dynamics. This led to the hypothesis that simultaneous reduction may alleviate the phenotype. Coreduction ofMARK2and DCX resulted in a partial restoration of the normal neuronal migration phenotype in vivo. The kinetic behavior of the centrosomes reflected the different molecular mechanisms activated when either protein was reduced. In the case of reducing MARK2 processive motility of the centrosome was hindered, whereas when DCX was reduced, centrosomes moved quickly but bidirectionally. Our results stress the necessity for successful coupling between the polarity pathway and cytoplasmic dynein-dependent activities for proper neuronal migration.
The nuclear pore complex is a large protein channel present universally in eukaryotic cells. It generates an essential macromolecular separation between the nucleus and cytoplasm. The transport mechanism relies on recognition of molecular cargos by receptor proteins, and on specific interaction between the receptors and the pores. We present a chemical mimic of this "receptor-mediated" transport using modified nanoporous membrane filters, polyisopropylacrylamide as the carrier molecule, or receptor, and single-stranded DNA as the cargo. We show that a complex of ssDNA and polyisopropylacrylamide diffuses faster through the modified pores than does the bare ssDNA, in spite of the larger size of the complex. The mobile polymer thus acts as a soluble receptor to usher a macromolecular cargo specifically through the pores.
The motion of small cargo particles on microtubules by means of motor proteins in disordered microtubule networks is investigated theoretically using both analytical tools and computer simulations. Different network topologies in two and three dimensions are considered, one of which has been recently studied experimentally by Salman [Biophys. J. 89, 2134 (2005)]. A generalization of the random velocity model is used to derive the mean-square displacement of the cargo particle. We find that all cases belong to the class of anomalous superdiffusion, which is sensitive mainly to the dimensionality of the network and only marginally to its topology. Yet in three dimensions the motion is very close to simple diffusion, with sublogarithmic corrections that depend on the network topology. When details of the thermal diffusion in the bulk solution are included, no significant change to the asymptotic time behavior is found. However, a small asymmetry in the mean microtubule polarity affects the corresponding long-time behavior. We also study a three-dimensional model of the microtubule network in living animal cells. Three first-passage-time problems of intracellular transport are simulated and analyzed for different motor processivities: (i) cargo that originates near the nucleus and has to reach the membrane, (ii) cargo that originates from the membrane and has to reach the nucleus, and (iii) cargo that leaves the nucleus and has to reach a specific target in the cytoplasm. We conclude that while a higher motor processivity increases the transport efficiency in cases (i) and (ii), in case (iii) it has the opposite effect. We conjecture that the balance between the different network tasks, as manifested in cases (i) and (ii) versus case (iii), may be the reason for the evolutionary choice of a finite motor processivity.
Agrobacterium tumefaciens infects its plant hosts by a mechanism of horizontal gene transfer. This capability has led to its wide-spread use in artificial genetic transformation. In addition to DNA, the bacterium delivers an abundant ssDNA binding protein, VirE2, whose roles in the host include protection from cytoplasmic nucleases and adaptation for nuclear import. In Agrobacterium, VirE2 is bound to its acidic chaperone VirE1. When expressed in vitro in the absence of VirE1, VirE2 is prone to oligomerization and forms disordered filamentous aggregates. These filaments adopt an ordered solenoidal form in the presence of ssDNA, which was characterized previously by electron microscopy and three-dimensional image processing. VirE2 coexpressed in vitro with VirE1 forms a soluble heterodimer. VirE1 thus prevents VirE2 oligomerization and competes with its binding to ssDNA. We present here a crystal structure of VirE2 in complex with VirE1, showing that VirE2 is composed of two independent domains presenting a novel fold, joined by a flexible linker. Electrostatic interactions with VirE1 cement the two domains of VirE2 into a locked form. Comparison with the electron microscopy structure indicates that the VirE2 domains adopt different relative orientations. We suggest that the flexible linker between the domains enables VirE2 to accommodate its different binding partners.
Virus spread through plasmodesmata (Pd) is mediated by virus-encoded movement proteins (MPs) that modify Pd structure and function. The MP of Tobacco mosaic virus (TMVMP) is an endoplasmic reticulum (ER) integral membrane protein that binds viral RNA (vRNA), forming a vRNA:MP:ER complex. It has been hypothesized that TMVMP causes Pd to dilate, thus potentiating a cytoskeletal mediated sliding of the vRNA:MP:ER complex through Pd; in the absence of MP, by contrast, the ER cannot move through Pd. An alternate model proposes that cell-to-cell spread takes place by diffusion of the MP:vRNA complex in the ER membranes which traverse Pd. To test these models, we measured the effect of TMVMP and replicase expression on cell-to-cell spread of several green fluorescent protein-fused probes: a soluble cytoplasmic protein, two ER lumen proteins, and two ER membrane-bound proteins. Our data support the diffusion model in which a complex that includes ER-embedded MP, vRNA, and other components diffuses in the ER membrane within the Pd driven by the concentration gradient between an infected cell and adjacent noninfected cells. The data also suggest that the virus replicase and MP function together in altering Pd conductivity.
To transfer genes to plants or other organisms, Agrobacterium exports its transferred DNA (T-DNA), along with several virulence proteins, into the host cell. The T-DNA must then be transported through the cytoplasm to the nuclear pore, pass through the nuclear pore complex, and finally move inside the nucleus toward a potential site of integration into the host genome. This T-DNA voyage inside the host cell results from a complex interplay between numerous bacterial and host factors, where host-cell machineries that allow macromolecular movements are employed by Agrobacterium to achieve the transfer and integration of T-DNA into the host genome.
2007
Nucleocytoplasmic exchange of proteins and RNAs is mediated by receptors that usher their cargo through the nuclear pores. Peptide localization signals on each cargo determine the receptors with which it will interact. Those interactions are normally regulated by the small GTPase Ran. Hydrolysis of GTP provides the chemical energy required to create a bona fide thermodynamic pump that selectively and directionally accumulates its substrates across the nuclear envelope. A common perception is that cargo delivery is irreversible, e.g., a protein imported to the nucleus does not return to the cytoplasm except perhaps via a specific export receptor. Quantitative measurements using cell-free nuclei reconstituted in Xenopus egg extract show that nuclear accumulation follows first-order kinetics and reaches steady state at a level that follows a Michaelis-Menten function of the cytoplasmic cargo concentration. This saturation suggests that receptor-mediated translocation across the nuclear pore occurs bidirectionally. The reversibility of accumulation was demonstrated directly by exchange of the cytosolic medium and by fluorescence recovery after photobleaching. Based on our results, we offer a simple biophysical model that predicts the observed behavior. A far-reaching consequence is that the nuclear localization signal dictates the fate of a protein population rather than that of the individual molecules that bear it, which remain free to shuttle back and forth. This implies an open communication between the nucleus and cytoplasm and a ubiquitous mechanism for signaling in both directions.
Agrobacterium tumefaciens infects plant cells by the transfer of DNA. A key factor in this process is the bacterial virulence protein VirE2, which associates stoichiometrically with the transported single-stranded (ss)DNA molecule (T-strand). As observed in vitro by transmission electron microscopy, VirE2-ssDNA readily forms an extended helical complex with a structure well suited to the tasks of DNA protection and nuclear import. Here we have elucidated the role of the specific molecular chaperone VirE1 in regulating VireE2-VirE2 and VirE2-ssDNA interactions. VirE2 alone formed functional filamentous aggregates capable of ssDNA binding. In contrast, co-expression with VirE1 yielded monodisperse VirE1-VirE2 complexes. Cooperative binding of VirE2 to ssDNA released VirE1, resulting in a controlled formation mechanism for the helical complex that is further promoted by macromolecular crowding. Based on this in vitro evidence, we suggest that the constrained volume of the VirB channel provides a natural site for the exchange of VirE2 binding from VirE1 to the T-strand.
2006
2005
In nucleated cells, proteins designed for nuclear import form complexes with soluble nuclear transport receptors prior to translocation across the nuclear envelope. The directionality of transport is due to the asymmetric distribution of the protein Ran, which dissociates import cargo complexes only in its nuclear RanGTP form. Using fluorescence correlation spectroscopy, we have studied the stability of cargo complexes in solution in the presence and in the absence of RanGTP. We find that RanGTP has a higher affinity for the major import receptor, the importin α/β heterodimer, when importin α does not carry a cargo, suggesting that some nuclear transport targets might be preferentially released.
Many essential processes in eukaryotic cells depend on regulated molecular exchange between its two major compartments, the cytoplasm and the nucleus. In general, nuclear import of macromolecular complexes is dependent on specific peptide signals and their recognition by receptors that mediate translocation through the nuclear pores. Here we address the question of how protein products bearing such nuclear localization signals arrive at the nuclear membrane before import, i.e., by simple diffusion or perhaps with assistance of cytoskeletal elements or cytoskeleton-associated motor proteins. Using direct single-particle tracking and detailed statistical analysis, we show that the presence of nuclear localization signals invokes active transport along microtubules in a cell-free Xenopus egg extract. Chemical and antibody inhibition of minus-end directed cytoplasmic dynein blocks this active movement. In the intact cell, where microtubules project radially from the centrosome, such an interaction would effectively deliver nuclear-targeted cargo to the nuclear envelope in preparation for import.
Type IV secretion systems (T4SSs) are used by various bacteria to deliver protein and DNA molecules to a wide range of target cells. These include systems that are directly involved in pathogenesis, such as the secretion of pertussis toxin by Bordetella pertussis into human cells and the delivery of single-stranded DNA (ssDNA) into plants by Agrobacterium. These complex systems are composed of proteins that span the bacterial cytoplasm. The Agrobacterium T4SS is composed of 12 virulence proteins and delivers its transferred ssDNA and several virulence protein substrates to a variety of eukaryotic cells. Recent studies on the Agrobacterium T4SS have revealed new information on the localization and structure of its proteins in the bacteria, the biochemical properties of its transport signal, the route of a DNA substrate through the secretion system, and the initial point of contact of the system with its host. These findings have expanded our knowledge and understanding of the still mostly obscure structure and function of the T4SSs.
2004
The limitations imposed on the analyses of complex chemical and biological systems by ensemble averaging can be overcome by single-molecule experiments. Here, we used a single-molecule technique to discriminate between two generally accepted mechanisms of a key biological process--the activation of proteins by molecular effectors. The two mechanisms, namely induced-fit and population-shift, are normally difficult to discriminate by ensemble approaches. As a model, we focused on the interaction between the nuclear transport effector, RanBP1, and two related complexes consisting of the nuclear import receptor, importin beta, and the GDP- or GppNHp-bound forms of the small GTPase, Ran. We found that recognition by the effector proceeds through either an induced-fit or a population-shift mechanism, depending on the substrate, and that the two mechanisms can be differentiated by the data.
Agrobacterium tumefaciens infects plant cells by a unique mechanism involving an interkingdom genetic transfer. A single-stranded DNA substrate is transported across the two cell walls along with the bacterial virulence proteins VirD2 and VirE2. A single VirD2 molecule covalently binds to the 5-end of the single-stranded DNA, while the VirE2 protein binds stoichiometrically along the length of the DNA, without sequence specificity. An earlier transmission/scanning transmission electron microscopy study indicated a solenoidal ("telephone coil") organization of the VirE2-DNA complex. Here we report a three-dimensional reconstruction of this complex using electron microscopy and single-particle image-processing methods. We find a hollow helical structure of 15.7-nm outer diameter, with a helical rise of 51.5 nm and 4.25 VirE2 proteins/turn. The inner face of the protein units contains a continuous wall and an inward protruding shelf. These structures appear to accommodate the DNA binding. Such a quaternary arrangement naturally sequesters the DNA from cytoplasmic nucleases and suggests a mechanism for its nuclear import by decoration with host cell factors. Coexisting with the helices, we also found VirE2 tetrameric ring structures. A two-dimensional average of the latter confirms the major features of the three-dimensional reconstruction.
2003
Assembly of a eukaryotic nucleus involves three distinct events: membrane recruitment, fusion to form a double nuclear membrane, and nuclear pore complex (NPC) assembly. We report that importin β negatively regulates two of these events, membrane fusion and NPC assembly. When excess importin β is added to a full Xenopus nuclear reconstitution reaction, vesicles are recruited to chromatin but their fusion is blocked. The importin β down-regulation of membrane fusion is Ran-GTP reversible. Indeed, excess RanGTP (RanQ69L) alone stimulates excessive membrane fusion, leading to intranuclear membrane tubules and cytoplasmic annulate lamellae-like structures. We propose that a precise balance of importin β to Ran is required to create a correct double nuclear membrane and simultaneously to repress undesirable fusion events. Interestingly, truncated importin β 45-462 allows membrane fusion but produces nuclei lacking any NPCs. This reveals distinct importin β-regulation of NPC assembly. Excess full-length importin β and β 45-462 act similarly when added to prefused nuclear intermediates, i.e., both block NPC assembly. The importin β NPC block, which maps downstream of GTPγS and BAPTA-sensitive steps in NPC assembly, is reversible by cytosol. Remarkably, it is not reversible by 25 μM RanGTP, a concentration that easily reverses fusion inhibition. This report, using a full reconstitution system and natural chromatin substrates, significantly expands the repertoire of importin β. Its roles now encompass negative regulation of two of the major events of nuclear assembly: membrane fusion and NPC assembly.
Several million macromolecules are exchanged each minute between the nucleus and cytoplasm by receptor-mediated transport. Most of this traffic is controlled by the small GTPase Ran, which regulates assembly and disassembly of the receptor cargo complexes in the appropriate cellular compartment. Here we applied dynamic force spectroscopy to study the interaction of Ran with the nuclear import receptor importin beta1 (impbeta) at the single-molecule level. We found that the complex alternates between two distinct conformational states of different adhesion strength. The application of an external mechanical force shifts equilibrium toward one of these states by decreasing the height of the interstate activation energy barrier. The other state can be stabilized by a functional Ran mutant that increases this barrier. These results support a model whereby functional control of Ran imp is achieved by a population shift between pre-existing alternative conformations.
RNA molecules play essential roles in many biological processes, including the storage and transfer of information in the cell. These events are mediated via RNA-protein interactions or by catalytic RNA molecules. It is now recognized that unique RNA folds are associated with biological functions. Therefore, to study the intrinsic structural changes and dynamics which regulate the various functions of RNA, it is necessary to probe its three-dimensional structure in solution. In this respect, using single-molecule methodologies may allow study of native RNA molecules independent of their size and in real time. However, this may require the immobilization of RNA on a surface. Here, we report a novel approach to immobilize RNA on a glass. The procedures involve both chemical and enzymatic modifications of long RNA molecules. In addition, we demonstrate the application of an optical tweezers apparatus to measure the length and, hence, the dynamics of immobilized intact ribosomal RNA molecules as a function of different solution conditions.
A new method of laser-induced lithography for direct writing of carbon on a glass surface is described, in which deposition occurs from a transparent precursor solution. At the glass-solution interface where the laser spot is focused, a micro-explosion process takes place, leading to the deposition of pure carbon on the glass surface. Transmission electron microscopy (TEM) analysis shows two distinct co-existing phases. The dominant one shows a mottled morphology with diffraction typical of cubic (sp3) diamond. The other region shows an ordered array of graphene sheets with diffraction pattern typical of sp2-bonded carbon. The sp3 crystallites range in size from 9 to 30 Å and are scattered randomly throughout the sample. A UV Raman spectrum shows a broad band at the location of the expected diamond peak, together with a peak corresponding to the graphite region. We conclude that the patterned carbon is composed of a mixture of nanocrystalline sp3 and sp2 carbon forms.
The vertebrate nuclear pore complex, 30 times the size of a ribosome, assembles from a library of soluble subunits and two membrane proteins. Using immunodepletion of Xenopus nuclear reconstitution extracts, it has previously been possible to assemble nuclei lacking pore subunits tied to protein import, export, or mRNA export. However, these altered pores all still possessed the bulk of pore structure. Here, we immunodeplete a single subunit, the Nup107-160 complex, using antibodies to Nup85 and Nup133, two of its components. The resulting reconstituted nuclei are severely defective for NLS import and DNA replication. Strikingly, they show a profound defect for every tested nucleoporin. Even the integral membrane proteins POM121 and gp210 are absent or unorganized. Scanning electron microscopy reveals pore-free nuclei, while addback of the Nup107-160 complex restores functional pores. We conclude that the Nup107-160 complex is a pivotal determinant for vertebrate nuclear pore complex assembly.
Compartmentalization of the cytoplasm by membranes should have a strong influence on the diffusion of macromolecules inside a cell, and we have studied how this could be reflected in fluorescence correlation spectroscopy (FCS) experiments. We derived the autocorrelation function measured by FCS for fluorescent particles diffusing close to a soft membrane, and show it to be the sum of two contributions: short timescale correlations come from the diffusion of the particles (differing from free diffusion because of the presence of an obstacle), whereas long timescale correlations arise from fluctuations of the membrane itself (which create intensity fluctuations by modulating the number of detected particles). In the case of thermal fluctuations this second type of correlation depends on the elasticity of the membrane. To illustrate this calculation, we report the results of FCS experiments carried out close to a vesicle membrane. The measured autocorrelation functions display very distinctly the two expected contributions, and allow both to recover the diffusion coefficient of the fluorophore and to characterize the membrane fluctuations in term of a bending rigidity. Our results show that FCS measurements inside cells can lead to erroneous values of the diffusion c oefficient if the influence of membranes is not recognized.
The most resilient remains of plants in most archaeological sites are the siliceous phytoliths-special cells that are partially or completely silicified during the plant's life. These cells have characteristic morphologies, and thus the phytoliths can often be used to identify the taxonomic affinities of plants brought to an archaeological site. In order to determine what they were used for, other means of analysis are needed. We present here a method to distinguish burnt from unburnt phytolith assemblages. The method is based on measuring the refractive index (RI) of individual phytoliths. The phytoliths even from a single plant have a range of RI values. Burning a phytolith sample causes a shift to higher RI. Comparing burnt and unburnt samples we demonstrate that it is possible to differentiate between them based on the fraction of phytoliths with RI higher than 1·440. This serves as a basis for a simplified mode of measurement that requires only the use of a petrographic light microscope and a mineral oil of R1 1·440. We apply the simplified method to two Natufian samples from Hayonim cave (Western Galilee, Israel).
Using fluorescence correlation spectroscopy we measured the apparent mobility of a nuclear transport cargo (a streptavidin labeled with a nuclear localization signal) both in the cytoplasm and the nucleus of living cells, and we compared it to the mobility of a streptavidin labeled with mutations of the nuclear localization signal known not to support nuclear import, and with the mobility of a set of inert molecules (dextrans) of different sizes. In the cytoplasm, the mobility of the transport cargo is found to be significantly reduced compared to its mobility in the nucleus. or to the mobility of the streptavidins labeled with a mutant nuclear localization signal. This can be partly explained by the fact that the transport cango forms a complex with two nuclear import mediator proteins (importin alpha and importin beta) in the cytoplasm, but could also be partly due to specific interactions of this cargo with the cell cytoskeleton.
2002
We report an experimental study of the dynamics of particles driven along biopolymer tracks by active protein motors. We use extracts of Xenopus laevis eggs, which support the formation of cytoskeletal networks (microtubules and actin filaments) in vitro and provide all the biochemical factors needed for particle motion. 3 μm polystyrene beads adsorb motor proteins non-specifically and serve as the transport substrate. We observe an enhanced diffusive motion with time scaling of the mean squared displacement as t3/2. At the shortest times, the data indicate a crossover to a subdiffusive or saturated regime, due to intermittent adhesion of the motor proteins to the microtubules. The time interval over which this behavior was observed varied widely. On inhibiting one or the other family of the microtubule-associated motor proteins, the interval on which such saturation was observed increased, yet the t3/2 behavior at longer times was unaffected.
We study the motion of a probe driven by microtubule-associated motors within a living eukaryotic cell. The measured mean square displacement, [formula presented] of engulfed 2 and [formula presented] diameter microspheres shows enhanced diffusion scaling as [formula presented] at short times, with a clear crossover to ordinary or subdiffusive scaling, i.e., [formula presented] with [formula presented] less than or equal to 1, at long times. Using optical tweezers we tried to move the engulfed bead within the cell in order to relate the anomalous diffusion scaling to the density of the network in which the bead is embedded. Results show that the larger beads, 2 and [formula presented] diameter, must actively push the cytoskeleton filaments out of the way in order to move, whereas smaller beads of [formula presented] diameter can be \u201crattled\u201d within a cage. The [formula presented] beads also perform an enhanced diffusion but with a smaller and less consistent exponent [formula presented] We interpret the half-integer power observed with large beads based on two diverse phenomena widely studied in purified cytoskeleton filaments: (1) the motion of the intracellular probe results from random forces generated by motor proteins rather than thermal collisions for classical Brownian particles, and (2) thermal bending modes of these semiflexible polymers lead to anomalous subdiffusion of particles embedded in purified gel networks or attached to single filaments, with [formula presented] In the case of small beads, there may also be a Brownian contribution to the motion that results in a smaller exponent.
RNA molecules play important roles in many biological processes including the storage and transfer of information in the cell. Importantly, RNA folds associated with biological functions. The development of new single-molecule methodologies allows to study native RNA molecules, independent in their sizes, in realtime. This requires the immobilization of RNA molecules on a surface. At the present time, however, there is insufficient knowledge on how to optimize the attachment of these molecules to a plane. Here we report a direct approach to immobilize long RNA on a glass surface. Importantly, these procedures can be applied to both native and synthetic RNA molecules to be probed by various single molecule methodologies.
2001
The nuclear pore complex sits as the gateway between the genomic, nuclear environment and the primarily enzymatic realm of the cytoplasm. Large channels traversing the two membranes of the nuclear envelope, the nuclear pores govern the passage of specific molecules between these two major compartments of the cell. Its ability to limit passage to specific molecules, and furthermore to pump them against a gradient in concentration, raises intriguing physical questions. This article reviews basic aspects of the structure and operation of this biochemical pump, whose thermodynamic cycle differs from that of conventional machines.
Gene transfer to eukaryotic cells requires the uptake of exogenous DNA into the cell nucleus. Except during mitosis, molecular access to the nuclear interior is limited to passage through the nuclear pores. Here we demonstrate the nuclear uptake of extended linear DNA molecules by a combination of fluorescence microscopy and single-molecule manipulation techniques, using the latter to follow uptake kinetics of individual molecules in real time. The assays were carried out on nuclei reconstituted in vitro from extracts of Xenopus eggs, which provide both a complete complement of biochemical factors involved in nuclear protein import, and unobstructed access to the nuclear pores. We find that uptake of DNA is independent of ATP or GTP hydrolysis, but is blocked by wheat germ agglutinin. The kinetics are much slower than would be expected from hydrodynamic considerations. A fit of the data to a simple model suggests femto-Newton forces and a large friction relevant to the uptake process.
A method for creating microscale-patterned surfaces by direct-write lithography is described. A tightly focused, low-power infrared laser beam is applied to a homogeneous precursor solution containing soluble reagents. When the laser is focused directly at a glass-solution interface, it initiates the local precipitation of a solid product that attaches firmly to the substrate. Operating the laser momentarily forms isolated spots, whereas moving the microscope stage or the laser spot draws continuous lines. The method has been demonstrated for metallic silver and gold, for oxidized copper, and for molybdenum disulfide, suggesting a broad range of suitable materials. Silver patterns were further modified by chemical reactions. Their morphology and physical properties can be altered during deposition by the use of capping agents, which may provide an onset for further functionalization.
The molecular basis for contact inhibition of cell locomotion is still largely unknown. Cadherins, the major receptors mediating cell-cell adhesion, associate in the cytoplasm with armadillo family proteins, including β-and γ-catenin and p120 catenin (p120ctn). E-cadherin-mediated contact formation was shown to inhibit cellular motility. We examine whether p120ctn may have a role in this regulation. We show here that overexpression of p120ctn in fibroblasts and epithelial cells induces pronounced changes in cell shape, motility and adhesion to the extracellular matrix. p120ctn-transfected cells display increased filopodial/lamellipodial activity, decreased contractility and focal adhesion formation, and augmented migratory ability. These effects of p120ctn are mediated by small GTPases of the Rho family. Direct assessment of the activity of these GTPases in cells expressing a 5-fold higher level of p120ctn as compared to non-transfected control cells revealed significant augmentation of Cdc42 and Rac activity. Moreover, co-transfection of p120ctn with dominant-negative Cdc42 and Rac, or constitutively active Rho, suppressed morphological effects of p120ctn. Confocal immunofluorescence visualization of the distribution of endogenous p120ctn in dense cultures showed that formation of cadherin-mediated cell-cell contacts is accompanied by sequestering of p120ctn to the junction regions. In sparse cultures p120ctn is distributed over the cytoplasm. Co-transfection with an excess of E-cadherin leads to sequestration of exogenous p120ctn to cell-cell junctions or to small cadherin-containing vesicles, and abolishes p120ctn effects on cell morphology. Thus, p120ctn may couple the formation and disruption of cadherin-mediated contacts with regulation of cell motility by triggering pathway(s) affecting Rho family GTPases.
The dynamic movements of tracer particles have been used to characterize their local environment in dilute networks of microtubules, and within living cells. In the former case, 300 nm diameter beads are fixed to individual microtubules, so that the movements of the bead reveal undulatory modes of the polymer. The mean square displacement shows a scaling of t3/4 in keeping with mode analysis arguments. Inside a cell, beads show a more complicated behavior that reflects internal dynamics of the cytoskeleton and associated motors. When placed near the cell edge, 3 micron diameter beads coated by proteins that mediate membrane adhesion are engulfed underneath the membrane and drawn toward the center by a contracting flow of actin. On reaching the region surrounding the nucleus, the beads continue to move but lose directionality, so that they wander within a restricted space. Measurement of the mean square displacement now shows a scaling of t3/2 up to times of ∼1 sec. At longer times the scaling varies between t1 and t1/2 in the various runs. The data do not fit a crossover between ballistic (t2) and diffusive (t1) behavior. The movement is clearly driven by non-thermal interactions, as it cannot be stopped by an optical trap. Treatment of the cell to depolymerize microtubules restores ordinary diffusion, while actin depolymerization has no effect, indicating that microtubule-based motor proteins are responsible for the motion. Immunofluorescence microscopy shows that the mesh size of the microtubules is smaller than the bead diameter. We propose that the observations are related, and that the non-trivial scaling in the polymer system leads to time-dependent friction in a network, which in turn leads to a generalized Einstein relation operative in the intracellular environment. This results, in the driven system, in sub-ballistic motion at short times and sub-diffusive motion at longer times.
2000
Mutations in the X-linked gene doublecortin (DCX) result in lissencephaly in males or subcortical laminar heterotopia ('double cortex') in females. Various types of mutation were identified and the sequence differences included nonsense, splice site and missense mutations throughout the gene. Recently, we and others have demonstrated that DCX interacts and stabilizes microtubules. Here, we performed a detailed sequence analysis of DCX and DCX-like proteins from various organisms and defined an evolutionarily conserved Doublecortin (DC) domain. The domain typically appears in the N-terminus of proteins and consists of two tandemly repeated 80 amino acid regions. In the large majority of patients, missense mutations in DCX fall within the conserved regions. We hypothesized that these repeats may be important for microtubule binding. We expressed DCX or DCLK (KIAA0369) repeats in vitro and in vivo. Our results suggest that the first repeat binds tubulin but not microtubules and enhances microtubule polymerization. To study the functional consequences of DCX mutations, we overexpressed seven of the reported mutations in COS7 cells and examined their effect on the microtubule cytoskeleton. The results demonstrate that some of the mutations disrupt microtubules. The most severe effect was observed with a tyrosine to histidine mutation at amino acid 125 (Y125H). Produced as a recombinant protein, this mutation disrupts microtubules in vitro at high molar concentration. The positions of the different mutations are discussed according to the evolutionarily defined DC-repeat motif. The results from this study emphasize the importance of DCX-microtubule interaction during normal and abnormal brain development.
Neuregulin can trigger morphogenetic signals in cells both in vivo and in culture through the activation of receptors from the ErbB family. We have ectopically expressed various ErbB-receptors in 32D myeloid cells lacking endogenous ErbB-proteins, and in CHO cells, which express only ErbB-2. We show here that activation of ErbB-3/ErbB-2 heterodimeric receptors triggers PI3-kinase-dependent lamellipodia formation and spreading, while individual ErbB-receptor homodimers as well as ErbB3/ErbB-1 heterodimers are much less effective. CHO cells expressing ErB-3/ErbB-2 together with N-cadherin, an adhesion receptor, form epithelioid colonies. Neuregulin activates cell motility leading to transition of these colonies into ring-shaped multicellular arrays, similar to those induced by neuregulin in epithelial cells of different types. This process requires both PI3-kinase and MAP kinase kinase activity and depends on coordinated changes in the actin- and microtubule-based cytoskeleton. Transactivation of ErbB-2 is not sufficient for the activation of cell motility and ring formation, and the C-terminal domain of ErbB-3 bearing the docking sites for the p85 subunit of PI3-kinase is essential for these morphogenetic effects. Thus, ErbB-3 in conjunction with ErbB-2 mediates, via its C-terminal domain, cytoskeletal and adhesion alterations which activate cell spreading and motility, leading to the formation of complex structures such as multicellular rings.
Tyrphostin AG-1714 and several related molecules with the general structure of nitro-benzene malononitrile (BMN) disrupt microtubules in a large variety of cultured cells. This process can be inhibited by the stabilization of microtubules with taxol or by pretreatment of the cells with pervanadate, which inhibits tyrosine phosphatases and increases the overall levels of phosphotyrosine in cells. Unlike other microtubule-disrupting drugs such as nocodazole or colchicine, tyrphostin AG-1714 does not interfere with microtubule polymerization or stability in vitro, suggesting that the effect of this tyrphostin on microtubules is indirect. These results imply an involvement of protein tyrosine phosphorylation in the regulation of overall microtubule dynamics. Tyrphostins of AG-1714 type could thus be powerful tools for the identification of such microtubule regulatory pathways. (C) 2000 Wiley-Liss, Inc.
We show that within a living eukaryotic cell, mean square displacement of an engulfed microsphere shows enhanced diffusion scaling as t3/2 at short times, with a clear crossover to subdiffusive or ordinary diffusion scaling at longer times. The motion, observed nearby the nucleus, is due to interactions with microtubule-associated motor proteins rather than thermal Brownian motion. We propose that time-dependent friction introduced by the intracellular polymer networks leads to sub-ballistic motion, analogous to subdiffusion observed in passive networks of semiflexible biopolymers.
The lateral resolution attained by scanning force microscopy (SFM) on disordered membrane protein structures is often limited. We have imaged one such structure - the nuclear pore complex, on chemically fixed nuclear envelopes isolated from Xenopus oocytes, optimizing procedures to maximize lateral resolution. The images, obtained in air using acoustic tapping, reveal NPC-associated nucleoplasmic and cytoplasmic features with a resolution approaching that of field emission in-lens scanning electron microscopy. Some of the features have hitherto evaded detection by SFM. We also demonstrate the usefulness of phase imaging and show that, with scanning parameters set appropriately, the contrast is dominated by surface topography. The results obtained confirm and substantiate previous EM and SFM data and illustrate the applicability of chemical fixation and oscillating force microscopy to image large disordered membrane protein structures at high spatial resolution.
1999
Caldesmon is known to inhibit the ATPase activity of actomyosin in a Ca2+-calmodulin-regulated manner. Although a nonmuscle isoform of caldesmon is widely expressed, its functional role has not yet been elucidated. We studied the effects of nonmuscle caldesmon on cellular contractility, actin cytoskeletal organization, and the formation of focal adhesions in fibroblasts. Transient transfection of nonmuscle caldesmon prevents myosin II-dependent cell contractility and induces a decrease in the number and size of tyrosine-phosphorylated focal adhesions. Expression of caldesmon interferes with Rho A-V14-mediated formation of focal adhesions and stress fibers as well as with formation of focal adhesions induced by microtubule disruption. This inhibitory effect depends on the actin- and myosin-binding regions of caldesmon, because a truncated variant lacking both of these regions is inactive. The effects of caldesmon are blocked by the ionophore A23187, thapsigargin, and membrane depolarization, presumably because of the ability of Ca2+- calmodulin or Ca2+-S100 proteins to antagonize the inhibitory function of caldesmon on actomyosin contraction. These results indicate a role for nonmuscle caldesmon in the physiological regulation of actomyosin contractility and adhesion-dependent signaling and further demonstrate the involvement of contractility in focal adhesion formation.
X-linked lissencephaly is a severe brain malformation affecting males. Recently it has been demonstrated that the doublecortin gene is implicated in this disorder. In order to study the function of Doublecortin, we analyzed the protein upon transfection of COS cells. Doublecortin was found to bind to the microtubule cytoskeleton. In vitro assays (using biochemical methods, DIC microscopy and electron microscopy) demonstrate that Doublecortin binds microtubules directly, stabilizes them and causes bundling. In vivo assays also show that Doublecortin stabilizes microtubules and causes bundling. Doublecortin is a basic protein with an isoelectric point of 10, typical of microtubule-binding proteins. However, its sequence contains no known microtubule-binding domain(s). The results obtained in this study with Doublecortin and our previous work on another lissencephaly gene (LIS1) emphasize the central role of regulation of microtubule dynamics and stability during neuronal morphogenesis.
The dynamic shape of an isolated cell results from an interplay between protrusion, adhesion and contraction activities. These are most closely associated with the actin cytoskeleton. In many cell types, microtubules have been shown to be involved in the development of morphological polarity required for directional migration. This suggests a role for the microtubule system in regulating both the actin cytoskeleton and the formation of cell-substrate adhesions. The most prominent role of microtubules in the cell is in transport of vesicles and organelles. Disruption of the microtubules, on the other hand, leads to a significant increase in actomyosin-driven contractility. This suggests the involvement of microtubules in the control of forces produced by the cell against the points at which it contacts the substrate or extracellular matrix. We show that microtubule disruption also activates an adhesion-dependent signal transduction cascade and promotes the formation of focal adhesions and associated actin microfilament bundles. Using overexpression of caldesmon, a regulatory protein which inhibits the interaction between actin and myosin, we show that these effects of microtubule disruption depend on the activation of contractility. Formation of focal adhesions induced by the small GTPase Rho is also blocked by the caldesmon inhibition of contractility. We infer that there is a step in the adhesion-dependent signalling pathway that requires mechanical tension applied to cell-substrate contacts. Although the experimental data are based on complete microtubule disruption, we suggest that a similar effect occurs locally following depolymerization of individual microtubules. We speculate that the interplay among microtubule dynamics, actomyosin contractility and adhesion-dependent signalling can produce a mechanism for the determination of cell polarity and direction of migration. In essence, microtubule depolymerization would create a local increase in contractile force, testing and promoting the maturation of nearby cell-substrate adhesions.
1998
The dynamics of a polymer network are studied by direct view observation of the motion of a single point within a single polymer. Taking advantage of rather rigid biological microtubules as a case study, we expand the space and time scales of the system to those accessible by optical microscopy and standard video tools. Tracking is achieved by chemically attaching an optically resolved microsphere to a single point on the filament. We study the time dynamics of this point, without spatial averaging inherent in scattering methods. It is shown that the mean square displacement of the individual point is sensitive to local filament and network properties.
1997
Forming the structure of the human brain involves extensive neuronal migration, a process dependent on cytoskeletal rearrangement. Neuronal migration is believed to be disrupted in patients exhibiting the developmental brain malformation lissencephaly. Previous studies have shown that LIS1, the defective gene found in patients with lissencephaly, is a subunit of the platelet-activating factor acetylhydrolase. Our results indicated that LIS1 has an additional function. By interacting with tubulin it suppresses microtubule dynamics. We detected LIS1 interaction with microtubules by immunostaining and co-assembly. LIS1-tubulin interactions were assayed by co-immunoprecipitation and by surface plasmon resonance changes. Microtubule dynamic measurements in vitro indicated that physiological concentrations of LIS1 indeed reduced microtubule catastrophe events, thereby resulting in a net increase in the maximum length of the microtubules. Furthermore, the LIS1 protein concentration in the brain, measured by quantitative Western blots, is high and is approximately one-fifth of the concentration of brain tubulin. Our new findings show that LIS1 is a protein exhibiting several cellular interactions, and the interaction with the cytoskeleton may prove to be the mode of transducing a signal generated by platelet-activating factor. We postulate that the LIS1-cytoskeletal interaction is important for neuronal migration, a process that is defective in lissencephaly patients.
1994
Equilibrium crystal shapes are defined uniquely by the Wulff construction. The classical kinematic theory of crystal growth, due mainly to Frank and Chernov, provides a mathematically equivalent prescription for the limiting growth shape. To connect these two well studied states, we derive a local geometric growth model and examine the transient shape evolution of an equilibrium form containing both facets and rough regions. Our model is appropriate to the weakly driven growth of a two-dimensional single crystal with n-gonal symmetry and arbitrary closed initial shape. The model links disparate kinetic processes determined by the local interfacial structure to the isotropic growth drive, and reproduces the experimentally observed transition from a partly rounded equilibrium shape to a highly faceted crystal which we term 'global kinetic faceting'. We solve for the transient shape dynamics globally, and locally, and in the latter case present a curvature evolution equation valid for any local growth law. Both approaches show that, during kinetic faceting, rough orientations grow out of existence with decreasing curvature.