Publications
2023
-
(2023) European Physical Journal C. 83, 6, 542. Abstract[All authors]
A low-energy electronic recoil calibration of XENON1T, a dual-phase xenon time projection chamber, with an internal 37 Ar source was performed. This calibration source features a 35-day half-life and provides two mono-energetic lines at 2.82 keV and 0.27 keV. The photon yield and electron yield at 2.82 keV are measured to be (32.3±0.3) photons/keV and (40.6±0.5) electrons/keV, respectively, in agreement with other measurements and with NEST predictions. The electron yield at 0.27 keV is also measured and it is (68.0-3.7+6.3) electrons/keV. The 37 Ar calibration confirms that the detector is well-understood in the energy region close to the detection threshold, with the 2.82 keV line reconstructed at (2.83±0.02) keV, which further validates the model used to interpret the low-energy electronic recoil excess previously reported by XENON1T. The ability to efficiently remove argon with cryogenic distillation after the calibration proves that 37 Ar can be considered as a regular calibration source for multi-tonne xenon detectors.
2022
-
(2022) European Physical Journal C. 82, 11, 989. Abstract[All authors]
The XENON collaboration has published stringent limits on specific dark matter – nucleon recoil spectra from dark matter recoiling on the liquid xenon detector target. In this paper, we present an approximate likelihood for the XENON1T 1 t-year nuclear recoil search applicable to any nuclear recoil spectrum. Alongside this paper, we publish data and code to compute upper limits using the method we present. The approximate likelihood is constructed in bins of reconstructed energy, profiled along the signal expectation in each bin. This approach can be used to compute an approximate likelihood and therefore most statistical results for any nuclear recoil spectrum. Computing approximate results with this method is approximately three orders of magnitude faster than the likelihood used in the original publications of XENON1T, where limits were set for specific families of recoil spectra. Using this same method, we include toy Monte Carlo simulation-derived binwise likelihoods for the upcoming XENONnT experiment that can similarly be used to assess the sensitivity to arbitrary nuclear recoil signatures in its eventual 20 t-year exposure.
-
(2022) Physical review letters. 129, 16, 161805. Abstract[All authors]
We report on a blinded analysis of low-energy electronic recoil data from the first science run of the XENONnT dark matter experiment. Novel subsystems and the increased 5.9 ton liquid xenon target reduced the background in the (1, 30) keV search region to (15.8±1.3) events/(ton×year×keV), the lowest ever achieved in a dark matter detector and ∼5 times lower than in XENON1T. With an exposure of 1.16 ton-years, we observe no excess above background and set stringent new limits on solar axions, an enhanced neutrino magnetic moment, and bosonic dark matter.
-
(2022) PHYSICAL REVIEW C. 106, 2, 024328. Abstract[All authors]
We present results on the search for two-neutrino double-electron capture (2νECEC) of 124Xe and neutrinoless double-β decay (0νββ) of 136Xe in XENON1T. We consider captures from the K shell up to the N shell in the 2νECEC signal model and measure a total half-life of T1/22νECEC=(1.1±0.2stat±0.1sys)×1022yr with a 0.87kgyr isotope exposure. The statistical significance of the signal is 7.0σ. We use XENON1T data with 36.16kgyr of 136Xe exposure to search for 0νββ. We find no evidence of a signal and set a lower limit on the half-life of T1/20νββ>1.2×1024 yr at 90% CL. This is the best result from a dark matter detector without an enriched target to date. We also report projections on the sensitivity of XENONnT to 0νββ. Assuming a 275 kg yr 136Xe exposure, the expected sensitivity is T1/20νββ>2.1×1025 yr at 90% CL, corresponding to an effective Majorana mass range of ⟨mββ⟩
-
(2022) The European physical journal. C, Particles and fields. 82, 7, 599 (2022). Abstract[All authors]
The selection of low-radioactive construction materials is of the utmost importance for rare-event searches and thus critical to the XENONnT experiment. Results of an extensive radioassay program are reported, in which material samples have been screened with gamma-ray spectroscopy, mass spectrometry, and
222
Rn emanation measurements. Furthermore, the cleanliness procedures applied to remove or mitigate surface contamination of detector materials are described. Screening results, used as inputs for a XENONnT Monte Carlo simulation, predict a reduction of materials background (
∼
17%) with respect to its predecessor XENON1T. Through radon emanation measurements, the expected
222
Rn activity concentration in XENONnT is determined to be 4.2 (
-
0.7
+
0.5
)
μ
Bq/kg, a factor three lower with respect to XENON1T. This radon concentration will be further suppressed by means of the novel radon distillation system. -
(2022) Journal of Instrumentation. 17, 7, P07018. Abstract[All authors]
Understanding propagation of scintillation light is critical for maximizing the discovery potential of next-generation liquid xenon detectors that use dual-phase time projection chamber technology. This work describes a detailed optical simulation of the DARWIN detector implemented using Chroma, a GPU-based photon tracking framework. To evaluate the framework and to explore ways of maximizing efficiency and minimizing the time of light collection, we simulate several variations of the conventional detector design. Results of these selected studies are presented. More generally, we conclude that the approach used in this work allows one to investigate alternative designs faster and in more detail than using conventional Geant4 optical simulations, making it an attractive tool to guide the development of the ultimate liquid xenon observatory.
-
(2022) Physical Review D. 106, 2, 022001. Abstract[All authors]
Delayed single- and few-electron emissions plague dual-phase time projection chambers, limiting their potential to search for light-mass dark matter. This paper examines the origins of these events in the XENON1T experiment. Characterization of the intensity of delayed electron backgrounds shows that the resulting emissions are correlated, in time and position, with high-energy events and can effectively be vetoed. In this work we extend previous S2-only analyses down to a single electron. From this analysis, after removing the correlated backgrounds, we observe rates
2021
-
(2021) Physical Review Letters. 126, 9, 091301. Abstract
We report on a search for nuclear recoil signals from solar 8B neutrinos elastically scattering off xenon nuclei in XENON1T data, lowering the energy threshold from 2.6 to 1.6 keV. We develop a variety of novel techniques to limit the resulting increase in backgrounds near the threshold. No significant 8B neutrinolike excess is found in an exposure of 0.6 t × y. For the first time, we use the nondetection of solar neutrinos to constrain the light yield from 1–2 keV nuclear recoils in liquid xenon, as well as nonstandard neutrino-quark interactions. Finally, we improve upon world-leading constraints on dark matter-nucleus interactions for dark matter masses between 3 and 11 GeV c−2 by as much as an order of magnitude.
-
(2021) Journal of Instrumentation. 16, 8, P08033. Abstract[All authors]
Photomultiplier tubes (PMTs) are often used in low-background particle physics experiments, which rely on an excellent response to single-photon signals and stable long-term operation. In particular, the Hamamatsu R11410 model is the light sensor of choice for liquid xenon dark matter experiments, including XENONnT. The same PMT model was also used for the predecessor, XENON1T, where issues affecting its long-term operation were observed. Here, we report on an improved PMT testing procedure which ensures optimal performance in XENONnT. Using both new and upgraded facilities, we tested 368 new PMTs in a cryogenic xenon environment. We developed new tests targeted at the detection of light emission and the degradation of the PMT vacuum through small leaks, which can lead to spurious signals known as afterpulses, both of which were observed in XENON1T. We exclude the use of 26 of the 368 tested PMTs and categorise the remainder according to their performance. Given that we have improved the testing procedure, yet we rejected fewer PMTs, we expect significantly better PMT performance in XENONnT.
2020
-
(2020) European Physical Journal C. 80, 12, 1133. Abstract[All authors]
We detail the sensitivity of the proposed liquid xenon DARWIN observatory to solar neutrinos via elastic electron scattering. We find that DARWIN will have the potential to measure the fluxes of five solar neutrino components: pp, 7Be, 13N, 15O and pep. The precision of the 13N, 15O and pep components is hindered by the double-beta decay of 136Xe and, thus, would benefit from a depleted target. A high-statistics observation of pp neutrinos would allow us to infer the values of the electroweak mixing angle, sin 2θw, and the electron-type neutrino survival probability, Pee, in the electron recoil energy region from a few keV up to 200 keV for the first time, with relative precision of 5% and 4%, respectively, with 10 live years of data and a 30 tonne fiducial volume. An observation of pp and 7Be neutrinos would constrain the neutrino-inferred solar luminosity down to 0.2%. A combination of all flux measurements would distinguish between the high- (GS98) and low-metallicity (AGS09) solar models with 2.1–2.5σ significance, independent of external measurements from other experiments or a measurement of 8B neutrinos through coherent elastic neutrino-nucleus scattering in DARWIN. Finally, we demonstrate that with a depleted target DARWIN may be sensitive to the neutrino capture process of 131Xe.
-
(2020) Journal of Cosmology and Astroparticle Physics. 2020, 11, 031. Abstract
XENONnT is a dark matter direct detection experiment, utilizing 5.9 t of instrumented liquid xenon, located at the INFN Laboratori Nazionali del Gran Sasso. In this work, we predict the experimental background and project the sensitivity of XENONnT to the detection of weakly interacting massive particles (WIMPs). The expected average differential background rate in the energy region of interest, corresponding to (1, 13) keV and (4, 50) keV for electronic and nuclear recoils, amounts to 12.3 ± 0.6 (keV t y)-1 and (2.2± 0.5)× 10-3 (keV t y)-1, respectively, in a 4 t fiducial mass. We compute unified confidence intervals using the profile construction method, in order to ensure proper coverage. With the exposure goal of 20 t y, the expected sensitivity to spin-independent WIMP-nucleon interactions reaches a cross-section of 1.4×10-48 cm2 for a 50 GeV/c2 mass WIMP at 90% confidence level, more than one order of magnitude beyond the current best limit, set by XENON1T . In addition, we show that for a 50 GeV/c2 WIMP with cross-sections above 2.6×10-48 cm2 (5.0×10-48 cm2) the median XENONnT discovery significance exceeds 3σ (5σ). The expected sensitivity to the spin-dependent WIMP coupling to neutrons (protons) reaches 2.2×10-43 cm2 (6.0×10-42 cm2).
-
(2020) Physical Review D. 102, 7, 072004. Abstract
We report results from searches for new physics with low-energy electronic recoil data recorded with the XENON1T detector. With an exposure of 0.65 tonne-years and an unprecedentedly low background rate of 76±2stat events/(tonne×year×keV) between 1 and 30 keV, the data enable one of the most sensitive searches for solar axions, an enhanced neutrino magnetic moment using solar neutrinos, and bosonic dark matter. An excess over known backgrounds is observed at low energies and most prominent between 2 and 3 keV. The solar axion model has a 3.4σ significance, and a three-dimensional 90% confidence surface is reported for axion couplings to electrons, photons, and nucleons. This surface is inscribed in the cuboid defined by gae
-
(2020) European Physical Journal C. 80, 9, 808. Abstract
The DARWIN observatory is a proposed next-generation experiment to search for particle dark matter and for the neutrinoless double beta decay of 136Xe. Out of its 50 t total natural xenon inventory, 40 t will be the active target of a time projection chamber which thus contains about 3.6 t of 136Xe. Here, we show that its projected half-life sensitivity is 2.4×1027year, using a fiducial volume of 5 t of natural xenon and 10 year of operation with a background rate of less than 0.2 events/(t · year) in the energy region of interest. This sensitivity is based on a detailed Monte Carlo simulation study of the background and event topologies in the large, homogeneous target. DARWIN will be comparable in its science reach to dedicated double beta decay experiments using xenon enriched in 136Xe.
-
(2020) European Physical Journal C. 80, 8, 785. Abstract
Xenon dual-phase time projection chambers designed to search for weakly interacting massive particles have so far shown a relative energy resolutionwhich degrades with energy above similar to 200 keV due to the saturation effects. This has limited their sensitivity in the search for rare events like the neutrinoless double-beta decay of Xe-136 at its Q value, Q(beta beta) similar or equal to 2.46 MeV. For the XENON1T dual-phase time projection chamber, we demonstrate that the relative energy resolution at 1 sigma/mu is as low as (0.80 +/- 0.02)% in its one-ton fiducial mass, and for single-site interactions at Q(beta beta). We also present a new signal correction method to rectify the saturation effects of the signal readout system, resulting in more accurate position reconstruction and indirectly improving the energy resolution. The very good result achieved in XENON1T opens up new windows for the xenon dual-phase dark matter detectors to simultaneously search for other rare events.
-
(2020) Journal of Instrumentation. 15, 6, 06001. Abstract
We present a detector apparatus, DIREXENO (DIREctional XENOn), designed to measure the spatial and temporal properties of scintillation in liquid xenon to very high accuracy. The properties of scintillation are of primary importance for dark matter and neutrinoless double beta decay experiments; however the complicated microphysics involved limits theoretical predictions. We will explore the possibility that scintillation emission exhibits spatial correlations such as super-radiance which manifests in temporal and spatial structure, depending on the interaction type. Such properties of scintillation light may open a new window for background rejection as well as directionality measurements. We present the apparatus' technical design and the concepts driving it. We demonstrate that for an energy deposition of similar to 2.5 keV (similar to 7.5 keV) electron (nuclear) recoil the detector is sensitive to an anisotropy fraction of as little as similar to 20% of the total photons emitted over a solid angle of similar to 0.85 steradian or less. We show results from commissioning runs in which the detector operated with 17 PMTs for over 44 days in stable conditions. The time resolution for individual photons in different PMTs was measured to be less than or similar to 1.4 ns full-width at half-maximum
2019
-
Search for Light Dark Matter Interactions Enhanced by the Migdal Effect or Bremsstrahlung in XENON1T(2019) Physical Review Letters. 123, 24, 241803. Abstract
Direct dark matter detection experiments based on a liquid xenon target are leading the search for dark matter particles with masses above similar to 5 GeV/c(2), but have limited sensitivity to lighter masses because of the small momentum transfer in dark matter-nucleus elastic scattering. However, there is an irreducible contribution from inelastic processes accompanying the elastic scattering, which leads to the excitation and ionization of the recoiling atom (the Migdal effect) or the emission of a bremsstrahlung photon. In this Letter, we report on a probe of low-mass dark matter with masses down to about 85 MeV/c(2) by looking for electronic recoils induced by the Migdal effect and bremsstrahlung using data from the XENON1T experiment. Besides the approach of detecting both scintillation and ionization signals, we exploit an approach that uses ionization signals only, which allows for a lower detection threshold. This analysis significantly enhances the sensitivity of XENON1T to light dark matter previously beyond its reach.
-
(2019) Physical Review Letters. 123, 25, 251801. Abstract
We report constraints on light dark matter (DM) models using ionization signals in the XENON1T experiment. We mitigate backgrounds with strong event selections, rather than requiring a scintillation signal, leaving an effective exposure of (22 +/- 3) tonne day. Above similar to 0.4 keV(ee), we observe 30 MeV/c(2), and absorption of dark photons and axionlike particles for m(chi) within 0.186-1 keV/c(2).
-
(2019) Physical Review D. 100, 9, 095021. Abstract
We consider liquid xenon dark matter detectors for searching a light scalar particle produced in the solar core, specifically one that couples to electrons. Through its interaction with the electrons, the scalar particle can be produced in the Sun, mainly through Bremsstrahlung process, and subsequently it is absorbed by liquid xenon atoms, leaving prompt scintillation light and ionization events. Using the latest experimental results of XENON1T and Large Underground Xenon, we place bounds on the coupling between electrons and a light scalar as gφee
-
(2019) Journal of Instrumentation. 14, 07016. Abstract
The XENON1T liquid xenon time projection chamber is the most sensitive detector built to date for the measurement of direct interactions of weakly interacting massive particles with normal matter. The data acquisition system (DAQ) is constructed from commercial, open source, and custom components to digitize signals from the detector and store them for later analysis. The system achieves an extremely low signal threshold by triggering each channel independently, achieving a single photoelectron acceptance of (93 +/- 3)%, and deferring the global trigger to a later, software stage. The event identification is based on MongoDB database queries and has over 98% efficiency at recognizing interactions at the analysis threshold in the center of the target. A readout bandwidth over 300 MB/s is reached in calibration modes and is further expandable via parallelization. This DAQ system was successfully used during three years of operation of XENON1T.
-
(2019) Physical Review D. 99, 11, 112009. Abstract[All authors]
The XENON1T experiment searches for dark matter particles through their scattering off xenon atoms in a 2 metric ton liquid xenon target. The detector is a dual-phase time projection chamber, which measures simultaneously the scintillation and ionization signals produced by interactions in target volume, to reconstruct energy and position, as well as the type of the interaction. The background rate in the central volume of XENON1T detector is the lowest achieved so far with a liquid xenon-based direct detection experiment. In this work we describe the response model of the detector, the background and signal models, and the statistical inference procedures used in the dark matter searches with a 1 metric ton x year exposure of XENON1T data, that leads to the best limit to date on WIMP-nucleon spin-independent elastic scatter cross section for WIMP masses above 6 GeV/c(2).
-
(2019) Nature. 568, 7753, p. 532-535 Abstract[All authors]
Two-neutrino double electron capture (2 nu ECEC) is a second-order weak-interaction process with a predicted half-life that surpasses the age of the Universe by many orders of magnitude(1). Until now, indications of 2 nu ECEC decays have only been seen for two isotopes(2-5), Kr-78 and Ba-130, and instruments with very low background levels are needed to detect them directly with high statistical significance(6,7). The 2 nu ECEC half-life is an important observable for nuclear structure models(8-14) and its measurement represents a meaningful step in the search for neutrinoless double electron capture-the detection of which would establish the Majorana nature of the neutrino and would give access to the absolute neutrino mass(15-17). Here we report the direct observation of 2 nu ECEC in Xe-124 with the XENON1T dark-matter detector. The significance of the signal is 4.4 standard deviations and the corresponding half-life of 1.8 x 10(22) years (statistical uncertainty, 0.5 x 10(22) years; systematic uncertainty, 0.1 x 10(22) years) is the longest measured directly so far. This study demonstrates that the low background and large target mass of xenon-based dark-matter detectors make them well suited for measuring rare processes and highlights the broad physics reach of larger next-generation experiments(18-20).
-
(2019) Physical Review Letters. 122, 7, 071301. Abstract[All authors]
We present first results on the scalar coupling of weakly interacting massive particles (WIMPs) to pions from 1 t yr of exposure with the XENON1T experiment. This interaction is generated when the WIMP couples to a virtual pion exchanged between the nucleons in a nucleus. In contrast to most nonrelativistic operators, these pion-exchange currents can be coherently enhanced by the total number of nucleons and therefore may dominate in scenarios where spin-independent WIMP-nucleon interactions are suppressed. Moreover, for natural values of the couplings, they dominate over the spin-dependent channel due to their coherence in the nucleus. Using the signal model of this new WIMP-pion channel, no significant excess is found, leading to an upper limit cross section of 6.4 x 10(-46) cm(2) (90% confidence level) at 30 GeV/c(2) WIMP mass.
2018
-
(2018) Physical Review Letters. 121, 11, 111302. Abstract[All authors]
We report on a search for weakly interacting massive particles (WIMPs) using 278.8 days of data collected with the XENON1T experiment at LNGS. XENON1T utilizes a liquid xenon time projection chamber with a fiducial mass of (1.30 +/- 0.01) ton, resulting in a 1.0 ton yr exposure. The energy region of interest, [1.4; 10.6] keV(ee) ([4.9; 40.9] keV(nr)), exhibits an ultralow electron recoil background rate of [82(-3)(+5) (syst) +/- 3 stat)] events/ton yr keV(ee)). No significant excess over background is found, and a profile likelihood analysis parametrized in spatial and energy dimensions excludes new parameter space for the WIMP-nucleon spin-independent elastic scatter cross section for WIMP masses above 6 GeV/c(2), with a minimum of 4.1 x 10(-47) cm(2) at 30 GeV/c(2) and a 90% confidence level.
-
(2018) Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics. 782, p. 242-250 Abstract
We propose a new low-threshold direct-detection concept for dark matter and for coherent nuclear scattering of solar neutrinos, based on the dissociation of atoms and subsequent creation of color center type defects within a lattice. The novelty in our approach lies in its ability to detect single defects in a macroscopic bulk of material. This class of experiments features ultra-low energy thresholds which allows for the probing of dark matter as light as O(10) MeV through nuclear scattering. Another feature of defect creation in crystals is directional information, which presents as a spectacular signal and a handle on background reduction in the form of daily modulation of the interaction rate. We discuss the envisioned setup and detection technique, as well as background reduction. We further calculate the expected rates for dark matter and solar neutrinos in two example crystals for which available data exists, demonstrating the prospective sensitivity of such experiments. (c) 2018 The Authors. Published by Elsevier B.V.
-
(2018) Physical Review D. 97, 9, 092007. Abstract
We report on the response of liquid xenon to low energy electronic recoils below 15 keV from beta decays of tritium at drift fields of 92 V/cm, 154 V/cm and 366 V/cm using the XENON100 detector. A data-to-simulation fitting method based on Markov Chain Monte Carlo is used to extract the photon yields and recombination fluctuations from the experimental data. The photon yields measured at the two lower fields are in agreement with those from literature; additional measurements at a higher field of 366 V/cm are presented. The electronic and nuclear recoil discrimination as well as its dependence on the drift field and photon detection efficiency are investigated at these low energies. The results provide new measurements in the energy region of interest for dark matter searches using liquid xenon.
2017
-
(2017) European Physical Journal C. 77, 12, 881. Abstract[All authors]
The XENON1T experiment at the Laboratori Nazionali del Gran Sasso (LNGS) is the first WIMP dark matter detector operating with a liquid xenon target mass above the ton-scale. Out of its 3.2 t liquid xenon inventory, 2.0 t constitute the active target of the dual-phase time projection chamber. The scintillation and ionization signals from particle interactions are detected with low-background photomultipliers. This article describes the XENON1T instrument and its subsystems as well as strategies to achieve an unprecedented low background level. First results on the detector response and the performance of the subsystems are also presented.
-
(2017) Journal of Cosmology and Astroparticle Physics. 10, 039. Abstract
We present the first search for dark matter-induced delayed coincidence signals in a dual-phase xenon time projection chamber, using the 224.6 live days of the XENON100 science run II. This very distinct signature is predicted in the framework of magnetic inelastic dark matter which has been proposed to reconcile the modulation signal reported by the DAMA/LIBRA collaboration with the null results from other direct detection experiments. No candidate event has been found in the region of interest and upper limits on the WIMP's magnetic dipole moment are derived. The scenarios proposed to explain the DAMA/LIBRA modulation signal by magnetic inelastic dark matter interactions of WIMPs with masses of 58.0 GeV/c(2) and 122.7 GeV/c(2) are excluded at 3.3 sigma and 9.3 sigma, respectively.
[All authors] -
(2017) Physical Review Letters. 119, 18, 181301. Abstract[All authors]
We report the first dark matter search results from XENON1T, a similar to 2000-kg-target-mass dual-phase (liquid-gas) xenon time projection chamber in operation at the Laboratori Nazionali del Gran Sasso in Italy and the first ton-scale detector of this kind. The blinded search used 34.2 live days of data acquired between November 2016 and January 2017. Inside the (1042 +/- 12)-kg fiducial mass and in the [5, 40] keV(nr) energy range of interest for weakly interacting massive particle (WIMP) dark matter searches, the electronic recoil background was (1.93 +/- 0.25) x 10(-4) events/(kg x day x keV(ee)), the lowest ever achieved in such a dark matter detector. A profile likelihood analysis shows that the data are consistent with the background-only hypothesis. We derive the most stringent exclusion limits on the spin-independent WIMP-nucleon interaction cross section for WIMP masses above 10 GeV/c(2), with a minimum of 7.7 x 10(-47) cm(2) for 35-GeV/c(2) WIMPs at 90% C.L.
-
(2017) Physical Review D. 96, 4, 042004. Abstract
We report on weakly interacting massive particles (WIMPs) search results in the XENON100 detector using a nonrelativistic effective field theory approach. The data from science run II (34 kg x 224.6 live days) were reanalyzed, with an increased recoil energy interval compared to previous analyses, ranging from (6.6-240) keV(nr). The data are found to be compatible with the background-only hypothesis. We present 90% confidence level exclusion limits on the coupling constants of WIMP-nucleon effective operators using a binned profile likelihood method. We also consider the case of inelastic WIMP scattering, where incident WIMPs may up-scatter to a higher mass state, and set exclusion limits on this model as well.
[All authors] -
(2017) Physical Review D. 96, 2, 22008. Abstract
We present the first constraints on the spin-dependent, inelastic scattering cross section of weakly interacting massive particles (WIMPs) on nucleons from XENON100 data with an exposure of 7.64 x 10(3) kg . days. XENON100 is a dual-phase xenon time projection chamber with 62 kg of active mass, operated at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy and designed to search for nuclear recoils from WIMP-nucleus interactions. Here we explore inelastic scattering, where a transition to a low-lying excited nuclear state of Xe-129 is induced. The experimental signature is a nuclear recoil observed together with the prompt deexcitation photon. We see no evidence for such inelastic WIMP-Xe-129 interactions. A profile likelihood analysis allows us to set a 90% C.L. upper limit on the inelastic, spin-dependent WIMP-nucleon cross section of 3.3 x 10(-38) cm(2) at 100 GeV/c(2). This is the most constraining result to date, and sets the pathway for an analysis of this interaction channel in upcoming, larger dual-phase xenon detectors.
[All authors] -
(2017) Journal of Cosmology and Astroparticle Physics. 5, 013. Abstract
We propose a safeguard procedure for statistical inference that provides universal protection against mismodeling of the background. The method quantifies and incorporates the signal-like residuals of the background model into the likelihood function, using information available in a calibration dataset. This prevents possible false discovery claims that may arise through unknown mismodeling, and corrects the bias in limit setting created by overestimated or underestimated background. We demonstrate how the method removes the bias created by an incomplete background model using three realistic case studies.
-
(2017) European Physical Journal C. 77, 5, 275. Abstract
The XENON1T experiment aims for the direct detection of dark matter in a detector filled with 3.3 tons of liquid xenon. In order to achieve the desired sensitivity, the background induced by radioactive decays inside the detector has to be sufficiently low. One major contributor is the beta-emitter Kr-85 which is present in the xenon. For XENON1T a concentration of natural krypton in xenon Kr-nat/Xe
-
(2017) European Physical Journal C. 77, 6, 358. Abstract
We describe the purification of xenon from traces of the radioactive noble gas radon using a cryogenic distillation column. The distillation column was integrated into the gas purification loop of the XENON100 detector for online radon removal. This enabled us to significantly reduce the constant Rn-222 background originating from radon emanation. After inserting an auxiliary 222Rn emanation source in the gas loop, we determined a radon reduction factor of R > 27 (95% C.L.) for the distillation column by monitoring the Rn-222 activity concentration inside the XENON100 detector.
[All authors] -
(2017) Physical Review D. 95, 7, 072008. Abstract
A Rn-220 source is deployed on the XENON100 dark matter detector in order to address the challenges in calibration of tonne-scale liquid noble element detectors. We show that the Pb-212 beta emission can be used for low-energy electronic recoil calibration in searches for dark matter. The isotope spreads throughout the entire active region of the detector, and its activity naturally decays below background level within a week after the source is closed. We find no increase in the activity of the troublesome Rn-222 background after calibration. Alpha emitters are also distributed throughout the detector and facilitate calibration of its response to Rn-222. Using the delayed coincidence of Rn-220-Po-216, we map for the first time the convective motion of particles in the XENON100 detector. Additionally, we make a competitive measurement of the half-life of Po-212, t(1/2) = (293.9 +/- (1.0)(stat) +/- (0.6)(sys)) ns.
-
(2017) Physical Review Letters. 118, 10, 101101. Abstract[All authors]
We report on a search for electronic recoil event rate modulation signatures in the XENON100 data accumulated over a period of 4 yr, from January 2010 to January 2014. A profile likelihood method, which incorporates the stability of the XENON100 detector and the known electronic recoil background model, is used to quantify the significance of periodicity in the time distribution of events. There is a weak modulation signature at a period of 431(-14)(+16) day in the low energy region of (2.0-5.8) keV in the single scatter event sample, with a global significance of 1.9 sigma; however, no other more significant modulation is observed. The significance of an annual modulation signature drops from 2.8 sigma, from a previous analysis of a subset of this data, to 1.8 sigma with all data combined. Single scatter events in the low energy region are thus used to exclude the DAMA/LIBRA annual modulation as being due to dark matter electron interactions via axial vector coupling at 5.7 sigma.
-
(2017) Physical Review C. 95, 2, 024605. Abstract
Two-neutrino double electron capture is a rare nuclear decay where two electrons are simultaneously captured from the atomic shell. For Xe-124 this process has not yet been observed and its detection would provide a new reference for nuclear matrix element calculations. We have conducted a search for two-neutrino double electron capture from the K shell of 124Xe using 7636 kg d of data from the XENON100 dark matter detector. Using a Bayesian analysis we observed no significant excess above background, leading to a lower 90% credibility limit on the half-life T-1/2 > 6.5 x 10(20) yr. We have also evaluated the sensitivity of the XENON1T experiment, which is currently being commissioned, and found a sensitivity of T-1/2 > 6.1 x 10(22) yr after an exposure of 2 t yr.
2016
-
(2016) Physical Review D. 94, 9, 092001. Abstract
We perform a low-mass dark matter search using an exposure of 30 kg x yr with the XENON100 detector. By dropping the requirement of a scintillation signal and using only the ionization signal to determine the interaction energy, we lowered the energy threshold for detection to 0.7 keV for nuclear recoils. No dark matter detection can be claimed because a complete background model cannot be constructed without a primary scintillation signal. Instead, we compute an upper limit on the WIMP-nucleon scattering cross section under the assumption that every event passing our selection criteria could be a signal event. Using an energy interval from 0.7 keV to 9.1 keV, we derive a limit on the spin-independent WIMP-nucleon cross section that excludes WIMPs with a mass of 6 GeV/c(2) above 1.4 x 10(-41) cm(2) at 90% confidence level.
-
(2016) Journal of Cosmology and Astroparticle Physics. 2016, 11, 17. Abstract
DARk matter WImp search with liquid xenoN (DARWIN) will be an experiment for the direct detection of dark matter using a multi-ton liquid xenon time projection chamber at its core. Its primary goal will be to explore the experimentally accessible parameter space for Weakly Interacting Massive Particles (WIMPs) in a wide mass-range, until neutrino interactions with the target become an irreducible background. The prompt scintillation light and the charge signals induced by particle interactions in the xenon will be observed by VUV sensitive, ultra-low background photosensors. Besides its excellent sensitivity to WIMPs above a mass of 5 GeV/c2, such a detector with its large mass, low-energy threshold and ultra-low background level will also be sensitive to other rare interactions. It will search for solar axions, galactic axion-like particles and the neutrinoless double-beta decay of 136Xe, as well as measure the low-energy solar neutrino flux with
-
(2016) Journal of Cosmology and Astroparticle Physics. 2016, 4, 27. Abstract[All authors]
The XENON1T experiment is currently in the commissioning phase at the Laboratori Nazionali del Gran Sasso, Italy. In this article we study the experiment's expected sensitivity to the spin-independent WIMP-nucleon interaction cross section, based on Monte Carlo predictions of the electronic and nuclear recoil backgrounds.The total electronic recoil background in 1 tonne fiducial volume and (1, 12) keV electronic recoil equivalent energy region, before applying any selection to discriminate between electronic and nuclear recoils, is (1.80 ± 0.15) centerdot 10−4 (kgcenterdotdaycenterdotkeV)−1, mainly due to the decay of 222Rn daughters inside the xenon target. The nuclear recoil background in the corresponding nuclear recoil equivalent energy region (4, 50) keV, is composed of (0.6 ± 0.1) (tcenterdoty)−1 from radiogenic neutrons, (1.8 ± 0.3) centerdot 10−2 (tcenterdoty)−1 from coherent scattering of neutrinos, and less than 0.01 (tcenterdoty)−1 from muon-induced neutrons. The sensitivity of XENON1T is calculated with the Profile Likelihood Ratio method, after converting the deposited energy of electronic and nuclear recoils into the scintillation and ionization signals seen in the detector. We take into account the systematic uncertainties on the photon and electron emission model, and on the estimation of the backgrounds, treated as nuisance parameters. The main contribution comes from the relative scintillation efficiency Script Leff, which affects both the signal from WIMPs and the nuclear recoil backgrounds. After a 2 y measurement in 1 t fiducial volume, the sensitivity reaches a minimum cross section of 1.6 centerdot 10−47 cm2 at mχ = 50 GeV/c2.
2015
-
(2015) European Physical Journal C. 75, 11, 546. Abstract
The low-background, VUV-sensitive 3-inch diameter photomultiplier tube R11410 has been developed by Hamamatsu for dark matter direct detection experiments using liquid xenon as the target material. We present the results from the joint effort between the XENON collaboration and the Hamamatsu company to produce a highly radio-pure photosensor (version R11410-21) for the XENON1T dark matter experiment. After introducing the photosensor and its components, we show the methods and results of the radioactive contamination measurements of the individual materials employed in the photomultiplier production. We then discuss the adopted strategies to reduce the radioactivity of the various PMT versions. Finally, we detail the results from screening 286 tubes with ultra-low background germanium detectors, as well as their implications for the expected electronic and nuclear recoil background of the XENON1T experiment.
[All authors] -
(2015) Physical Review Letters. 115, 9, 091302. Abstract
We have searched for periodic variations of the electronic recoil event rate in the (2–6) keV energy range recorded between February 2011 and March 2012 with the XENON100 detector, adding up to 224.6 live days in total. Following a detailed study to establish the stability of the detector and its background contributions during this run, we performed an unbinned profile likelihood analysis to identify any periodicity up to 500 days. We find a global significance of less than 1σ for all periods, suggesting no statistically significant modulation in the data. While the local significance for an annual modulation is 2.8σ, the analysis of a multiple-scatter control sample and the phase of the modulation disfavor a dark matter interpretation. The DAMA/LIBRA annual modulation interpreted as a dark matter signature with axial-vector coupling of weakly interacting massive particles to electrons is excluded at 4.8σ.
2014
-
(2014) Journal of Instrumentation. 9, Abstract[All authors]
XENON is a dark matter direct detection project, consisting of a time projection chamber (TPC) filled with liquid xenon as detection medium. The construction of the next generation detector, XENON1T, is presently taking place at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy. It aims at a sensitivity to spin-independent cross sections of 2.10(47) cm(2) for WIMP masses around 50 GeV/c(2), which requires a background reduction by two orders of magnitude compared to XENON100, the current generation detector. An active system that is able to tag muons and muon-induced backgrounds is critical for this goal. A water Cherenkov detector of similar to 10m height and diameter has been therefore developed, equipped with 8 inch photomultipliers and cladded by a reflective foil. We present the design and optimization study for this detector, which has been carried out with a series of Monte Carlo simulations. The muon veto will reach very high detection efficiencies for muons (> 99.5%) and showers of secondary particles from muon interactions in the rock (> 70%). Similar efficiencies will be obtained for XENONnT, the upgrade of XENON1T, which will later improve the WIMP sensitivity by another order of magnitude. With the Cherenkov water shield studied here, the background from muon-induced neutrons in XENON1T is negligible.
-
(2014) Physical Review D. 90, 6, 62009. Abstract[All authors]
We present the first results of searches for axions and axionlike particles with the XENON100 experiment. The axion-electron coupling constant, g(Ae), has been probed by exploiting the axioelectric effect in liquid xenon. A profile likelihood analysis of 224.6 live days x 34-kg exposure has shown no evidence for a signal. By rejecting g(Ae) larger than 7.7 x 10(-12) (90% C. L.) in the solar axion search, we set the best limit to date on this coupling. In the frame of the DFSZ and KSVZ models, we exclude QCD axions heavier than 0.3 and 80 eV/c(2), respectively. For axionlike particles, under the assumption that they constitute the whole abundance of dark matter in our galaxy, we constrain gAe to be lower than 1 x 10(-12) (90% C.L.) for masses between 5 and 10 keV/c(2).
-
(2014) Journal Of Physics G-Nuclear And Particle Physics. 41, 3, 35201. Abstract[All authors]
The XENON100 dark matter experiment uses liquid xenon in a time projection chamber (TPC) to measure xenon nuclear recoils resulting from the scattering of dark matter weakly interacting massive particles (WIMPs). In this paper, we report the observation of single-electron charge signals which are not related to WIMP interactions. These signals, which show the excellent sensitivity of the detector to small charge signals, are explained as being due to the photoionization of impurities in the liquid xenon and of the metal components inside the TPC. They are used as a unique calibration source to characterize the detector. We explain how we can infer crucial parameters for the XENON100 experiment: the secondary-scintillation gain, the extraction yield from the liquid to the gas phase and the electron drift velocity.
-
(2014) Astroparticle Physics. 54, p. 11-24 Abstract
The XENON100 experiment, situated in the Laboratori Nazionali del Gran Sasso, aims at the direct detection of dark matter in the form of weakly interacting massive particles (WIMPs), based on their interactions with xenon nuclei in an ultra low background dual-phase time projection chamber. This paper describes the general methods developed for the analysis of the XENON 100 data. These methods have been used in the 100.9 and 224.6 live days science runs from which results on spin-independent elastic, spin-dependent elastic and inelastic WIMP-nucleon cross-sections have already been reported. (C) 2013 Elsevier B.V. All rights reserved.
[All authors]
2013
-
(2013) Journal Of Physics G-Nuclear And Particle Physics. 40, 11, Abstract[All authors]
TheXENON100 experiment, installed underground at the LaboratoriNazionali del Gran Sasso, aims to directly detect dark matter in the form of weakly interacting massive particles (WIMPs) via their elastic scattering off xenon nuclei. This paper presents a study on the nuclear recoil background of the experiment, taking into account neutron backgrounds from (alpha, n) reactions and spontaneous fission due to natural radioactivity in the detector and shield materials, as well as muon-induced neutrons. Based on MonteCarlo simulations and using measured radioactive contaminations of all detector components, we predict the nuclear recoil backgrounds for the WIMP search results published by theXENON100 experiment in 2011 and 2012, 0.11(-0.04)(+0.08) events and 0.17(-0.07)(+0.12) events, respectively, and conclude that they do not limit the sensitivity of the experiment.
-
(2013) Physical Review D. 88, 1, Abstract
Results from the nuclear recoil calibration of the XENON100 dark matter detector installed underground at the Laboratori Nazionali del Gran Sasso, Italy are presented. Data from measurements with an external AmB(241)e neutron source are compared with a detailed Monte Carlo simulation which is used to extract the energy-dependent charge-yield Q(y) and relative scintillation efficiency L-eff. A very good level of absolute spectral matching is achieved in both observable signal channels-scintillation S1 and ionization S2-along with agreement in the two-dimensional particle discrimination space. The results confirm the validity of the derived signal acceptance in earlier reported dark matter searches of the XENON100 experiment.
[All authors] -
(2013) Physical Review Letters. 111, 2, Abstract[All authors]
We present new experimental constraints on the elastic, spin-dependent WIMP-nucleon cross section using recent data from the XENON100 experiment, operated in the Laboratori Nazionali del Gran Sasso in Italy. An analysis of 224.6 live days x 34 kg of exposure acquired during 2011 and 2012 revealed no excess signal due to axial-vector WIMP interactions with Xe-129 and Xe-131 nuclei. This leads to the most stringent upper limits on WIMP-neutron cross sections for WIMP masses above 6 GeV/c(2), with a minimum cross section of 3.5 x 10(-40) cm(2) at a WIMP mass of 45 GeV/c(2), at 90% confidence level.
2012
-
(2012) Nuclear Instruments & Methods In Physics Research Section A-Accelerators Spectrometers Detectors And Associated Equipment. 695, p. 163-167 Abstract
Gaseous PhotoMultipliers (GPM) are a very promising alternative of vacuum PMTs especially for large-size noble-liquid detectors in the field of Functional Nuclear Medical Imaging and Direct Dark Matter Detection. We present recent characterization results of a Hybrid-GPM made of three Micropattern Gaseous Structures: a Thick Gaseous Electron Multiplier (THGEM), a Parallel Ionization Multiplier (PIM) and a MICROMesh GAseous Structure (MICROMEGAS), operating in Ne/CF4 (90:10). Gain values close to 10(7) were recorded in this mixture, with 5.9 key x-rays at 1100 mbar, both at room temperature and at that of liquid xenon (T=171 K). The results are discussed in term of scintillation detection. While the present multiplier was investigated without photocathode, complementary results of photoextraction from CsI UV-photocathodes are presented in Ne/CH4 (95:5) and CH4 in cryogenic conditions. (C) 2011 Elsevier B.V. All rights reserved.
[All authors] -
(2012) Journal of Instrumentation. 7, Abstract
The XENON100 experiment, in operation at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy, was designed to search for evidence of dark matter interactions inside a volume of liquid xenon using a dual-phase time projection chamber. This paper describes the Slow Control System (SCS) of the experiment with emphasis on the distributed architecture as well as on its modular and expandable nature. The system software was designed according to the rules of Object-Oriented Programming and coded in Java, thus promoting code reusability and maximum flexibility during commissioning of the experiment. The SCS has been continuously monitoring the XENON100 detector since mid 2008, remotely recording hundreds of parameters on a few dozen instruments in real time, and setting emergency alarms for the most important variables.
[All authors] -
(2012) Physical Review Letters. 109, 18, Abstract[All authors]
We report on a search for particle dark matter with the XENON100 experiment, operated at the Laboratori Nazionali del Gran Sasso for 13 months during 2011 and 2012. XENON100 features an ultralow electromagnetic background of (5.3 +/- 0.6) X 10(-3) events/(keV(ee) X kg X day) in the energy region of interest. A blind analysis of 224: 6 live days X 34 kg exposure has yielded no evidence for dark matter interactions. The two candidate events observed in the predefined nuclear recoil energy range of 6.6-30.5 keV(nr) are consistent with the background expectation of (1.0 +/- 0.2) events. A profile likelihood analysis using a 6.6-43.3 keV(nr) energy range sets the most stringent limit on the spin-independent elastic weakly interacting massive particle-nucleon scattering cross section for weakly interacting massive particle masses above 8 GeV/c(2), with a minimum of 2 X 10(-45) cm(2) at 55 GeV/c(2) and 90% confidence level.
2011
-
(2011) Nuclear Instruments & Methods In Physics Research Section A-Accelerators Spectrometers Detectors And Associated Equipment. 639, 1, p. 117-120 Abstract[All authors]
The properties of UV-photon imaging detectors consisting of CsI-coated THGEM electron multipliers are summarized. New results related to detection of Cherenkov light (RICH) and scintillation photons in noble-liquid are presented. (C) 2010 Elsevier B.V. All rights reserved.
-
(2011) Journal of Instrumentation. 6, P04007. Abstract
Operation results are presented of a UV-sensitive gaseous photomultiplier (GPM) coupled through a MgF(2) window to a liquid-xenon scintillator. It consisted of a reflective CsI photocathode deposited on top of a THick Gaseous Electron Multiplier (THGEM); further multiplication stages were either a second THGEM or a Parallel Ionization Multiplier (PIM) followed by a MI-CROMEsh GAseous Structure (MICROMEGAS). The GPM operated in gas-flow mode with non-condensable gas mixtures. Gains of 10(4) were measured with a CsI-coated double-THGEM detector in Ne/CH(4)(95:5), Ne/CF(4) (95:5) and Ne/CH(4)/CF(4)(90:5:5), with soft X-rays at 173 K. Scintillation signals induced by alpha particles in liquid xenon were measured here for the first time with a double-THGEM GPM in He/CH(4)(92.5:7.5) and a triple-structure THGEM/PIM/MICROMEGAS GPM in Ne/CH(4)(90:10) with a fast-current preamplifier.
[All authors]
2010
-
(2010) Astrophysical Journal. 725, 1, p. 63-90 Abstract
The structure of relativistic radiation mediated shocks (RRMSs) propagating into a cold electron-proton plasma is calculated and analyzed. A qualitative discussion of the physics of relativistic and non-relativistic shocks, including order of magnitude estimates for the relevant temperature and length scales, is presented. Detailed numerical solutions are derived for shock Lorentz factors Gamma(u) in the range 6
-
(2010) Astrophysical Journal. 716, 1, p. 781-791 Abstract
We present a simple analytic model for the structure of non-relativistic and relativistic radiation mediated shocks. At shock velocities beta(s) = v(s)/c greater than or similar to 0.1, the shock transition region is far from thermal equilibrium since the transition crossing time is too short for the production of a blackbody photon density (by bremsstrahlung emission). In this region, electrons and photons (and positrons) are in Compton (pair) equilibrium at temperatures T(s) significantly exceeding the far downstream temperature, T(s) >> T(d) approximate to 2(epsilon n(u)h(3)c(3))(1/4). T(s) >= 10 keV is reached at shock velocities beta(s) approximate to 0.2. At higher velocities, beta(s) greater than or similar to 0.6, the plasma is dominated in the transition region by e(+/-) pairs and 60 keV less than or similar to T(s) less than or similar to 200 keV. We argue that the spectrum emitted during the breaking out of supernova (SN) shocks from the stellar envelopes (or the surrounding winds) of blue supergiants and Wolf-Rayet stars, which reach beta(s) > 0.1 for reasonable stellar parameters, may include a hard component with photon energies reaching tens or even hundreds of keV. Our breakout analysis is restricted to temperatures T(s) less than or similar to 50 keV corresponding to photon energies h nu less than or similar to 150 keV, where pair creation can be neglected. This may account for the X-ray outburst associated with SN2008D, and possibly for other SN-associated outbursts with spectra not extending beyond few 100 keV (e. g., XRF060218/SN2006aj).
2009
-
(2009) Journal of Cosmology and Astroparticle Physics. 3, Abstract
We derive simple analytic expressions for the flux and spectrum of ultra-high energy cosmic-rays (UHECRs) predicted in models where the CRs are protons produced by extra-Galactic sources. For a power-law scaling of the CR production rate with redshift and energy, d(n) over dot/d epsilon alpha epsilon(-alpha) (1+ z)(m), our results are accurate at high energy, epsilon > 10(18.7) eV, to better than 15%, providing a simple and straightforward method for inferring d(n) over dot/d epsilon(epsilon) from the observed flux at epsilon. We show that current measurements of the UHECR spectrum, including the latest Auger data, imply epsilon(2) d(n) over dot/d epsilon (z = 0) = (0.45 +/- 0.15)(alpha-1) x 10(44) erg Mpc(-3) yr(-1) at epsilon > 10(19.5)eV with alpha roughly confined to 2 less than or similar to alpha
2008
-
(2008) Astrophysical Journal. 673, 2, p. 928-933 Abstract
We derive constraints that must be satisfied by the sources of similar to 10(15) to similar to 10(18) eV cosmic rays, under the assumption that the sources are Galactic. We show that while these constraints are not satisfied by ordinary supernovae ( SNe), which are believed to be the sources of less than or similar to 10(15) eV cosmic rays, they may be satisfied by the recently discovered class of trans-relativistic supernovae (TRSNe), which were observed in association with gamma-ray bursts. We define TRSNe as SNe that deposit a large fraction, f(R) > 10(-2), of their kinetic energy in mildly relativistic, gamma beta > 1, ejecta. The high-velocity ejecta enable particle acceleration to similar to 10(18) eV, and the large value of f(R) ( compared to fR similar to 10(-7) for ordinary SNe) ensures that if TRSNe produce the observed similar to 10(18) eV cosmic-ray flux, they do not overproduce the flux at lower energies. This, combined with the estimated rate and energy production of TRSNe, imply that Galactic TRSNe may be the sources of cosmic rays with energies up to similar to 10(18) eV.