
















in the nucleus, the siRNAs use the RNA-inducing silencing com-
plex (RISC) mainly active in the cytoplasm. LncRNAs are known
to function in specific subcellular compartments (Chen 2016)
and their maturity, secondary structures, isoforms, and functions

could be vastly different across compartments (Johnsson et al.
2013). Since the majority of functional lncRNAs are reported to
be inside the nucleus (Palazzo and Lee 2018; Sun et al. 2018),
ASO-mediated knockdowns, which mainly target nuclear RNAs,
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Figure 5. RP11-398K22.12down-regulates KCNQ5 and CATG00000088862.1 in cis. (A) Changes in expression levels of detectable genes in the
same topologically associated domain (TAD) asRP11-398K22.12 based on Hi-C analysis. BothKCNQ5 and CATG00000088862.1 are down-reg-
ulated (P< 0.05) upon the knockdown of RP11-398K22.12by two independent ASOs in CAGE analysis (left) as further confirmed with RT-qPCR
(right). (B) (Top) Representation of the chromatin conformation in the 4-Mb region proximal to the TAD containing RP11-398K22.12, followed
by the locus gene annotation, CAGE, RNA-seq, and ATAC-seq data for native HDFs. (Bottom) Schematic diagram showing Hi-C predicted con-
tacts of RP11-398K22.12(blue) and KCNQ5 (gray) (25-kb resolution, frequency≥ 5) in HDF cells. Red line indicatesRP11-398K22.12and KCNQ5
contact. (C) FISH image for RP11-398K22.12, suggesting proximal regulation. TUG1 FISH image (suggestingtrans regulation) is included as a
comparison; (bar = 10 µm). (D) GTEx atlas across 54 tissues (N = 9662 samples) shows relatively high expression levels ofRP11-398K22.12 in 13
distinct brain regions samples (highlighted). (E) Expression correlation for RP11-398K22.12and KCNQ5 in eight out of 13 distinct brain regions,
as highlighted in D. (F) Expression correlation for RP11-398K22.12and CATG00000088862.1 in eight out of 13 distinct brain regions, as high-
lighted in D.
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are generally more suitable for functional screenings of our
lncRNA (62% found in the nuclear compartment). Besides, the dy-
namics of secondary effects mediated by different levels of knock-
down from different technologies are likely to be observed as
discordance when considering the whole transcriptome, where
this kind of discordance has been reported previously (Stojic
et al. 2018). In contrast, in the MKI67 assay, where only a single
feature such as growth phenotype is assayed, siRNA knockdown re-
vealed higher reproducibility with ASO knockdown. This suggest-
ed that the growth phenotype might be triggered by different
specific pathways in ASO- and siRNA-knockdowns.

Previous studies suggest that lncRNAs regulate gene expres-
sion in trans epigenetically, via direct or indirect interaction with
regulators such as DNMT1 (Di Ruscio et al. 2013) or by directly
binding to DNA (triplex) (Mondal et al. 2015) or other RNA-bind-
ing proteins (Tichon et al. 2016). Analysis of cellular localization
by fractionation followed by RNA-seq and in situ hybridization
can indicate whether a given lncRNAmay act in trans by quantify-
ing its abundance in the nuclear soluble fraction as compared to
cytoplasm. Althoughmost lncRNAs in the nuclear soluble fraction
may affect pathways associated with chromatin modification, ad-
ditional experiments to globally understand their interaction part-
ners will elucidate the molecular mechanism behind trans-acting
lncRNAs (Li et al. 2017; Sridhar et al. 2017).

In summary, our study highlights the functional importance
of lncRNAs regardless of their expression, localization, and conser-
vation levels. Molecular phenotyping is a powerful and generally
more sensitive to knockdown-mediated changes platform to reveal
the functional relevance of lncRNAs that cannot be observed based
on the cellular phenotypes alone. With additional molecular pro-
filing techniques, suchasRNAduplexmaps in livingcells todecode
common structural motifs (Lu et al. 2016), and Oxford Nanopore
Technology (ONT) to annotate the full-length variant isoforms of
lncRNAs (Hardwick et al. 2019), the structure-to-functional rela-
tionship of lncRNAs may be elucidated further in the future.

Methods

Gene models and lncRNA target selections

The gene models used in this study were primarily based on the
FANTOM CAGE-associated transcriptome (CAT) at permissive
level as defined previously (Hon et al. 2017). From this merged as-
sembly, there were ∼2000 lncRNAs robustly expressed in HDFs
(TPM≥1). However, we selected lncRNA knockdown targets in
an unbiased manner to broadly cover various types of lncRNAs
(TPM≥0.2). Briefly, we first identified a list of the lncRNA genes
expressed in HDFs, with RNA-seq expression at least 0.5 fragments
per kilobase permillion andCAGE expression at least 1 tag permil-
lion. Then, we manually inspected each lncRNA locus in the
ZENBU genome browser for (1) its independence from neighbor-
ing genes on the same strand (if any), (2) support from RNA-seq
(for exons and splicing junctions) and CAGE data (for TSSs) of
its transcript models, and (3) support from histone marks at TSSs
for transcription initiation (H3K27ac) and along the gene body
for elongation (H3K36me3), from the Roadmap Epigenomics
Consortium (Roadmap Epigenomics Consortium et al. 2015). A
representative transcript model, which best represents the RNA-
seq signal, was manually chosen from each locus for design of an-
tisense oligonucleotides. In total, 285 lncRNA loci were chosen for
ASO suppression. Additional controls (NEAT1, protein coding
genes) (Supplemental Table S1) were added, including MALAT1

as an experimental control. For details, please refer to the
Supplemental Methods.

ASO design

ASOs were designed as RNase H-recruiting locked nucleic acid
(LNA) phosphorothioate gapmers with a central DNA gap flanked
by 2–4 LNA nucleotides at the 5′ and 3′ ends of the ASOs. For de-
tails, please refer to the Supplemental Methods.

Automated cell culturing, ASO transfection, and cell harvesting

Robotic automation (Hamilton) was established to provide a stable
environment and accurate procedural timing control for cell cul-
turing and transfection. In brief, trypsin-EDTA detachment, cell
number and viability quantification, cell seeding, transfection,
and cell harvesting were performed with automation. All transfec-
tionswere divided into 28 runs on aweekly basis. ASO transfection
was performed with duplication. In each run, there were 16 inde-
pendent transfections with ASO negative control A (NC_A,
Exiqon) and 16 wells transfected with an ASO targeting MALAT-
1 (Exiqon).

The HDF cells were seeded in 12-well plates with 80,000 cells
in each well 24 h prior to the transfection. A final concentration of
20 nM ASO and 2 µL Lipofectamine RNAiMAX (Thermo Fisher
Scientific) were mixed in 200 µL Opti-MEM (Thermo Fisher
Scientific). The mixture was incubated at room temperature for
5min and added to the cells, whichweremaintained in 1mL com-
plete medium. The cells were harvested 48 h posttransfection by
adding 200 µL RLT buffer from the RNeasy 96 kit (Qiagen) after
PBS washing. The harvested lysates were kept at −80°C. RNA was
extracted from the lysate for real-time quantitative RT-PCR
(Supplemental Methods).

ASO transfection for real-time imaging

The HDF cells were transfected manually in 96-well plates to facil-
itate high-throughput real-time imaging. The cells were seeded
24 h before transfection at a density of 5200 cells per well. A final
concentration of 20 nM ASO and 2 µL Lipofectamine RNAiMAX
(Thermo Fisher Scientific) were mixed in 200 µL Opti-MEM
(Thermo Fisher Scientific). After incubating at room temperature
for 5 min, 18 µL of the transfection mix was added to 90 µL com-
plete medium in each well. The ASOs were divided into 14 runs
and transfected in duplicate. Each plate accommodated six wells
of NC_A control, twowells ofMALAT1 ASO control, and twowells
of mock-transfection (Lipofectamine alone) control.

Phase-contrast images of transfected cells were captured every
3 h for 2 d with three fields per well by the Incucyte live-cell imag-
ing system (Essen Bioscience). The confluence in each fieldwas an-
alyzed by the Incucyte software. Themean confluence of eachwell
was taken along the timeline until the mean confluence of the
NC_A control in the same plate reached 90%. The growth rate in
each well was calculated as the slope of a linear regression. A nor-
malized growth rate of each replicate was calculated as the growth
rate divided by themean growth rate of the sixNC_A controls from
the same plate. Negative growth rate was derived when cells shrink
and/or detach. As these rates of cell depletion could not be normal-
ized by the rate of growth, negative values were maintained to in-
dicate severe growth inhibition. Student’s t-test was performed
between the growth rate of the duplicated samples and the six
NC_A controls, assuming equal variance.
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Cell morphology quantification

For each transfection, a representative phase-contrast image at a
single time point was exported from the Incucyte time-series.
These raw images were first transformed to probability maps of
cells by pixel classification using ilastik (1.3.2) (Berg et al. 2019).
The trained model was then applied to all images where the pre-
dicted probability maps of cells (grayscale, 16 bits tiff format)
were subsequently used for morphology quantification in
CellProfiler (3.1.5) (Carpenter et al. 2006). For details, please refer
to the Supplemental Methods.

MKI67 staining upon lncRNA knockdown

For the selected four lncRNA targets showing >25% growth inhibi-
tion, we used two siRNAs and two ASOs with independent se-
quences. The transfected cells were fixed by adding prechilled
70% ethanol and incubated at −20°C. The cells were washed
with FACS buffer (2% FBS in PBS, 0.05%NaN3) twice. FITC-conju-
gated MKI67 (20Raj1, eBioscience) was applied to the cells and
subjected to flow cytometric analysis. Knockdown efficiency by
siRNA was determined by real-time quantitative RT-PCR using
the same three primer pairs as for ASO knockdown efficiency.
For details, please refer to the Supplemental Methods.

Wound closure assay

TheHDF cells were transfectedwith 20 nMASO as described earlier
in 12-well plates. The cells were replated at 24 h posttransfection
into a 96-well ImageLock plate (Essen BioScience) at a density of
20,000 cells per well. At 24 h after seeding, cells form a spatially
uniform monolayer with 95%–100% cell confluence. The cells
were incubated with 5 µg/mL mitomycin C for 2 h to inhibit cell
division. Then, medium was refreshed and a uniform scratch was
created in each well by the WoundMaker (Essen BioScience). The
closure of the wound was monitored by Incucyte live-cell imaging
system (Essen Bioscience) every 2 h for 24 h. The RNAwas harvest-
ed after the assay for real-time quantitative RT-PCR. For details,
please refer to the Supplemental Methods.

Cap analysis of gene expression (CAGE)

Fourmicrograms of purified RNAwere used to generate libraries ac-
cording to the nAnT-iCAGE protocol (Murata et al. 2014). For de-
tails, please refer to the Supplemental Methods.

Chromosome conformation capture (Hi-C)

Hi-C libraries were prepared essentially as described previously
(Lieberman-Aiden et al. 2009; Fraser et al. 2015a) with minor
changes to improve the DNA yield of Hi-C products (Fraser et al.
2015b). For details, please refer to the Supplemental Methods.

Data access

All raw and processed sequencing data generated in this study have
been submitted to the DNA Data Bank of Japan (DDBJ; https://
www.ddbj.nig.ac.jp/) under accession numbers DRA008311,
DRA008312, DRA008436, and DRA008511 or can be accessed
through the FANTOM6 project portal https://fantom.gsc.riken
.jp/6/datafiles. The analysis results can be downloaded from
https://fantom.gsc.riken.jp/6/suppl/Ramilowski_et_al_2020/data/
and interactively explored using our in-house portal https
://fantom.gsc.riken.jp/zenbu/reports/#FANTOM6.
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