SAERI Funded Projects

2013/14 Cycle

New Options for Solar Energy Conversion to Biofuel and Electricity

  • New Options for Solar Energy Conversion to Biofuel and Electricity(The Leona M. and Harry B. Helmsley Charitable Trust)

    The program will involve dozens of researchers from Weizmann Institute of Science and the Technion – Israel Institute of Technology. In it scientists in fields ranging from genetics and plant sciences to chemistry, physics and engineering will be working together toward the common goal of providing renewable energy options to Israel and the world. For another, the researchers anticipate that wedding the basic research approach of the Weizmann Institute to the advanced technical-engineering emphasis of the Technion teams will provide the synergy needed to accelerate discovery and development of innovative energy options that can be the basis for future technologies.

    In addition to advancing new avenues of research, the new gift will serve to expand and strengthen the success of existing alternative energy programs, including the Weizmann Institute’s Alternative Energy Research Initiative (AERI), the Grand Technion Energy Program (GTEP) and the Israeli Center of Research Excellence (ICORE) in alternative energy. The Weizmann Institute and Technion participate along with the Ben-Gurion University of the Negev in the latter.

    Initially, the research projects will focus on three key areas: biofuels, photovoltaics and optics for light harvesting. The biofuels research includes generating effective methods for breaking down waste plant matter into usable fuel resources, developing algae that can produce biofuels economically and developing plants that can be grown sustainably and provide materials that can easily be converted to biofuel. The Helmsley initiative will help fund state-of-the-art facilities at the Weizmann Institute to advance this research.

    The other two areas of focus – photovoltaics and optics – will include the creation of new materials that can use a larger portion of the sun’s energy (today’s cells use only a limited part of the sunlight) and innovative ways of efficiently converting that energy to electricity. The optics research will involve some of the most cutting-edge materials design and research available, including plasmonics, nanostructures and metamaterials studies.

    The Weizmann Institute’s Prof. David Cahen heads the Helmsley project together with Prof. Gideon Grader of the Technion. They expect that a number of the research teams will find themselves working in all three areas in parallel, as the best solutions, including the more distant goal of artificial photosynthesis, are likely to involve combinations of the three. 

New Options for Solar Energy Conversion to Biofuel and Electricity - Photovoltaics

  • Photovoltaics(Cahen, Hodes, Bendikov, Kronik)

    Our aim is to identify and understand the limits to organic solar cells and explore how to overcome these limits.

New Options for Solar Energy Conversion to Biofuel and Electricity - Biofuels

  • Biofuels(Levy, Barkai, Milo, Bayer, Aharoni)

    We aim at developing new energy-rich biomass sources, genetically engineered or selected from natural biodiversity, as biofuel feedstock and optimize biofuel production from the new biomass sources. 

New Options for Solar Energy Conversion to Biofuel and Electricity - Optics

  • Optics(Oron, Prior, Davidson)

    We aim at developing new methods for light concentration from macroscopic to microscopic scale, and means to use concentrated light for improved light harvesting efficiency

Other Projects

  • Homogeneously Microstructured Metal-Organic Frameworks for Efficient Energy Storage, Transport, and Release(van der Boom)

    Replacing our polluting, oil-driven economy with one based on renewable and clean energy sources requires advanced materials that can store, transport, and release this energy in the form of gaseous compounds. However, the efficient storage of energy in the form of dihydrogen (or methane, carbon mono-oxide), and its controlled release at practical temperature ranges and at constant and mild pressures is a challenging task. The aim of the proposed project is to be able to generate highly porous, uniform, and robust molecular materials that might be used in diverse real-world applications, including vehicles running on dihydrogen.