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Clonal dynamics of native haematopoiesis
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It is currently thought that life-long blood cell production is driven by the action of a small number of multipotent
haematopoietic stem cells. Evidence supporting this view has been largely acquired through the use of functional assays
involving transplantation. However, whether these mechanisms also govern native non-transplant haematopoiesis is
entirely unclear. Here we have established a novel experimental model in mice where cells can be uniquely and genet-
ically labelled in situ to address this question. Using this approach, we have performed longitudinal analyses of clonal
dynamics in adult mice that reveal unprecedented features of native haematopoiesis. In contrast to what occurs follow-
ing transplantation, steady-state blood production is maintained by the successive recruitment of thousands of clones,
each with a minimal contribution to mature progeny. Our results demonstrate that a large number of long-lived pro-
genitors, rather than classically defined haematopoietic stem cells, are the main drivers of steady-state haematopoiesis
during most of adulthood. Our results also have implications for understanding the cellular origin of haematopoietic disease.

Current dogma suggests that all haematolymphoid lineages are derived
from a common ancestor, the haematopoietic stem cell (HSC)1,2. During
adult life, HSCs are thought to be the only bone marrow (BM) cell popu-
lation capable of long-term self-renewal and multilineage differentia-
tion1,2. As HSCs divide, they produce multipotent and lineage-restricted
progenitor populations, which are regarded as transient intermediates
before the final production of functional blood cells1,2. Historically, the
main experimental approach used to elucidate and define the cellular
properties of various BM populations has been the transplantation assay.
In this assay, prospectively purified cell populations are transplanted
into myeloablated hosts. A general caveat to these approaches, however,
is that only cells that are able to circulate, colonize a niche, and prolif-
erate rapidly, will be able to produce detectable progeny. Additionally,
given the extraordinary stress that transplanted cells endure during
engraftment and the distorted cytokine milieu that they encounter, it is
questionable to what extent their functional characteristics are shared
with cells driving more physiological non-transplant haematopoiesis.

Recent fate tracking approaches have proven to be fundamental in
determining biological properties and clonal dynamics of solid tissue
stem cells3,4. Owing to the unique physical organization of the blood
system and the lack of HSC- or progenitor-restricted drivers, these ap-
proaches have not been successfully applied to the study of native hae-
matopoiesis. Because of this lack of tractable systems, the mechanistic
nature of non-transplant haematopoiesis has remained largely unex-
plored. Fundamental questions such as the number, lifespan and lin-
eage potential of stem or progenitor cells that drive homeostatic blood
production remain to be answered5–8. Here, we describe a novel experi-
mental system to enable in situ labelling and clonal tracking of hae-
matopoietic cells, and use it to investigate the cellular origins, lineage
relationships and dynamics of native blood production.

Clonal marking by transposon tagging
Our experimental paradigm is based on the temporally restricted express-
ion of a hyperactive Sleeping Beauty (HSB) transposase, an enzyme that
mediates genomic mobilization of a cognate DNA transposon (Tn)9. In
our model, a doxycycline (Dox)-inducible HSB cassette and a single-copy
non-mutagenic Tn are incorporated in the mouse genome through gene

targeting (Fig. 1a). HSB expression is controlled by a Dox-dependent
transcriptional activator (M2), driven from the Rosa26 locus10. In mice
carrying these three alleles (referred to as M2/HSB/Tn), Dox adminis-
tration results in HSB expression and subsequent Tn mobilization else-
where in the genome. As Tn integration is quasi-random11, every cell
undergoing transposition will carry a single and distinct insertion site,
which, upon Dox withdrawal, will serve as a stable genetic tag for the
corresponding cell and its progeny (Fig. 1a). To monitor Tn transposi-
tion, a DsRed reporter marks Tn mobilization by the concurrent removal
of an embedded transcription stop signal (Fig. 1a).

Tn mobilization could be induced in approximately 30% of the pheno-
typically defined long-term (LT)-HSCs, short-term (ST)-HSCs, multipo-
tent progenitors (MPPs) and myeloid progenitors (MyP)12–14 following
3–4 weeks of induction, whereas no labelling was found in uninduced
mice (Fig. 1b). When transplanted, DsRed1 HSC/progenitors fully recon-
stituted myeloid and lymphoid lineages for 10 months, indicating la-
belling of bona fide LT-HSCs (Extended Data Fig. 1a–d). On the other
hand, transplantation of DsRed– HSCs/progenitors produced fully DsRed–

progeny, confirming extremely low levels of transposition in the absence
of Dox (Extended Data Fig. 1e, f). Analysis of uninduced older mice
revealed minimal levels of spontaneous Tn mobilization in peripheral
blood (PB) granulocytes (0.1%) and B cells (0.5%), two orders of mag-
nitude lower than transposition levels observed in Dox-treated animals
(Extended Data Fig. 1g). Peripheral T cells showed a higher degree of
background mobilization (4.1 6 2.3%) (Extended Data Fig. 1g). Thus,
the M2/HSB/Tn model allows strict Dox-dependent Tn mobilization
in most of the haematopoietic compartment.

As predicted, haematopoietic colonies grown in –Dox semi-solid med-
ium arising from sorted DsRed1 stem/progenitor cells carried single and
completely distinct insertion sites (Fig. 1c, Extended Data Fig. 2a, b, d).
Secondary colonies from LT-HSC clones inherited identical Tn tags as
their corresponding primary colonies, indicating stable propagation of
Tn tags among progeny (Extended Data Fig. 2c, d). Evidence of Tn ‘re-
mobilization’ in the absence of Dox was only found in one of 24 second-
ary colonies analysed. Furthermore, no re-mobilized tags were observed
in 80 single cells from secondary replatings (Extended Data Fig. 2d).
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We also established an improved PCR-based method to detect Tn
tags in polyclonal samples with minimal cell number requirements. This
combined whole-genome amplification (WGA)15 technology, three-arm
ligation-mediated PCR (LM-PCR)16 and next generation sequencing
(Extended Data Fig. 3, Additional Methods). Our method was sensitive
enough to reliably detect clones with a frequency as low as 5225 out of
10,000 cells in a polyclonal population (Extended Data Fig. 4, Supplemen-
tary Information).

Clonal dynamics of native haematopoiesis
Armed with a strategy for clonal and genetic labelling in situ, we began
to examine the long-term clonal behaviours of HSC and progenitor
clones by Tn tag interrogation in sorted granulocytes, B cells and T cells
from PB samples that were periodically collected over a period up to
12 months after Dox withdrawal (Fig. 2a, Extended Data Fig. 5, Sup-
plementary Table 1). Given the ubiquitous expression of the Rosa26-
M2 driver (Fig. 1), both primitive and differentiated haematopoietic
cells can undergo transposition. Although this provides an unbiased
approach to label the stem/progenitor pool, we allowed 3–4 months of
‘chase’ before sample collection so that Tn tags in mature PB popula-
tions would be more likely derived from longer-lived HSCs, as predicted
from transplantation studies13,17 (Fig. 2a).

Our initial analysis focused on the dynamics of granulocyte pro-
duction given their rapid turnover rate18. Among three independently

analysed mice, a range of 65–905 clones per time point was routinely
detected in sorted DsRed1 granulocytes (Supplementary Table 2). Sur-
prisingly, when analysed longitudinally, the vast majority of granulocyte
tags (90–98%) were detected at single time points (Fig. 2b, c, Extended
Data Fig. 6a, b, d, e). Moreover, the recurrent tags (found at more than
one time point) clustered in adjacent time points (Fig. 2b, Extended
Data Fig. 6a, d). In contrast, highly stable clones were readily detected
in B and T cell samples (Extended Data Fig. 7a). Considering the sen-
sitivity of our method (Extended Data Fig. 4c), these data argue against
the existence of stable granulocytic clones producing more than 0.05–
0.25% of the PB granulocyte pool during the chase period. This pre-
dominantly transient and highly polyclonal contribution persisted up
to 12 months of chase, suggesting that this pattern does not represent a
transitory stage of clonal fluctuation19,20. Clonal instability was also con-
firmed by tag-specific nested PCR (Extended Data Fig. 7b).

To examine whether limited PB sampling might underlie the observed
lack of clonal stability, we asked whether ‘unstable’ PB clones could be
detected in a much larger terminal sample comprising approximately
80% of BM21. This analysis revealed a clear inverse correlation between
the number of PB clones found in the BM and the time elapsed since
PB collection, a pattern highly indicative of limited lifespan (Fig. 2b, e,
Extended Data Fig. 6g, h). Indeed, the fraction of persistent clones dropped
exponentially with time, from which we could calculate that active gra-
nulocytic clones had a detectable half-life of 3.3 weeks in PB (Fig. 2e,
Extended Data Fig. 6h). A very minor subset of transient PB clones did
reappear in the BM sample (Fig. 2b, Extended Data Fig. 6g). It is unclear
whether this represents stochastic detection of minor stable clones or
whether this reflects clonal re-activation.

The observed pattern of clonal dynamics did not result from an arti-
ficial increase in clonal complexity due to the 3–4-week induction per-
iod, as similar clonal dynamics were observed in mice induced for one
day (Extended Data Fig. 7c). Additionally, background Tn remobiliza-
tion does not significantly contribute to our observations, as approxi-
mately only seven Tn tags were detected in PB granulocytes of uninduced
mice, compared to the several hundred clones found in Dox-treated
animals (Extended Data Fig. 7d). Collectively, these data imply that long-
term steady-state granulopoiesis is vastly polyclonal and largely driven
by the successive recruitment of non-overlapping clones.

Clonal diversity and lifespan
The LM-PCR method currently applied is not quantitative, and is likely
to underestimate the full clonal repertoire22 (Extended Data Fig. 4g,
Supplementary Information). To obtain a more representative view of
clone size distribution and number, we performed single-cell LM-PCR
analyses on sorted PB granulocytes (Fig. 3a). Among the total 290 single
granulocytes analysed from an induced mouse at three consecutive time
points, we detected 270 unique Tn tags. 254 of them were present in
single granulocytes, 14 were observed twice and only 2 tags were found
in three single cells (Fig. 3b). None of the tags was present in all three
time points analysed (Fig. 3b). Single-cell analysis of another induced
mouse at later time points revealed similar results (Fig. 3c). These find-
ings confirm the extreme polyclonal nature of steady-state granulopoi-
esis and provide support for the paucity of dominant or stable clones.

Based on these single-cell data, we re-evaluated the number of clones
present in PB granulocytes using statistical models of random sam-
pling (see Methods), with the assumption that granulocyte clones are
of uniform size. All time points provided very similar estimates for total
clone number: 831 6 206 (mean 6 s.e.m.) (Fig. 3d, e). Considering that
this analysis is restricted to only the approximately 30% DsRed1 labelled
cellular fraction (Fig. 1b), our estimate represents only a fraction of the
clones that maintain granulopoiesis in a mouse at any given time. Addi-
tionally, if we take into account that, at least monthly (our sampling
interval), new clones are periodically recruited, our findings reveal an
extraordinary amount of clonal complexity that is used to sustain long-
term granulocyte production.
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Figure 1 | Establishment of inducible transposon tagging approach.
a, Transgenic alleles and strategy used for inducible genetic tagging. M2-rtTA,
reverse tetracycline-responsive transcriptional activator; HSB, hyperactive
Sleeping Beauty transposase; Tn, HSB transposon; STOP, polyadenylation
signal; CAGGS, chicken b-actin promoter; TetO, tetracycline-response
element. b, Frequency of DsRed1 cells in long-term HSC (LT-HSC),
short-term HSC (ST-HSC), multipotent progenitor (MPP), and myeloid
progenitors (MyP) in marrow of M2/HSB/Tn mice exposed to Dox for 3 weeks.
Shown are representative FACS plots from three independently analysed mice
of similar age and induction period. c, Sequence of Tn tags identified from
20 DsRed1 LSK colonies that emerged following methylcellulose culture.
gDNA, genomic DNA.
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Lineage output of haematopoietic clones
We next compared Tn tags of granulocytes, B and T lymphocytes to
determine lineage potential of the granulocyte-producing clones. Remark-
ably, very few of the granulocytes tags were shared with either B or T
cells in the PB (Fig. 2d, Extended Data Fig. 6c, f). This lack of common
clonal origin was also observed when BM granulocytes and nascent pro/
pre-B cells were compared at multiple time points of chase (Extended
Data Fig. 8a, b, Supplementary Tables 1 and 3), where only around 7% of
BM granulocytes had the same clonal origins as nascent pro/pre-B cells
(Extended Data Fig. 8c). Therefore, the bulk of granulocyte-producing
clones are myeloid-restricted for up to 45 weeks.

We also sought to determine the lineage potential of lymphoid clones.
While only ,10% of the pro/pre-B tags are found in granulocytes at 9
and 26 weeks, a much larger portion (,47%) is present in myeloid cells
at 40–45 weeks post-induction (Extended Data Fig. 8d). These data
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Figure 2 | Clonal dynamics of native haematopoiesis. a, Experimental flow
chart showing longitudinal clonal analysis on FACS-sorted PB granulocytes
(Gr), B cells, T cells, and BM Gr from induced mouse LL106. Tn tags are
determined with the analysis pipeline described in Supplementary Methods.
b, Distribution of Tn tags identified in PB Gr samples across multiple time
points, lineages, and in BM. Each horizontal line represents a unique tag.
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panel shows subset of PB Gr tags found in multiple time points. c, Analysis
showing the number of Gr tags that are either unique or recurrent in the Gr
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shared among B/T lineages. e, Extent of clonal overlap between PB Gr tags at
different time points post chase and terminal BM Gr sample. Dashed line is an
exponential fit to the data.
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Figure 3 | Polyclonal and fluctuating nature of native granulopoiesis.
a, Experimental flow chart for the detection of Tn tags in single PB
granulocytes. b, c, Single-cell-derived Tn tags from mouse AR1120 (b) and
AR468 (c) at multiple time points of chase. Numbers in each box represent
unique Tn IDs detected in single cells. Colour-coded boxes depict cells with
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suggest that B-cell production shifts from a predominantly lymphoid-
restricted progenitor to a multipotent progenitor after six months of chase.
In contrast, monocytes, a myeloid cell type traditionally thought to share
the same clonal origins as granulocytes12, had approximately 60% of
their tags shared with granulocytes at all three time points, which con-
firms the close relationship between these two lineages, and suggest
that myeloid-producing clones are at least bi-potent (Extended Data
Fig. 8d).

Features of transplant haematopoiesis
Our findings here starkly contrast with the clonal behaviour previously
reported using retroviral barcoding techniques. In such experiments, a few
dominant LT-HSC clones stably output multiple blood lineages19,20,23,24.
These observations could be recapitulated in our model as a handful of
stable and multipotent clones were observed in recipients of retrovirus-
infected DsRed1 Lin2c-Kit1Sca11 cells (Extended Data Fig. 9a, b, Sup-
plementary Tables 4 and 5). Similar observations were obtained with
transplantation of freshly isolated DsRed1 Lin2c-Kit1 or LT-HSCs,
although the clonal diversity was significantly increased, probably due
to higher regenerative potential of less-manipulated cells (Extended Data
Fig. 9e–h, k–m). Single-cell analysis of PB granulocytes of recipients
confirmed the presence of dominant and stable clones (Extended Data
Fig. 9c, d, i, j). Thus, our methodology is reliable enough to reveal stable
and multipotent clonal behaviours. Our findings, therefore, demon-
strate inherent and fundamental differences in the clonal dynamics of
post-transplant and steady-state haematopoiesis.

Cellular origins of haematopoietic clones
Historically, LT-HSCs have been considered the major source of long-
term haematopoiesis, although evidence for this in a non-transplant
setting is limited1,2. We then directly examined the extent of LT-HSC
contribution during native blood production by two different appro-
aches. First, we compared the clonal repertoire of resident BM granu-
locytes in an M2/HSB/Tn mouse more than a year after Dox-induction
with that of granulocytes and B cells derived after transplantation of such
BM (Fig. 4a, Supplementary Tables 4 and 5). If classical transplantable
HSCs drive steady-state granulopoiesis in the donor mouse, then the
same tags would be recovered in the progeny of engrafted recipients.
Only 5–8% of donor granulocyte tags were present in granulocytes or B
cells in recipient mice, and almost all of these tags displayed transient
engraftment (Fig. 4b, c). Two donor clones were detected in BM gran-
ulocytes 73 weeks after transplant, but these were not detected in the
LT-HSC and progenitor compartments in recipient mice (Fig. 4c). In
contrast, many of the stable PB clones arising shortly after transplanta-
tion were still actively producing multilineage progeny in BM one year
later, and a subset of them clearly originated from LT-HSCs (Fig. 4b, c).
This suggests that granulocyte production in situ for at least a year is
not predominantly driven by BM cells with the capacity to engraft, but
instead by progenitors with limited transplantation capacity.

To further examine the ancestral relationships during native blood
production, we determined clonal compositions of fluorescence-activated
cell sorting (FACS)-purified LT-HSCs, MPPs and MyPs, and compared
them with granulocytes, pro/pre-B cells, and monocytes from the same
BM (Fig. 5a, Extended Data Fig. 10a). While approximately half of clones
found in MyPs and MPPs were shared with mature populations, sur-
prisingly, less than 5% of LT-HSC tags were also present in these mature
cell types (Fig. 5b, c, Extended Data Fig. 10b, c). The extent of LT-HSC
output does not increase if tags are compared to longitudinal PB gran-
ulocyte and B-cell samples (Fig. 5c, d, Extended Data Fig. 10c). Remark-
ably, we also found that less than 5% of LT-HSCs shared tags with MPPs
and MyPs, traditionally considered their immediate downstream pro-
geny (Fig. 5b, Extended Data Fig. 10b). These observations differ signi-
ficantly from what occurs following transplantation, where many of the
stable and dominant PB clones originated from LT-HSCs (Fig. 4b, c,
Extended Data Fig. 9j). Taken together, these observations show that
LT-HSCs have limited lineage output under unperturbed conditions

for at least 40 weeks, and that progenitors play a central role during native
myelo- and lymphopoiesis. (Fig. 5b, e, Extended Data Fig. 10b, d)

The detection of clonal overlap between MPPs and mature cell types
allowed us to preliminarily interrogate lineage potential of MPPs at a
clonal level. Our data provide definitive evidence for the existence of
multipotent MPP clones (Fig. 5b, e, Extended Data Fig. 10b, d). However,
in contrast to the transplantation model24, the majority of MPPs con-
tribute predominantly to the myeloid lineage.

Discussion
We present here multiple lines of evidence demonstrating that, in an
unperturbed system, classical LT-HSCs have a limited contribution to
blood production during most of adulthood. This is surprising, con-
sidering that during the period encompassed by our studies (,1 year)
multiple LT-HSC divisions would have occurred14,25,26. While our data
cannot fully rule out potential stable contribution by LT-HSCs, this is
likely to be lower than our detection limitation and relatively minor in
comparison to that of MPPs. The absence of LT-HSC clones in other
populations could alternatively be explained by a clonal ‘successive
deletion’ model, in which HSCs would undergo symmetric differentia-
tion cell divisions. While we cannot fully rule this out, we consider that
this model is not sufficient to explain the source of extreme clonal com-
plexity observed.

Our results argue for a model where successive recruitment of thou-
sands of both lineage-restricted and multipotent clones drives steady-
state haematopoiesis for at least a year (Fig. 5f). In this model, a large
number of progenitors are specified by early postnatal life (before the
time of Dox labelling), after which there is limited contribution to this
pool by LT-HSCs. These progenitors are likely to encompass cells tradi-
tionally defined as ST-HSCs, MPPs and other populations with transient
reconstituting activities, and their abundance (for example, .100,000
MPPs and .500,000 MyPs) could support the breadth of clonal divers-
ity observed. Stochastically, a fraction of these clones can get recruited
for blood production, where they undergo commitment and a massive
proliferative burst to produce detectable PB progeny. Our findings of
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successive and polyclonal long-term behaviour are supported by irra-
diation marking experiments27,28 and by more recent studies involving
in vivo lentiviral tagging29. Similarly, variance analyses have predicted
that haematopoiesis is maintained by a large number of haematopoie-
tic clones30,31.

One intriguing question that arises from our studies is whether clonal
diversity or lifespan of progenitors will eventually exhaust in severely
aged mice. Additionally, it will be important to perform follow-up clonal
dynamic studies in the context of stress haematopoiesis. These studies
will determine under what circumstances classically defined LT-HSCs
engage in blood production in situ and which biological contexts deter-
mine progenitor lifespan. It will also be important to determine the exact
developmental and cellular origins of the observed long-lived progenitor
clones. Our model will also be helpful in re-assessing classical haema-
topoietic lineage hierarchies under more physiological conditions.

Our data provide insight into the potential nature of the cell-of-origin
of myeloid malignancies. It is currently thought that HSCs, given their
known lifelong persistence, are ideal candidates as the target cells for
oncogenic transformation32. In light of our data, the much larger num-
ber of long-lived progenitors may provide a more accessible pool of cells
where oncogenic mutations may arise. Our transposon tagging approach
could similarly be used to evaluate clonal dynamics and evolution in
primary tumours. The modular nature of our system should enable
cell-type-specific transposition, allowing clonal fate tracking of defined
cell populations. Our work paves the way for future systematic and high-
resolution analysis of clonal dynamics during development, ageing and
multiple other biological processes.

Online Content Methods, along with any additional Extended Data display items
andSourceData, are available in the online version of the paper; references unique
to these sections appear only in the online paper.
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METHODS
Mice. The expression cassette of a hyperactive Sleeping Beauty (HSB) gene, and
the HSB-responsive transposon element (Tn) were subcloned in the col1a1 locus
using FLP-mediated recombination, as previously described33. A DsRed reporter
gene, normally suppressed by the transcription polyadenylation signal between
the inverted repeats of the Tn, was cloned downstream of the Tn element. Targeted
embryonic stem cell clones were generated in KH2 lines and chimaeric mice were
produced following published protocol33. The HSB and Tn mice were intercrossed
to create the compound transgenic M2/HSB/Tn mouse model. The resulted mice
are of a mixed genetic background (C57BL/6J and 129/SvJ). 8–10-week-old male
or female mice with the M2/HSB/Tn genotype were used in this study. To induce
Tn mobilization, mice were fed with 1 mg ml21 Dox together with 5 mg ml21 suc-
rose in drinking water until the desired level of labelling was achieved. 3–4 capil-
laries of PB, which encompassed around 10% of the total blood of adult mice, were
collected from the retro-orbital sinus every 4–6 weeks. BM cells were flushed out
with 2% fetal bovine serum (FBS) in phosphate buffered saline (PBS) from dissected
bones. CD45.11 mice were used as transplantation recipients (B6.SJL-Ptprca Pep3b/
BoyJ, stock # 002014, the Jackson Laboratory). All animal procedures were approved
by the Boston Children’s Hospital Institutional Animal Care and Use Committee.
Fluorescence-activated cell sorting (FACS). Cell populations from PB and BM
were purified through FACS on FACSAria (BD Biosciences). The following com-
binations of cell surface markers were used to define these cell populations: PB Gr,
Ly6G1CD42CD82CD192; B cells, CD42CD82CD191; T cells, CD41CD81CD192;
BM Gr, Ly6G17/41B2202; monocytes, Ly6G27/41B2202; pro/pre-B cells, 7/42

IgM2B2201; LT-HSC, Lin2cKit1Sca11CD482CD1501; MPP, Lin2cKit1Sca11

CD481CD1502; myeloid progenitors, Lin2IL7Ra2cKit1Sca12. Lineage markers
were composed of CD4, CD8, CD19, Mac1, Gr1, and Ter119. For MACS deple-
tion, BM cells were first stained with biotin-conjugated lineage markers CD3e,
CD19, Mac1, and Ter119. Lin2 and Lin1 cell populations were then separated with
autoMACS Pro separator (Miltenyi Biotec) with manufacture’s depletion protocol.
Commercially available antibodies were listed in Supplementary Table 6. Flow
cytometry data were analysed with FlowJo (Tree Star).
Methylcellulose colony formation assays. Tn-marked HSPCs or LT-HSCs were
sorted from BM of induced M2/HSB/Tn mice as DsRed1Lin2cKit1Sca11 or
DsRed1Lin2cKit1Sca11CD482CD1501 cells, respectively. Cells were cultured
at clonal density in methylcellulose (Methylcellulose Base Medium, R&D Tech-
nologies) supplemented with 10 ng ml21 recombinant murine G-CSF, 10 ng ml21

SCF, and 10 ng Tpo. Single colonies were picked for Tn insertion tag analyses 12
days after plating.
Transplantation assays. Either fractionated or whole BM cells (CD45.21) from
induced M2/HSB/Tn mice were transplanted through retro-orbital injection with
or without 1 3 105 whole BM cells (CD45.11) into lethally irradiated C57BL/6 re-
cipient mice (11.6 Gy of gamma-irradiation in a split dose with 2 h interval). Haema-
topoietic stem and progenitor cells were transduced with retrovirus (pMIG, Addgene
#9044) at multiplicity of infection of 1 in vitro for 24 h before transplantation. The
retrovirus was produced by transient transfection of the pMIG vector to the Phoenix-
AMPHO packaging cell line (ATCC). Donor cell engraftment was determined at
multiple time points following transplantation by PB flow cytometry analysis on
LSR II (BD Biosciences).
Whole-genome amplification (WGA). Cells of interest were sorted into 1.7 ml
tubes and concentrated into 5–10ml of buffer by low-speed centrifugation. For
each sample, all the sorted cells were used for whole genome amplification with
REPLI-g Mini kit (150025, Qiagen) according to manufacturer’s instruction. Amplified
DNA was further purified by QIAamp DNA Micro kit (56304, Qiagen), and half of
the elution was used for downstream analysis.
3-Arm LM-PCR and sequencing. To increase the coverage of Tn insertion tags,
300 ng of purified DNA was digested with three restriction enzymes (DpnII, HaeIII,
MspI), and then ligated with the corresponding DNA linkers. Ligation mixture

were pooled and further digested with XbaI and KpnI to remove detection of Tn
localized at donor site. Digested products were cleaned with MinElute Reaction
Cleanup kit (28204, Qiagen), and the entire elute was used in primary PCR reac-
tions with primers specific to Tn and linker sequences. The Tn-specific primer was
biotinylated at 59 end, which allowed enrichment of the PCR products by using the
Dynabeads kilobaseBINDER kit (601-01, Invitrogen). PCR products were retrieved
by incubation in 5 ml of 0.1 M NaOH for 10–20 min and 2ml of it was further am-
plified with nested primers in secondary PCR. The nest PCR primers contained
adaptor sequences, with which the sequencing library was constructed directly from
purified secondary PCR products. Solexa sequencing was carried out on HiSeq 2000
(Illumina) at the Tufts Genomics Core. Sequences of PCR primers were listed in
Supplementary Table 7. Raw and processed sequencing data will be available upon
request.
Identification and comparison of Tn insertion tags. The analysis script was
developed in-house (Supplementary Information). NGS data were first filtered to
retain reads containing Tn sequence followed by the characteristic TA dinucleotide
sequence present at the Tn-genomic DNA (gDNA) junction. Linker sequence, if
present, was trimmed along with the Tn sequence to obtain gDNA sequence for
alignment against the mouse genome (NCBI37/mm9) with the BLAT algorithm. A
positive alignment required a minimum of 17 nucleotides match with no mismatch
allowed. To focus on unique insertion sites, non-mapped Tn tags and tags with
multiple mapping sites were excluded from downstream analysis. To uniquely com-
pare Tn insertion tags across multiple samples, we developed software that merges
insertions (within 25 base pairs) from multiple experiments, normalizes by total
read counts and filters low-frequency tags according to criteria described in Sup-
plementary Information.
Single-cell Tn insertion tag analysis. DsRed1 granulocytes were sorted from
blood as described above, from which single cells were sorted into 96-well PCR
plates with 2 ml PBS in each well. WGA was carried out directly from these single
cells. Amplified DNA was digested, heat-inactivated, and ligated to the correspond-
ing linker. Nested PCR was performed on the ligation product, and PCR products
were analysed with conventional cloning and sequencing methods.
Insertion-specific PCR. Nested PCR primers were designed based on genomic
DNA sequences surrounding Tn insertion tags as identified in high-throughput
sequencing. Singleplex PCR reactions were carried out for the individual clones
by using insertion-specific primers along with one of the transposon primers.
Establishment of HEK293 clones with stable Sleeping Beauty transposon
insertion sites. HEK293 cells were obtained from R. Gregory (Boston Children’s
Hospital). The cells were transfected with the transposon-targeting vector. Stable
clones were selected with neomycin for two weeks. The copy numbers of these
stable clones was determined based on quantitative PCR of NeoR gene imbedded
in the transposon vector. An HEK293 clone with a single copy of stably integrated
transposon vector was selected, and further transfected with HSB-expressing vec-
tor to induce Tn mobilization. To terminate transposition, we propagated the trans-
fected cells three times while the HSB-expressing vectors were gradually lost. The
DsRed1 HEK293 cells that have undergone Tn transposition were enriched by
FACS and grew at clonal density. Ten DsRed1 colonies were picked and LM-PCR
and Sanger sequencing were used to determine Tn insertion tags. To assemble poly-
clonal samples, cell sorting was used to mix the same number of cells from each
clone. Duplicate admixtures were prepared at six cell dosages: 1, 5, 25, 100, 500 and
2,500 cells. 10,000 PB cells from an induced M2/HSB/Tn mouse were added to the
individual sample to further improve the clonal complexity. The resulting polyclonal
samples were then processed in the same manner as blood samples for Tn insertion
tag analysis.

33. Beard, C., Hochedlinger, K., Plath, K., Wutz, A. & Jaenisch, R. Efficient method to
generate single-copy transgenic mice by site-specific integration in embryonic
stem cells. Genesis 44, 23–28 (2006).
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Extended Data Figure 1 | Characterization of M2/HSB/Tn mouse model.
a, Experimental flow chart showing transplantation of DsRed1Lin2cKit1 BM
cells from induced M2/HSB/Tn mice (CD45.21) into lethally-irradiated
recipient mouse (CD45.11). b, Longitudinal follow-up of donor-derived PB
cells in 5 recipient mice. c, Representative dot blots showing percentage of
donor-derived (CD45.21) granulocyte, B cells and T cells 42.5 weeks after
transplantation. d, Longitudinal follow-ups of DsRed expression in

donor-derived PB granulocytes, B cells, and T cells. e, Experimental flow chart
showing transplantation of DsRed1Lin2cKit1 or DsRed2Lin2cKit1 BM cells.
f, Longitudinal follow-ups of DsRed expression in donor-derived PB cells. 3 and
4 mice received DsRed2 and DsRed1 donor cells, respectively. g, Fraction of
DsRed1 cells in PB granulocytes, B cells and T cells from 6–8-month-old
induced (n 5 6) and uninduced (n 5 4) M2/HSB/Tn mice. Mean 6 s.d. is
shown.
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Extended Data Figure 2 | Stable propagation of Tn tags during in vitro
expansion of LT-HSC clones. a, Experimental flow chart showing primary
and secondary colony-formation assays and Tn tag analyses. b, Results of LM-
PCR analysis on primary LT-HSC colonies. M, 100-bp DNA ladder. The two
PCR products detected from colony no. 2 and 3 resulted from LM-PCR
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represents a unique Tn tag. The dashed line depicts 50-read cutoff. Tags in the
red box are high-confidence reads selected for further analysis. b, Detection
sensitivity of linear amplification-mediated PCR (LAM-PCR) and ligation-
mediated PCR (LM-PCR). Serial dilutions of genomic DNA from a transposon
mouse are used as input. c, Sensitivity of Tn tag detection from polyclonal
samples using LM-PCR. The polyclonal samples are assembled by mixing
10,000 DsRed1 PB cells and different numbers of each of ten HEK293 clones.
The Tn tags in these HEK293 clones were pre-determined. Six cell dosages

(1, 5, 25, 100, 500 and 2,500 cells) are tested in duplicates for each clone. A
positive call for the detection of the known Tn tags is determined based on
criteria defined in Supplementary Information. d, Read frequencies between
the duplicate samples in c are positively correlated. Each circle depicts a Tn tag
from one of the seven HEK293 clones at a particular cell dosage. e, Venn
diagram showing additional technical LM-PCR repeats performed on PB Gr
split samples of mouse AR1122 collected at 12, 18 and 23 weeks after Dox
withdrawal. Shown in plots are the number of Tn tags that are either commonly
or uniquely detected in each of the repeats. f, Plots showing read frequencies of
Tn tags described in e. g, Broad distribution of read frequencies among different
HEK293 clones with same input cell numbers. Averages of the duplicate
samples are shown.
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b, DsRed1 gates are established based on PB samples from uninduced M2/
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Extended Data Figure 6 | Clonal dynamics in PB samples of additional
induced mice. Data are presented in the same manner as Fig. 2. a–c, Tn tags
from mouse A384; d–f, Tn tags from mouse AR1123. Tags unique to B or T cells
are not shown. g–h, Tn tags from mouse AR1121. The terminal PB sample

shown in panel g encompasses approximately 50% of the blood, and the BM
sample are from forelimbs, hindlimbs, spine, sternum and ribs. k, The
percentage of recurrent Tn tags in prior PB samples when compared with that
in the BM granulocyte sample.
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Extended Data Figure 7 | Validation of results obtained in longitudinal
analyses. a, B cells and T cells Tn tags that are present in 4 or more PB samples
from induced mouse LL106. b, Results of nested-PCR analysis of PB
granulocytes collected from induced mouse AR446 at three time points.

c, Longitudinal PB analyses of 1-day-induced mice (LL91 and LL145). d, Tn tag
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mice and from all time points shown for induced mice LL106, AR384 and
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Extended Data Figure 8 | Lineage relationships among BM granulocytes,
monocytes and pro/pre-B cells. a, FACS plots showing purification scheme
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pre-B cells are double-sorted to minimize granulocytes contamination.
b, Comparison of clonal compositions of BM cell populations at different time

points after Dox withdrawal. c, Percentage of granulocyte Tn tags that are
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mouse or a single bone. d, Percentages of pro/pre B cell clones and monocyte
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Extended Data Figure 9 | Clonal analysis of haematopoiesis under
transplantation conditions. a, Experimental flow chart showing viral
infection of donor cells and longitudinal analysis of clonal dynamics in the
transplant mouse. 2,000 DsRed1 LSK cells were transduced with retrovirus in
the presence of TPO, Flt3 and SCF for 2 days and transferred to lethally
irradiated recipients in the presence of 13105 wild-type bone marrow cells.
b, Distribution of PB Gr tags and their presence in B cells and T cells from
recipient mouse AR1001 at three time points following transplantation.
Tn tags unique to B cells or T cells are not shown. c, Single-cell analysis
of PB granulocyte Tn tags from mouse AR1001 at 35 and 60 weeks after
transplantation. d, A subset of dominant clones revealed in single-cell analysis

(c) are stable in PB. e, Experimental flow chart showing purification and
transplantation of LT-HSCs or Lin2cKit1 BM cells from induced M2/HSB/Tn
mice. 4 3 104 DsRed1 LT-HSCs or 5 3 104 DsRed1Lin2cKit1 cells per
recipient mouse were used. f–h and k–m, Distribution, recurrence, and
lineage potential of PB Gr clones from recipient mouse AR856 receiving
LT-HSC donor cells (f–h) and mouse AR541 receiving Lin2cKit1 donor cells
(k–m). Data are presented in the same manner as Fig. 2b–d. i, Single-cell
analysis of granulocyte Tn tags from mouse AR856 25 weeks after
transplantation. j, The dominant clone identified in single-cell (SC) analysis
(clone no. 1 in i) is persistently detected in PB and BM from a single femur
at 33 weeks. This clone is also detected in the LT-HSC compartment.
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Extended Data Figure 10 | Analysis of lineage output by LT- HSCs in mouse
AR1122. a, Schematic for clonal analyses of BM LT-HSC, multipotent
progenitor (MPP), myeloerythroid progenitor (MyP), granulocytes and pro/
pre-B cells. b, Comparison of identified Tn tags among different BM
populations. Gr/B restricted tags are now shown. MPP-derived clones are
displayed in the enlarged panel on the right. c, Percentage of LT-HSC, MPP,

MyP clones that are present in BM granulocytes and pro/pre-B cells or PB
granulocytes (PB Gr data are shown in Extended Data Fig. 4e). d, Subtypes of
MPP clones. The lineage potential of MPP-derived clones are determined by
comparing Tn tags among MPP, MyPs, granulocytes and pro/pre-B cells.
Bipotent clones are those found in MPP/MyP/Gr/B, myeloid clones are MPP/
Myp/Gr, and lymphoid clones are MPP/B.
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