Monday,
May 16, 2011 - 13:30
Botnar Auditorium Belfer Building
Prof. Michael Brecht
Bernstein Center for Computational Neuroscience Humboldt University Berlin
Extracellular recordings have elucidated spatial neural representations without identifying underlying microcircuits. We labeled neurons juxtacellularly in medial entorhinal cortex of freely-moving rats with a novel friction-based pipette-stabilization system. In a linear maze novel to the animals, spatial firing of superficial layer neurons was reminiscent of grid cell activity. Layer 2 stellate cells showed stronger theta-modulation than layer 3 neurons and both fired during the ascending phase of field potential theta. Deep layer neurons showed little or no activity. Layer 2 stellate cells resided in hundreds of small patches. At the dorso-medial border of medial entorhinal cortex we identified larger patches, which contained polarized head-direction selective neurons firing during the descending theta-phase. Three axon systems interconnected the patches: centrifugal axons from superficial cells to single large patches; centripetal axons from large patch cells to single small patches, and circumcurrent axons interconnecting large patches. Our microcircuit analysis during behavior reveals modularity of entorhinal processing. If time permits I will complement these findings from entorhinal cortex with data from hippocampal whole-cell recordings in awake behaving animals.