Publications
2024
Fluorinated aromatic amino acids (FAAs) are promising tools when studying protein structure and dynamics by NMR spectroscopy. The incorporation FAAs in mammalian expression systems has been introduced only recently. Here, we investigate the effects of FAAs incorporation in proteins expressed in human cells, focusing on the probability of incorporation and its consequences on the 19F NMR spectra. By combining 19F NMR, direct MS and x-ray crystallography, we demonstrate that the probability of FAA incorporation is only a function of the FAA concentration in the expression medium and is a pure stochastic phenomenon. In contrast with the MS data, the x-ray structures of carbonic anhydrase II reveal that while the 3D structure is not affected, certain positions lack fluorine, suggesting that crystallization selectively excludes protein molecules featuring subtle conformational modifications. This study offers a predictive model of the FAA incorporation efficiency and provides a framework for controlling protein fluorination in mammalian expression systems.
For years, proteasomal degradation was predominantly attributed to the ubiquitin-26S proteasome pathway. However, it is now evident that the core 20S proteasome can independently target proteins for degradation. With approximately half of the cellular proteasomes comprising free 20S complexes, this degradation mechanism is not rare. Identifying 20S-specific substrates is challenging due to the dual-targeting of some proteins to either 20S or 26S proteasomes and the non-specificity of proteasome inhibitors. Consequently, knowledge of 20S proteasome substrates relies on limited hypothesis-driven studies. To comprehensively explore 20S proteasome substrates, we employed advanced mass spectrometry, along with biochemical and cellular analyses. This systematic approach revealed hundreds of 20S proteasome substrates, including proteins undergoing specific N- or C-terminal cleavage, possibly for regulation. Notably, these substrates were enriched in RNA- and DNA-binding proteins with intrinsically disordered regions, often found in the nucleus and stress granules. Under cellular stress, we observed reduced proteolytic activity in oxidized proteasomes, with oxidized protein substrates exhibiting higher structural disorder compared to unmodified proteins. Overall, our study illuminates the nature of 20S substrates, offering crucial insights into 20S proteasome biology.
2023
Heat shock protein 90 (Hsp90) serves as a crucial regulator of cellular proteostasis by stabilizing and regulating the activity of numerous substrates, many of which are oncogenic proteins. Therefore, Hsp90 is a drug target for cancer therapy. Hsp90 comprises three structural domains, a highly conserved amino-terminal domain (NTD), a middle domain (MD), and a carboxyl-terminal domain (CTD). The CTD is responsible for protein dimerization, is crucial for Hsp90's activity, and has therefore been targeted for inhibiting Hsp90. Here we addressed the question of whether the CTD dimerization in Hsp90, in the absence of bound nucleotides, is modulated by allosteric effects from the other domains. We studied full length (FL) and isolated CTD (isoC) yeast Hsp90 spin-labeled with a Gd(III) tag by double electron-electron resonance measurements to track structural differences and to determine the apparent dissociation constant (Kd). We found the distance distributions for both the FL and isoC to be similar, indicating that the removal of the NTD and MD does not significantly affect the structure of the CTD dimer. The low-temperature double electron-electron resonance-derived Kd values, as well as those obtained at room temperature using microscale thermophoresis and native mass spectrometry, collectively suggested the presence of some allosteric effects from the NTDs and MDs on the CTD dimerization stability in the apo state. This was evidenced by a moderate increase in the Kd for the isoC compared with the FL mutants. Our results reveal a fine regulation of the CTD dimerization by allosteric modulation, which may have implications for drug targeting strategies in cancer therapy.
Protein degradation is one of the essential mechanisms that enables reshaping of the proteome landscape in response to various stimuli. The largest E3 ubiquitin ligase family that targets proteins to degradation by catalyzing ubiquitination is the cullin-RING ligases (CRLs). Many of the proteins that are regulated by CRLs are central to tumorigenesis and tumor progression, and dysregulation of the CRL family is frequently associated with cancer. The CRL family comprises ∼300 complexes, all of which are regulated by the COP9 signalosome complex (CSN). Therefore, CSN is considered an attractive target for therapeutic intervention. Research efforts for targeted CSN inhibition have been directed towards inhibition of the complex enzymatic subunit, CSN5. Here, we have taken a fresh approach focusing on CSNAP, the smallest CSN subunit. Our results show that the C-terminal region of CSNAP is tightly packed within the CSN complex, in a groove formed by CSN3 and CSN8. We show that a 16 amino acid C-terminal peptide, derived from this CSN-interacting region, can displace the endogenous CSNAP subunit from the complex. This, in turn, leads to a CSNAP null phenotype that attenuates CSN activity and consequently CRLs function. Overall, our findings emphasize the potential of a CSNAP-based peptide for CSN inhibition as a new therapeutic avenue.
Controlled degradation of proteins is necessary for ensuring their abundance and sustaining a healthy and accurately functioning proteome. One of the degradation routes involves the uncapped 20S proteasome, which cleaves proteins with a partially unfolded region, including those that are damaged or contain intrinsically disordered regions. This degradation route is tightly controlled by a recently discovered family of proteins named Catalytic Core Regulators (CCRs). Here, we show that CCRs function through an allosteric mechanism, coupling the physical binding of the PSMB4 β-subunit with attenuation of the complex's three proteolytic activities. In addition, by dissecting the structural properties that are required for CCR-like function, we could recapitulate this activity using a designed protein that is half the size of natural CCRs. These data uncover an allosteric path that does not involve the proteasome's enzymatic subunits but rather propagates through the non-catalytic subunit PSMB4. This way of 20S proteasome-specific attenuation opens avenues for decoupling the 20S and 26S proteasome degradation pathways as well as for developing selective 20S proteasome inhibitors.
2022
Long-lived proteins (LLPs), although less common than their short-lived counterparts, are increasingly recognized to play important roles in age-related diseases such as Alzheimers. In particular, spontaneous chemical modifications can accrue over time that serve as both indicators of and contributors to disrupted autophagy. For example, isomerization in LLPs is common and occurs in the absence of protein turnover while simultaneously interfering with the protein turnover by impeding proteolysis. In addition to the biological implications this creates, isomerization may also interfere with its own analysis. To clarify, bottom-up proteomics experiments rely on protein digestion by proteases, most commonly trypsin, but the extent to which isomerization might interfere with trypsin digestion is unknown. Here, we use a combination of liquid chromatography and mass spectrometry to examine the effect of isomerization on proteolysis by trypsin and chymotrypsin. Isomerized aspartic acid and serine residues (which represent the most common sites of isomerization in LLPs) were placed at various locations relative to the preferred protease cleavage point to evaluate the influence on digestion efficiency. Trypsin was found to be relatively tolerant of isomerization, except when present at the residue immediately C-terminal to Arg/Lys. For chymotrypsin, the influence of isomerization on digestion was less predictable, resulting in long-range interference for some isomer/peptide combinations. Given the trypsin- and chymotrypsin-like behaviors of the 20S proteasome, and to further establish the biological relevance of isomerization in LLPs, substrates with isomerized sites were also tested against proteasomal degradation. Significant disruption of 20S proteolysis was observed, suggesting that if LLPs persist long enough to isomerize, it will be difficult for the cells to digest them.
Native mass spectrometry (nMS) enables intact non-covalent complexes to be studied in the gas phase. nMS can provide information on composition, stoichiometry, topology, and, when coupled with surface-induced dissociation (SID), subunit connectivity. Here we describe the characterization of protein complexes by nMS and SID. Substructural information obtained using this method is consistent with the solved complex structure, when a structure exists. This provides confidence that the method can also be used to obtain substructural information for unknowns, providing insight into subunit connectivity and arrangements. High-energy SID can also provide information on proteoforms present. Previously SID has been limited to a few in-house modified instruments and here we focus on SID implemented within an in-house-modified Q Exactive UHMR. However, SID is currently commercially available within the Waters Select Series Cyclic IMS instrument. Projects are underway that involve the NIH-funded native MS resource (nativems.osu.edu), instrument vendors, and third-party vendors, with the hope of bringing the technology to more platforms and labs in the near future. Currently, nMS resource staff can perform SID experiments for interested research groups.
Proteasomes are traditionally considered intracellular complexes that play a critical role in maintaining proteostasis by degrading short-lived regulatory proteins and removing damaged proteins. Remarkably, in addition to these well-studied intracellular roles, accumulating data indicate that proteasomes are also present in extracellular body fluids. Not much is known about the origin, biological role, mode(s) of regulation or mechanisms of extracellular transport of these complexes. Nevertheless, emerging evidence indicates that the presence of proteasomes in the extracellular milieu is not a random phenomenon, but rather a regulated, coordinated physiological process. In this review, we provide an overview of the current understanding of extracellular proteasomes. To this end, we examine 143 proteomic datasets, leading us to the realization that 20S proteasome subunits are present in at least 25 different body fluids. Our analysis also indicates that while 19S subunits exist in some of those fluids, the dominant proteasome activator in these compartments is the PA28α/β complex. We also elaborate on the positive correlations that have been identified in plasma and extracellular vesicles, between 20S proteasome and activity levels to disease severity and treatment efficacy, suggesting the involvement of this understudied complex in pathophysiology. In addition, we address the considerations and practical experimental methods that should be taken when investigating extracellular proteasomes. Overall, we hope this review will stimulate new opportunities for investigation and thoughtful discussions on this exciting topic that will contribute to the maturation of the field.
Targeted protein degradation is critical for proper cellular function and development. Protein degradation pathways, such as the ubiquitin proteasomes system, autophagy, and endosome-lysosome pathway, must be tightly regulated to ensure proper elimination of misfolded and aggregated proteins and regulate changing protein levels during cellular differentiation, while ensuring that normal proteins remain unscathed. Protein degradation pathways have also garnered interest as a means to selectively eliminate target proteins that may be difficult to inhibit via other mechanisms. On June 7 and 8, 2021, several experts in protein degradation pathways met virtually for the Keystone eSymposium "Targeting protein degradation: from small molecules to complex organelles." The event brought together researchers working in different protein degradation pathways in an effort to begin to develop a holistic, integrated vision of protein degradation that incorporates all the major pathways to understand how changes in them can lead to disease pathology and, alternatively, how they can be leveraged for novel therapeutics.
Multi-enzyme assemblies composed of metabolic enzymes catalyzing sequential reactions are being increasingly studied. Here, we report the discovery of a 1.6 megadalton multi-enzyme complex from Bacillus subtilis composed of two enzymes catalyzing opposite (counter-enzymes) rather than sequential reactions: glutamate synthase (GltAB) and glutamate dehydrogenase (GudB), which make and break glutamate, respectively. In vivo and in vitro studies show that the primary role of complex formation is to inhibit the activity of GudB. Using cryo-electron microscopy, we elucidated the structure of the complex and the molecular basis of inhibition of GudB by GltAB. The complex exhibits unusual oscillatory progress curves and is necessary for both planktonic growth, in glutamate-limiting conditions, and for biofilm growth, in glutamate-rich media. The regulation of a key metabolic enzyme by complexing with its counter enzyme may thus enable cell growth under fluctuating glutamate concentrations. [Figure not available: see fulltext.]
2021
Mature red blood cells (RBCs) lack internal organelles and canonical defense mechanisms, making them both a fascinating host cell, in general, and an intriguing choice for the deadly malaria parasite Plasmodium falciparum (Pf), in particular. Pf, while growing inside its natural host, the human RBC, secretes multipurpose extracellular vesicles (EVs), yet their influence on this essential host cell remains unknown. Here we demonstrate that Pf parasites, cultured in fresh human donor blood, secrete within such EVs assembled and functional 20S proteasome complexes (EV-20S). The EV-20S proteasomes modulate the mechanical properties of naïve human RBCs by remodeling their cytoskeletal network. Furthermore, we identify four degradation targets of the secreted 20S proteasome, the phosphorylated cytoskeletal proteins β-adducin, ankyrin-1, dematin and Epb4.1. Overall, our findings reveal a previously unknown 20S proteasome secretion mechanism employed by the human malaria parasite, which primes RBCs for parasite invasion by altering membrane stiffness, to facilitate malaria parasite growth.
In recent decades, antibodies (Abs) have attracted the attention of academia and the biopharmaceutical industry due to their therapeutic properties and versatility in binding a vast spectrum of antigens. Different engineering strategies have been developed for optimizing Ab specificity, efficacy, affinity, stability and production, enabling systematic screening and analysis procedures for selecting lead candidates. This quality assessment is critical but usually demands time-consuming and labor-intensive purification procedures. Here, we harnessed the direct-mass spectrometry (direct-MS) approach, in which the analysis is carried out directly from the crude growth media, for the rapid, structural characterization of designed Abs. We demonstrate that properties such as stability, specificity and interactions with antigens can be defined, without the need for prior purification.
Human serum albumin (HSA) is efficiently taken up by cancer cells as a source of carbon and energy. In this study, we prepared a monomodified derivative of HSA covalently linked to an EDTA derivative and investigated its efficacy to shuttle weakly anti-proliferative EDTA associating ligands such as vanadium, into a cancer cell line. HSA-S-MAL-(CH2)2-NH-CO-EDTA was found to associate both with the vanadium anion (+5) and the vanadium cation (+4) with more than thrice the associating affinity of those ligands toward EDTA. Both conjugates internalized into glioma tumor cell line via caveolae-mediated endocytosis pathway and showed potent anti-proliferative capacities. IC50 values were in the range of 0.2 to 0.3 µM, potentiating the anti-proliferative efficacies of vanadium (+4) and vanadium (+5) twenty to thirty fold, respectively. HSA-EDTA-VO++ in particular is a cancer permeable prodrug conjugate. The associated vanadium (+4) is not released, nor is it active anti-proliferatively prior to its engagement with the cancerous cells. The bound vanadium (+4) dissociates from the conjugate under acidic conditions with half maximal value at pH 5.8. In conclusion, the anti-proliferative activity feature of vanadium can be amplified and directed toward a cancer cell line. This is accomplished using a specially designed HSA-EDTA-shuttling vehicle, enabling vanadium to be anti-proliferatively active at the low micromolar range of concentration.
Understanding proteinligand interactions in a cellular context is an important goal in molecular biology and biochemistry, and particularly for drug development. Investigators must demonstrate that drugs penetrate cells and specifically bind their targets. Towards that end, we present a native mass spectrometry (MS)-based method for analyzing drug uptake and target engagement in eukaryotic cells. This method is based on our previously introduced direct-MS method for rapid analysis of proteins directly from crude samples. Here, direct-MS enables label-free studies of proteindrug binding in human cells and is used to determine binding affinities of lead compounds in crude samples. We anticipate that this method will enable the application of native MS to a range of problems where cellular context is important, including proteinprotein interactions, drug uptake and binding, and characterization of therapeutic proteins.
\u201cThe biggest challenge facing scientists is navigating in the unknown My favorite molecule is the proteasome complex \u201d Find out more about Michal Sharon in her Introducing Profile.
Biological mass spectrometry (MS) encompasses a range of methods for characterizing proteins and other biomolecules. MS is uniquely powerful for the structural analysis of endogenous protein complexes, which are often heterogeneous, poorly abundant, and refractive to characterization by other methods. Here, we focus on how biological MS can contribute to the study of endogenous protein complexes, which we define as complexes expressed in the physiological host and purified intact, as opposed to reconstituted complexes assembled from heterologously expressed components. Biological MS can yield information on complex stoichiometry, heterogeneity, topology, stability, activity, modes of regulation, and even structural dynamics. We begin with a review of methods for isolating endogenous complexes. We then describe the various biological MS approaches, focusing on the type of information that each method yields. We end with future directions and challenges for these MS-based methods.
The P-loop Walker A motif underlies hundreds of essential enzyme families that bind nucleotide triphosphates (NTPs) and mediate phosphoryl transfer (P-loop NTPases), including the earliest DNA/RNA helicases, translocases, and recombinases. What were the primordial precursors of these enzymes? Could these large and complex proteins emerge from simple polypeptides? Previously, we showed that P-loops embedded in simple βα repeat proteins bind NTPs but also, unexpectedly so, ssDNA and RNA. Here, we extend beyond the purely biophysical function of ligand binding to demonstrate rudimentary helicase-like activities. We further constructed simple 40-residue polypeptides comprising just one β-(P-loop)-α element. Despite their simplicity, these P-loop prototypes confer functions such as strand separation and exchange. Foremost, these polypeptides unwind dsDNA, and upon addition of NTPs, or inorganic polyphosphates, release the bound ssDNA strands to allow reformation of dsDNA. Binding kinetics and low-resolution structural analyses indicate that activity is mediated by oligomeric forms spanning from dimers to high-order assemblies. The latter are reminiscent of extant P-loop recombinases such as RecA. Overall, these P-loop prototypes compose a plausible description of the sequence, structure, and function of the earliest P-loop NTPases. They also indicate that multifunctionality and dynamic assembly were key in endowing short polypeptides with elaborate, evolutionarily relevant functions.
Accumulating evidence arising from numerous clinical studies indicate that assembled and functional 20S proteasome complexes circulate freely in plasma. Elevated levels of this core proteolytic complex have been found in the plasma of patients suffering from blood, skin and solid cancers, autoimmune disorders, trauma and sepsis. Moreover, in various diseases, there is a positive correlation between circulating 20S proteasome (c20S) levels and treatment efficacy and survival rates, suggesting the involvement of this under-studied c20S complex in pathophysiology. However, many aspects of this system remain enigmatic, as we still do not know the origin, biological role or mechanisms of extracellular transport and regulation of c20S proteasomes. In this review, we provide an overview of the current understanding of the c20S proteasome system and discuss the remaining gaps in knowledge.
Quinone methide (QM) chemistry is widely applied including in enzyme inhibitors. Typically, enzymemediated bond breaking releases a phenol product that rearranges into an electrophilic QM that in turn covalently modifies protein side chains. However, the factors that govern the reactivity of QMbased inhibitors and their mode of inhibition have not been systematically explored. Foremost, enzyme inactivation might occur in cis, whereby a QM molecule inactivates the very same enzyme molecule that released it, or by trans if the released QMs diffuse away and inactivate other enzyme molecules. We examined QMbased inhibitors for enzymes exhibiting phosphoester hydrolase activity. We tested different phenolic substituents and benzylic leaving groups, thereby modulating the rates of enzymatic hydrolysis, phenolatetoQM rearrangement, and the electrophilicity of the resulting QM. By developing assays that distinguish between cis and trans inhibition, we have identified certain combinations of leaving groups and phenyl substituents that lead to inhibition in the cis mode, while other combinations gave trans inhibition. Our results suggest that cisacting QMbased substrates could be used as activitybased probes to identify various phospho and phosphonoester hydrolases, and potentially other hydrolases. Internal affairs: Phosphoester substrates that release electrophilic quinonemethides were applied as activitybased probes in three phosphotriesterases that differ in mechanism and level of activity. Their substrates reactivity, and mode of labeling, were systematically investigated with the aim of achieving specific cis labeling rather than trans.
2020
About 20% of all familial amyotrophic lateral sclerosis (ALS) cases are associated with mutations in superoxide dismutase (SOD1), a homodimeric protein. The disease has an autosomal-dominant inheritance pattern. It is, therefore, important to determine whether wild-type and mutant SOD1 subunits self-associate randomly or preferentially. A measure for the extent of bias in subunit association is the coupling constant determined in a double-mutant cycle type analysis. Here, cell lysates containing co-expressed wild-type and mutant SOD1 subunits were analyzed by native mass spectrometry to determine these coupling constants. Strikingly, we find a linear positive correlation between the coupling constant and the reported average duration of the disease. Our results indicate that inter-subunit communication and a preference for heterodimerization greatly increase the disease severity.
Analysis of intact proteins by native mass spectrometry has emerged as a powerful tool for obtaining insight into subunit diversity, post-translational modifications, stoichiometry, structural arrangement, stability, and overall architecture. Typically, such an analysis is performed following protein purification procedures, which are time consuming, costly, and labor intensive. As this technology continues to move forward, advances in sample handling and instrumentation have enabled the investigation of intact proteins in situ and in crude samples, offering rapid analysis and improved conservation of the biological context. This emerging field, which involves various ion source platforms such as matrix-assisted laser desorption ionization (MALDI) and electrospray ionization (ESI) for both spatial imaging and solution-based analysis, is expected to impact many scientific fields, including biotechnology, pharmaceuticals, and clinical sciences. In this Perspective, we discuss the information that can be retrieved by such experiments as well as the current advantages and technical challenges associated with the different sampling strategies. Furthermore, we present future directions of these MS-based methods, including current limitations and efforts that should be made to make these approaches more accessible. Considering the vast progress we have witnessed in recent years, we anticipate that the advent of further innovations enabling minimal handling of MS samples will make this field more robust, user friendly, and widespread.
The funding statement for this article should read as follows: \u201cThe research was supported by grants from the European Research Council (335439 to SJF, 636752 to MS, and 310649 and 825076 to DF), the Israel Science Foundation to MS (300/ 17) and through its Center of Excellence in Structural Cell Biology to SJF and DF (1775/12), a research grant from Sheri and David E. Stone and by a charitable donation from Sam Switzer and family. M.S. is an incumbent of the Aharon and Ephraim Katzir Memorial Professorial Chair. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.\u201d
Native mass spectrometry (MS) allows the interrogation of structural aspects of macromolecules in the gas phase, under the premise of having initially maintained their solution-phase noncovalent interactions intact. In the more than 25 years since the first reports, the utility of native MS has become well established in the structural biology community. The experimental and technological advances during this time have been rapid, resulting in dramatic increases in sensitivity, mass range, resolution, and complexity of possible experiments. As experimental methods have improved, there have been accompanying developments in computational approaches for analyzing and exploiting the profusion of MS data in a structural and biophysical context. In this perspective, we consider the computational strategies currently being employed by the community, aspects of best practice, and the challenges that remain to be addressed. Our perspective is based on discussions within the European Cooperation in Science and Technology Action on Native Mass Spectrometry and Related Methods for Structural Biology (EU COST Action BM1403), which involved participants from across Europe and North America. It is intended not as an in-depth review but instead to provide an accessible introduction to and overview of the topic-to inform newcomers to the field and stimulate discussions in the community about addressing existing challenges. Our complementary perspective (http://dx.doi.org/10.1021/acs.analchem.9b05792) focuses on software tools available to help researchers tackle some of the challenges enumerated here.
The past few years have seen a dramatic increase in applications of native mass and ion mobility spectrometry, especially for the study of proteins and protein complexes. This increase has been catalyzed by the availability of commercial instrumentation capable of carrying out such analyses. As in most fields, however, the software to process the data generated from new instrumentation lags behind. Recently, a number of research groups have started addressing this by developing software, but further improvements are still required in order to realize the full potential of the data sets generated. In this perspective, we describe practical aspects as well as challenges in processing native mass spectrometry (MS) and ion mobility-MS data sets and provide a brief overview of currently available tools. We then set out our vision of future developments that would bring the community together and lead to the development of a common platform to expedite future computational developments, provide standardized processing approaches, and serve as a location for the deposition of data for this emerging field. This perspective has been written by members of the European Cooperation in Science and Technology Action on Native MS and Related Methods for Structural Biology (EU COST Action BM1403) as an introduction to the software tools available in this area. It is intended to serve as an overview for newcomers and to stimulate discussions in the community on further developments in this field, rather than being an in-depth review. Our complementary perspective (http://dx.doi.org/10.1021/acs.analchem.9b05791) focuses on computational approaches used in this field.
Ortholog protein complexes are responsible for equivalent functions in different organisms. However, during evolution, each organism adapts to meet its physiological needs and the environmental challenges imposed by its niche. This selection pressure leads to structural diversity in protein complexes, which are often difficult to specify, especially in the absence of high-resolution structures. Here, we describe a multilevel experimental approach based on native mass spectrometry (MS) tools for elucidating the structural preservation and variations among highly related protein complexes. The 20S proteasome, an essential protein degradation machinery, served as our model system, wherein we examined five complexes isolated from different organisms. We show that throughout evolution, from the Thermoplasma acidophilum archaeal prokaryotic complex to the eukaryotic 20S proteasomes in yeast (Saccharomyces cerevisiae) and mammals (rat - Rattus norvegicus, rabbit - Oryctolagus cuniculus and human - HEK293 cells), the proteasome increased both in size and stability. Native MS structural signatures of the rat and rabbit 20S proteasomes, which heretofore lacked high-resolution, three-dimensional structures, highly resembled that of the human complex. Using cryoelectron microscopy single-particle analysis, we were able to obtain a high-resolution structure of the rat 20S proteasome, allowing us to validate the MS-based results. Our study also revealed that the yeast complex, and not those in mammals, was the largest in size and displayed the greatest degree of kinetic stability. Moreover, we also identified a new proteoform of the PSMA7 subunit that resides within the rat and rabbit complexes, which to our knowledge have not been previously described. Altogether, our strategy enables elucidation of the unique structural properties of protein complexes that are highly similar to one another, a framework that is valid not only to ortholog protein complexes, but also for other highly related protein assemblies.
The cullin-RING ubiquitin E3 ligase (CRL) family consists of similar to 250 complexes that catalyze ubiquitylation of proteins to achieve cellular regulation. All CRLs are inhibited by the COP9 signalosome complex (CSN) through both enzymatic (deneddylation) and nonenzymatic (steric) mechanisms. The relative contribution of these two mechanisms is unclear. Here, we decouple the mechanisms using CSNAP, the recently discovered ninth subunit of the CSN. We find that CSNAP reduces the affinity of CSN toward CRL complexes. Removing CSNAP does not affect deneddylation, but leads to global effects on the CRL, causing altered reproductive capacity, suppressed DNA damage response, and delayed cell cycle progression. Thus, although CSNAP is only 2% of the CSN mass, it plays a critical role in the steric regulation of CRLs by the CSN.
Aims: The protein degradation machinery plays a critical role in the maintenance of cellular homeostasis, preventing the accumulation of damaged or misfolded proteins and controlling the levels of regulatory proteins. The 20S proteasome degradation machinery, which predominates during oxidative stress, is able to cleave any protein with a partially unfolded region, however, uncontrolled degradation of the myriad of potential substrates is improbable. This study aimed to identify and characterize the regulatory mechanism that controls 20S proteasome-mediated degradation. Results: Using a bioinformatic screen based on known 20S proteasome regulators, we have discovered a novel family of 20S proteasome regulators, named catalytic core regulators (CCRs). These regulators share structural and sequence similarities, and coordinate the function of the 20S proteasome by affecting the degradation of substrates. The CCRs are involved in the oxidative stress response via Nrf2, organizing into a feed-forward loop regulatory circuit, with some members stabilizing Nrf2, others being induced by Nrf2, and all of them inhibiting the 20S proteasome. Innovation and Conclusion: These data uncover a new family of regulatory proteins that utilize a fine-tuned mechanism to carefully modulate the activity of the 20S proteasome, in particular under conditions of oxidative stress, ensuring its proper functioning by controlling the degradative flux.
Proteins derived by recombinant technologies must be characterized to ensure quality, consistency and optimal production. These properties are usually assayed following purification procedures that are time consuming and labor intensive. Here, we describe a native mass spectrometry (MS) approach, direct-MS, for rapid characterization of intact overexpressed proteins immediately from crude samples. In this protocol, we discuss the multiple applications of the method and outline the necessary steps required for sample preparation, data collection and interpretation of results. We begin with the sample preparation workflows, which are relevant for recombinant proteins produced within bacteria, those analyzed straight from crude cell lysate, and secreted proteins generated in eukaryotic expression systems that are assessed directly from the growth culture medium. We continue with the mass acquisition steps that enable immediate definition of properties such as expressibility, solubility, assembly state, folding, overall structure, stability, post-translational modifications and associations with biomolecules. We demonstrate the applicability of the method by presenting the characterization of a computationally designed toxin-antitoxin heterodimer, activity and protein-interaction determination of a regulatory protein and detailed glycosylation analysis of a designed intact antibody. Overall, we describe a simple and rapid protocol that is relevant to both prokaryotic and eukaryotic expression systems and can be carried out on multiple mass spectrometers, such as Orbitrap and quadrupole time-of-flight (QTOF)-based mass spectroscopy platforms, that enable intact protein detection. The procedure takes from 30 min to several hours, from sample collection to data acquisition, depending on the depth of MS analysis.
2019
Antibodies developed for research and clinical applications may exhibit suboptimal stability, expressibility, or affinity. Existing optimization strategies focus on surface mutations, whereas natural affinity maturation also introduces mutations in the antibody core, simultaneously improving stability and affinity. To systematically map the mutational tolerance of an antibody variable fragment (Fv), we performed yeast display and applied deep mutational scanning to an anti-lysozyme antibody and found that many of the affinity-enhancing mutations clustered at the variable light-heavy chain interface, within the antibody core. Rosetta design combined enhancing mutations, yielding a variant with tenfold higher affinity and substantially improved stability. To make this approach broadly accessible, we developed AbLIFT, an automated web server that designs multipoint core mutations to improve contacts between specific Fv light and heavy chains (http://AbLIFT.weizmann.ac.il). We applied AbLIFT to two unrelated antibodies targeting the human antigens VEGF and QSOX1. Strikingly, the designs improved stability, affinity, and expression yields. The results provide proof-of-principle for bypassing laborious cycles of antibody engineering through automated computational affinity and stability design.
The last decade has seen accumulating evidence of various proteins being degraded by the core 20S proteasome, without its regulatory particle(s). Here, we will describe recent advances in our knowledge of the functional aspects of the 20S proteasome, exploring several different systems and processes. These include neuronal communication, post-translational processing, oxidative stress, intrinsically disordered protein regulation, and extracellular proteasomes. Taken together, these findings suggest that the 20S proteasome, like the well-studied 26S proteasome, is involved in multiple biological processes. Clarifying our understanding of its workings calls for a transformation in our perception of 20S proteasome-mediated degradationno longer as a passive and marginal path, but rather as an independent, coordinated biological process. Nevertheless, in spite of impressive progress made thus far, the field still lags far behind the front lines of 26S proteasome research. Therefore, we also touch on the gaps in our knowledge of the 20S proteasome that remain to be bridged in the future.
Proteasome dysfunction is emerging as a novel pathomechanism for the development of chronic obstructive pulmonary disease (COPD), a major leading cause of death in the world. Cigarette smoke, one of the main risk factors for COPD, impairs proteasome function in vitro and in vivo. In the present study, we dissected the molecular changes induced by cigarette smoke on the proteasome in lung epithelial cells and mouse lungs. 26S proteasome pull-down, MS interactome, and stoichiometry analyses indicated that 26S proteasome complexes become instable in cigarette smoke-treated lung epithelial cells as well as in lungs of mice after three day smoke exposure. The interactome of the 26S was clearly altered in mouse lungs upon smoke exposure but not in cells after 24 h of smoke exposure. Using native MS analysis of purified 20S proteasomes, we observed some destabilization of 20S complexes purified from cigarette smoke-exposed cells in the absence of any dominant and inhibitory modification of proteasomal proteins. Taken together, our results suggest that cigarette smoke induces minor but detectable changes in the stability of 20S and 26S proteasome complexes which might contribute to imbalanced proteostasis in a chronic setting as observed in chronic lung diseases associated with cigarette smoking.
The 20S proteasome is a large multisubunit proteolytic machine that is central to intracellular protein degradation. It is found in all three kingdoms of life and is ubiquitous in archaea and eukaryotes. Since its discovery, much effort employing a diverse array of structural biology methods has been applied to help understand its structure/function relationships. Here, we will specifically focus on the application of native mass spectrometry (MS) approaches for structural investigations of the 20S proteasome. Native MS is a method that examines intact protein assemblies, without disturbing the noncovalent interactions that govern the overall structure. This method is ideally suited to revealing the intrinsic heterogeneity of a given sample and provides insight into the composition, stoichiometry, subunit architecture, and topology of the protein assembly. Initially, we describe native MS-oriented protocols for the isolation of endogenous 20S proteasomes from yeast, rat liver, and human cells. We then highlight the applicability of native MS methodologies, using different instrumental platforms, for structural investigations of the complex. In particular, by means of proteasome biology, we highlight the different approaches used to analyze both intact complexes-their natural heterogeneity and interactions with substrates and regulators-and their individual constituent subunits.
2018
Abundant and essential motifs, such as phosphate-binding loops (P-loops), are presumed to be the seeds of modern enzymes. The Walker-A P-loop is absolutely essential in modern NTPase enzymes, in mediating binding, and transfer of the terminal phosphate groups of NTPs. However, NTPase function depends on many additional active-site residues placed throughout the protein's scaffold. Can motifs such as P-loops confer function in a simpler context? We applied a phylogenetic analysis that yielded a sequence logo of the putative ancestral Walker-A P-loop element: a β-strand connected to an α-helix via the P-loop. Computational design incorporated this element into de novo designed β-α repeat proteins with relatively few sequence modifications. We obtained soluble, stable proteins that unlike modern P-loop NTPases bound ATP in a magnesium-independent manner. Foremost, these simple P-loop proteins avidly bound polynucleotides, RNA, and single-strand DNA, and mutations in the P-loop's key residues abolished binding. Binding appears to be facilitated by the structural plasticity of these proteins, including quaternary structure polymorphism that promotes a combined action of multiple P-loops. Accordingly, oligomerization enabled a 55-aa protein carrying a single P-loop to confer avid polynucleotide binding. Overall, our results show that the P-loop Walker-A motif can be implemented in small and simple β-α repeat proteins, primarily as a polynucleotide binding motif.
Characterization of overexpressed proteins is essential for assessing their quality, and providing input for iterative redesign and optimization. This process is typically carried out following purification procedures that require pronounced cost of time and labor. Therefore, quality assessment of recombinant proteins with no prior purification offers a major advantage. Here, we report a native mass spectrometry method that enables characterization of overproduced proteins directly from culture media. Properties such as solubility, molecular weight, folding, assembly state, overall structure, post-translational modifications and binding to relevant biomolecules are immediately revealed. We show the applicability of the method for in-depth characterization of secreted recombinant proteins from eukaryotic systems such as yeast, insect, and human cells. This method, which can be readily extended to high-throughput analysis, considerably shortens the time gap between protein production and characterization, and is particularly suitable for characterizing engineered and mutated proteins, and optimizing yield and quality of overexpressed proteins.
Targeted proteolysis of the disordered Parkinson's disease protein alpha-synuclein (αSyn) constitutes an important event under physiological and pathological cell conditions. In this work, site-specific αSyn cleavage by different endopeptidases in vitro and by endogenous proteases in extracts of challenged and unchallenged cells was studied by time-resolved NMR spectroscopy. Specifically, proteolytic processing was monitored under neutral and low pH conditions and in response to Rotenone-induced oxidative stress. Further, time-dependent degradation of electroporation-delivered αSyn in intact SH-SY5Y and A2780 cells was analyzed. Results presented here delineate a general framework for NMR-based proteolysis studies in vitro and in cellulo, and confirm earlier reports pertaining to the exceptional proteolytic stability of αSyn under physiological cell conditions. However, experimental findings also reveal altered protease susceptibilities in selected mammalian cell lines and upon induced cell stress.
A powerful method to determine the energetic coupling between amino acids is double mutant cycle analysis. In this method, two residues are mutated separately and in combination and the energetic effects of the mutations are determined. A deviation of the effect of the double mutation from the sum of effects of the single mutations indicates that the two residues are interacting directly or indirectly. Here, we show that double mutant cycle analysis by native mass spectrometry can be carried out for interactions in crude Escherichia coli cell extracts, thereby obviating the need for protein purification and generating binding isotherms. Our results indicate that intermolecular hydrogen bond strengths are not affected by the more crowded conditions in cell lysates.
Ion-mobility mass spectrometry (IM-MS) is an approach that can provide information on the stoichiometry, composition, protein contacts and topology of protein complexes. The power of this approach lies not only in its sensitivity and speed of analysis, but also in the fact that it is a technique that can capture the repertoire of conformational states adopted by protein assemblies. Here, we describe the array of available IM-MS based tools, and demonstrate their application to the structural characterization of various protein complexes, including challenging systems as amyloid aggregates and membrane proteins. We also discuss recent studies in which IM-MS was applied towards investigations of conformational transitions and stabilization effects induced by protein interactions.
Focal adhesions (FAs) are multi-protein complexes that connect the actin cytoskeleton to the extracellular matrix, via integrin receptors. The growth, stability and adhesive functionality of these structures are tightly regulated by mechanical stress, yet, despite the extensive characterization of the integrin adhesome, the detailed molecular mechanisms underlying FA mechanosensitivity are still unclear. Besides talin, another key candidate for regulating FA-associated mechanosensing, is vinculin, a prominent FA component, which possesses either closed ("auto-inhibited") or open ("active") conformation. A direct experimental demonstration, however, of the conformational transition between the two states is still absent. In this study, we combined multiple structural and biological approaches to probe the transition from the auto-inhibited to the active conformation, and determine its effects on FA structure and dynamics. We further show that the transition from a closed to an open conformation requires two sequential steps that can differentially regulate FA growth and stability.
2017
The tumor suppressor p53 is a transcription factor that regulates the expression of a range of target genes in response to cellular stress. Adding to the complexity of understanding its cellular function is that in addition to the full-length protein, several p53 isoforms are produced in humans, harboring diverse expression patterns and functionalities. One isoform, Delta 40p53, which lacks the first transactivation domain including the binding region for the negative regulator MDM2, was shown to be a product of alternative translation initiation. Here we report the discovery of an alternative cellular mechanism for Delta 40p53 formation. We show that the 20S proteasome specifically cleaves the full-length protein (FLp53) to generate the Delta 40p53 isoform. Moreover, we demonstrate that a dimer of FLp53 interacts with a Delta 40p53 dimer, creating a functional hetero-tetramer. Consequently, the co-expression of both isoforms attenuates the transcriptional activity of FLp53 in a dominant negative manner. Finally, we demonstrate that following oxidative stress, at the time when the 20S proteasome becomes the major degradation machinery and FLp53 is activated, the formation of Delta 40p53 is enhanced, creating a negative feedback loop that balances FLp53 activation. Overall, our results suggest that Delta 40p53 can be generated by a 20S proteasome-mediated post-translational mechanism so as to control p53 function. More generally, the discovery of a specific cleavage function for the 20S proteasome may represent a more general cellular regulatory mechanism to produce proteins with distinct functional properties.
The strength and specificity of protein complex formation is crucial for most life processes and is determined by interactions between residues in the binding partners. Double-mutant cycle analysis provides a strategy for studying the energetic coupling between amino acids at the interfaces of such complexes. Here we show that these pairwise interaction energies can be determined from a single high-resolution native mass spectrum by measuring the intensities of the complexes formed by the two wild-type proteins, the complex of each wild-type protein with a mutant protein, and the complex of the two mutant proteins. This native mass spectrometry approach, which obviates the need for error-prone measurements of binding constants, can provide information regarding multiple interactions in a single spectrum much like nuclear Overhauser effects (NOEs) in nuclear magnetic resonance. Importantly, our results show that specific inter-protein contacts in solution are maintained in the gas phase.
Among the advantages of an electrostatic ion beam trap (EIBT), which is based on purely electrostatic fields, are mass-unlimited trapping and ease of operation. We have developed a new system that couples an electrospray ion source to an EIBT. Between the source and EIBT there is a Paul trap in which the ions are accumulated before being extracted and accelerated. After the ion bunch has entered the EIBT, the ions are trapped by rapidly raising the voltages on the entrance mirror. The oscillations of the bunch are detected by amplifying the charge induced on a pickup ring in the center of the trap, the ion mass being directly proportional to the square of the oscillation period. The trapping of biomolecules in the RF-bunching mode of the EIBT is used for measurement of mass spectra and collision cross sections. Coalescence of bunches of ions of nearby mass in the self-bunching mode is also demonstrated.
Determining the properties of proteins prior to purification saves time and labor. Here, we demonstrate a native mass spectrometry approach for rapid characterization of overexpressed proteins directly in crude cell lysates. The method provides immediate information on the identity, solubility, oligomeric state, overall structure, and stability, as well as ligand binding, without the need for purification.
Protein complexes often represent an ensemble of different assemblies with distinct functions and regulation. This increased complexity is enabled by the variety of protein diversification mechanisms that exist at every step of the protein biosynthesis pathway, such as alternative splicing and post transcriptional and translational modifications. The resulting variation in subunits can generate compositionally distinct protein assemblies. These different forms of a single protein complex may comprise functional variances that enable response and adaptation to varying cellular conditions. Despite the biological importance of this layer of complexity, relatively little is known about the compositional heterogeneity of protein complexes, mostly due to technical barriers of studying such closely related species. Here, we show that native mass spectrometry (MS) offers a way to unravel this inherent heterogeneity of protein assemblies. Our approach relies on the advanced Orbitrap mass spectrometer capable of multistage MS analysis across all levels of protein organization. Specifically, we have implemented a two-step fragmentation process in the inject flatapole device, which was converted to a linear ion trap, and can now probe the intact protein complex assembly, through its constituent subunits, to the primary sequence of each protein. We demonstrate our approach on the yeast homotetrameric FBP1 complex, the rate-limiting enzyme in gluconeogenesis. We show that the complex responds differently to changes in growth conditions by tuning phosphorylation dynamics. Our methodology deciphers, on a single instrument and in a single measurement, the stoichiometry, kinetics, and exact position of modifications, contributing to the exposure of the multilevel diversity of protein complexes.
Membrane protein function can be affected by the physical state of the lipid bilayer and specific lipid-protein interactions. For Na,K-ATPase, bilayer properties can modulate pump activity, and, as observed in crystal structures, several lipids are bound within the transmembrane domain. Furthermore, Na,K-ATPase activity depends on phosphatidylserine (PS) and cholesterol, which stabilize the protein, and polyunsaturated phosphatidylcholine (PC) or phosphatidylethanolamine (PE), known to stimulate Na, K-ATPase activity. Based on lipid structural specificity and kinetic mechanisms, specific interactions of both PS and PC/PE have been inferred. Nevertheless, specific binding sites have not been identified definitively. We address this question with native mass spectrometry (MS) and site-directedmutagenesis. Native MS shows directly that one molecule each of 18:0/18:1 PS and 18:0/20:4 PC can bind specifically to purified human Na, K-ATPase (alpha 1 beta 1). By replacing lysine residues at proposed phospholipid-binding sites with glutamines, the two sites have been identified. Mutations in the cytoplasmic alpha L8-9 loop destabilize the protein but do not affect Na,K-ATPase activity, whereas mutations in transmembrane helices (TM), alpha TM2 and alpha TM4, abolish the stimulation of activity by 18:0/20:4 PC but do not affect stability. When these data are linked to crystal structures, the underlying mechanism of PS and PC/PE effects emerges. PS (and cholesterol) bind between alpha TM 8, 9, 10, near the FXYD subunit, and maintain topological integrity of the labile C terminus of the alpha subunit (site A). PC/PE binds between alpha TM2, 4, 6, and 9 and accelerates the rate-limiting E1P-E2P conformational transition (site B). We discuss the potential physiological implications.
2016
Protein complexes form the critical foundation for a wide range of biological process, however understanding the intricate details of their activities is often challenging. In this review we describe how mass spectrometry (MS) plays a key role in the analysis of protein assemblies and the cellular pathways which they are involved in. Specifically, we discuss how the versatility of mass spectrometric approaches provides unprecedented information on multiple levels. We demonstrate this on the ubiquitin-proteasome proteolytic pathway, a process that is responsible for protein turnover. We follow the various steps of this degradation route and illustrate the different MS workflows that were applied for elucidating molecular information. Overall, this review aims to stimulate the integrated use of multiple mass spectrometry approaches for analyzing complex biological systems.
Degradation by the proteasome is the fate for a large portion of cellular proteins, and it plays a major role in maintaining protein homeostasis, as well as in regulating many cellular processes like cell cycle progression. A decrease in proteasome activity has been linked to aging and several age-related neurodegenerative pathologies and highlights the importance of the ubiquitin proteasome system regulation. While the proteasome has been traditionally viewed as a constitutive element of proteolysis, major studies have highlighted how different regulatory mechanisms can impact its activity. Importantly, alterations of proteasomal activity may have major impacts for its function and in therapeutics. On one hand, increasing proteasome activity could be beneficial to prevent the age-related downfall of protein homeostasis, whereas inhibiting or reducing its activity can prevent the proliferation of cancer cells.
Missense mutations that lead to the expression of mutant proteins carrying single amino acid substitutions are the cause of numerous diseases. Unlike gene lesions, insertions, deletions, nonsense mutations, or modified RNA splicing, which affect the length of a polypeptide, or determine whether a polypeptide is translated at all, missense mutations exert more subtle effects on protein structure, which are often difficult to evaluate. Here, we took advantage of the spectral resolution afforded by the EMR Orbitrap platform, to generate a mass spectrometry-based approach relying on simultaneous measurements of the wild-type protein and the missense variants. This approach not only considerably shortens the analysis time due to the concurrent acquisition but, more importantly, enables direct comparisons between the wild-type protein and the variants, allowing identification of even subtle structural changes. We demonstrate our approach using the Parkinsons-associated protein, DJ-1. Together with the wild-type protein, we examined two missense mutants, DJ-1A104T and DJ-1D149A, which lead to early-onset familial Parkinsons disease. Gas-phase, thermal, and chemical stability assays indicate clear alterations in the conformational stability of the two mutants: the structural stability of DJ-1D149A is reduced, whereas that of DJ-1A104T is enhanced. Overall, we anticipate that the methodology presented here will be applicable to numerous other missense mutants, promoting the structural investigations of multiple variants of the same protein. [Figure not available: see fulltext.]
Membrane-less organelles in cells are large, dynamic protein/protein or protein/RNA assemblies that have been reported in some cases to have liquid droplet properties. However, the molecular interactions underlying the recruitment of components are not well understood. Herein, we study how the ability to form higher-order assemblies influences the recruitment of the speckle-type POZ protein (SPOP) to nuclear speckles. SPOP, a cullin-3-RING ubiquitin ligase (CRL3) substrate adaptor, self-associates into higher-order oligomers; that is, the number of monomers in an oligomer is broadly distributed and can be large. While wild-type SPOP localizes to liquid nuclear speckles, self-association-deficient SPOP mutants have a diffuse distribution in the nucleus. SPOP oligomerizes through its BTB and BACK domains. We show that BTB-mediated SPOP dimers form linear oligomers via BACK domain dimerization, and we determine the concentration-dependent populations of the resulting oligomeric species. Higher-order oligomerization of SPOP stimulates CRL3SPOP ubiquitination efficiency for its physiological substrate Gli3, suggesting that nuclear speckles are hotspots of ubiquitination. Dynamic, higher-order protein self-association may be a general mechanism to concentrate functional components in membrane-less cellular bodies.
2015
Native mass spectrometry (MS) and ion mobility MS provide a way to discriminate between various allosteric mechanisms that cannot be distinguished using ensemble measurements of ligand binding in bulk protein solutions. Native MS, which yields mass measurements of intact assemblies, can be used to determine the values of ligand binding constants of multimeric allosteric proteins, thereby providing a way to distinguish, for example, between concerted and sequential allosteric models. Native MS can also be employed to study cooperativity owing to ligand-modulated protein oligomerization. The rotationally averaged cross-section areas of complexes obtained by ion mobility MS can be used to distinguish between induced fit and conformational selection. Native MS and its allied techniques are, therefore, becoming increasingly powerful tools for dissecting allosteric mechanisms.
The highly conserved COP9 signalosome (CSN) complex is a key regulator of all cullin-RING-ubiquitin ligases (CRLs), the largest family of E3 ubiquitin ligases. Until now, it was accepted that the CSN is composed of eight canonical components. Here, we report the discovery of an additional integral and stoichiometric subunit that had thus far evaded detection, and we named it CSNAP (CSN acidic protein). We show that CSNAP binds CSN3, CSN5, and CSN6, and its incorporation into the CSN complex is mediated through the C-terminal region involving conserved aromatic residues. Moreover, depletion of this small protein leads to reduced proliferation and a flattened and enlarged morphology. Finally, on the basis of sequence and structural properties shared by both CSNAP and DSS1, a component of the related 19S lid proteasome complex, we propose that CSNAP, the ninth CSN subunit, is the missing paralogous subunit of DSS1. The highly conserved COP9 signalosome (CSN) complex is a key regulator of all cullin-RING-ubiquitin-ligases (CRLs), the largest family of E3 ubiquitin ligases. Rozen et al. report the discovery of an additional integral and stoichiometric subunit for this highly conserved complex.
Mass spectrometry (MS) is becoming increasingly popular in the field of structural biology for analyzing protein threedimensionalstructures and for mapping proteinprotein interactions. In this review, the specific contributions of chemical crosslinking and native MS are outlined to reveal the structural features of proteins and protein assemblies. Both strategies are illustrated based on the examples of the tetrameric tumor suppressor protein p53 and multisubunit vinculinArp2/3 hybrid complexes. We describe the distinct advantages and limitations of each technique and highlight synergistic effects when both techniques are combined. Integrating both methods is especially useful for characterizing large protein assemblies and for capturing transient interactions. We also point out the future directions we foresee for a combination of in vivo crosslinking and native MS for structural investigation of intact protein assemblies.
Errors in protein synthesis, so-called phenotypic mutations, are orders-of-magnitude more frequent than genetic mutations. Here, we provide direct evidence that alternative protein forms and phenotypic variability derived from translational errors paved the path to genetic, evolutionary adaptations via gene duplication. We explored the evolutionary origins of Saccharomyces cerevisiae IDP3 - an NADP-dependent isocitrate dehydrogenase mediating fatty acids beta-oxidation in the peroxisome. Following the yeast whole genome duplication, IDP3 diverged from a cytosolic ancestral gene by acquisition of a C-terminal peroxisomal targeting signal. We discovered that the pre-duplicated cytosolic IDPs are partially localized to the peroxisome owing to + 1 translational frameshifts that bypass the stop codon and unveil cryptic peroxisomal targeting signals within the 3'-UTR. Exploring putative cryptic signals in all 3'-UTRs of yeast genomes, we found that other enzymes related to NADPH production such as pyruvate carboxylase 1 (PYC1) might be prone to peroxisomal localization via cryptic signals. Using laboratory evolution we found that these translational frameshifts are rapidly imprinted via genetic single base deletions occurring within the very same gene location. Further, as exemplified here, the sequences that promote translational frameshifts are also more prone to genetic deletions. Thus, genotypes conferring higher phenotypic variability not only meet immediate challenges by unveiling cryptic 3'-UTR sequences, but also boost the potential for future genetic adaptations.
Although the number of proteinencoding genes in the human genome is only about 20 000 not far from the amount found in the nematode worm genome, the number of proteins that are translated from these sequences is larger by several orders of magnitude. A number of mechanisms have evolved to enable this diversity. For example, genes can be alternatively spliced to create multiple transcripts; they may also be translated from different alternative initiation sites. After translation, hundreds of chemical modifications can be introduced in proteins, altering their chemical properties, folding, stability, and activity. The complexity is then further enhanced by the various combinations that are generated from the assembly of different subunit variants into protein complexes. This, in turn, confers structural and functional flexibility, and endows the cell with the ability to adapt to various environmental conditions. Therefore, exposing the variability of protein complexes is an important step toward understanding their biological functions. Revealing this enormous diversity, however, is not a simple task. In this review, we will focus on the array of MSbased strategies that are capable of performing this mission. We will also discuss the challenges that lie ahead, and the future directions toward which the field might be heading.
The Parkinsons-associated protein, DJ-1, is a highly conserved homodimer, ubiquitously expressed in cells. Here we demonstrate that DJ-1 is a 20S proteasome regulator. We show that DJ-1 physically binds the 20S proteasome and inhibits its activity, rescuing partially unfolded proteins from degradation. Consequently, DJ-1 stabilizes the cellular levels of 20S proteasome substrates, as we show for α-synuclein and p53. Furthermore, we demonstrate that following oxidative stress, DJ-1 is involved in the Nrf2-dependent oxidative stress response that leads to the upregulation of both the 20S proteasome and its regulator, NQO1. Overall, our results suggest a regulatory circuit in which DJ-1, under conditions of oxidative stress, both upregulates and inhibits the 20S proteasome, providing a rigorous control mechanism at a time when the 20S proteasome becomes the major proteolytic machinery. Such a tight regulation of the 20S proteasome may sustain the balance between the need to rapidly eliminate oxidatively damaged proteins and maintain the abundance of native, intrinsically unstructured proteins, which coordinate regulatory and signalling events.
Mass spectrometry is becoming increasingly popular for analyzing protein-protein interactions. In this chapter, the specific contributions of native MS and chemical cross-linking MS are outlined to reveal the structural features of protein assemblies. We describe the distinct advantages and limitations of each technique and focus on their increased value when used in combination. First, we outline the types of information that can be gained from each individual technique. Then, we highlight the potential of integrating both methods for characterizing large protein assemblies and for capturing transient interactions. Lastly, we point out the challenges that lie ahead and the future directions we foresee for a combination of in vivo cross-linking, native purification, and native MS of intact assemblies.
2014
Autotransporters deliver virulence factors to the bacterial surface by translocating an effector passenger domain through a membrane-anchored barrel structure. Although passenger domains are diverse, those found in enteric bacteria autotransporters, including AIDA-I in diffusely adhering Escherichia coli (DAEC) and TibA in enterotoxigenic E. coli, are commonly glycosylated. We show that AIDA-I is heptosylated within the bacterial cytoplasm by autotransporter adhesin heptosyltransferase (AAH) and its paralogue AAH2. AIDA-I heptosylation determines DAEC adhesion to host cells. AAH/AAH2 define a bacterial autotransporter heptosyltransferase (BAHT) family that contains ferric ion and adopts a dodecamer assembly. Structural analyses of the heptosylated TibA passenger domain reveal 35 heptose conjugates forming patterned and solenoid-like arrays on the surface of a β helix. Additionally, CARC, the AIDA-like autotransporter from Citrobacter rodentium, is essential for colonization in mice and requires heptosylation by its cognate BAHT. Our study establishes a bacterial glycosylation system that regulates virulence and is essential for pathogenesis.
For many years, the ubiquitin-26S proteasome degradation pathway was considered the primary route for proteasomal degradation. However, it is now becoming clear that proteins can also be targeted for degradation by the core 20S proteasome itself. Degradation by the 20S proteasome does not require ubiquitin tagging or the presence of the 19S regulatory particle; rather, it relies on the inherent structural disorder of the protein being degraded. Thus, proteins that contain unstructured regions due to oxidation, mutation, or aging, as well as naturally, intrinsically unfolded proteins, are susceptible to 20S degradation. Unlike the extensive knowledge acquired over the years concerning degradation by the 26S proteasome, relatively little is known about the means by which 20S-mediated proteolysis is controlled. Here, we describe our current understanding of the regulatory mechanisms that coordinate 20S proteasome-mediated degradation, and highlight the gaps in knowledge that remain to be bridged.
Time series data can provide valuable insight into the complexity of biological reactions. Such information can be obtained by mass-spectrometry- based approaches that measure pre-steady-state kinetics. These methods are based on a mixing device that rapidly mixes the reactants prior to the on-line mass measurement of the transient intermediate steps. Here, we describe an improved continuous-flow mixing apparatus for real-time electrospray mass spectrometry measurements. Our setup was designed to minimize metal-solution interfaces and provide a sheath flow of nitrogen gas for generating stable and continuous spray that consequently enhances the signal-to-noise ratio. Moreover, the device was planned to enable easy mounting onto a mass spectrometer replacing the commercial electrospray ionization source. We demonstrate the performance of our apparatus by monitoring the unfolding reaction of cytochrome C, yielding improved signal-to-noise ratio and reduced experimental repeat errors.
Focal adhesions (FAs) are large multi-protein complexes that act as transmembrane links between the extracellular matrix and the actin cytoskeleton. Recently, FAs were extensively characterized, yet the molecular mechanisms underlying their mechanical and signalling functions remain unresolved. To address this question, we isolated protein complexes containing different FA components, from chicken smooth muscle, and characterized their properties. Here we identified 'hybrid complexes' consisting of the actin-nucleating subunits of Arp2/3 and either vinculin or vinculin and a-actinin. We further show that suppression of p41-ARC, a central component of native Arp2/3, which is absent from the hybrid complexes, increases the levels of the Arp2/3-nucleating core in FA sites and stimulates FA growth and dynamics. In contrast, overexpression of p41-ARC adversely affects FAs. These results support the view that Arp2/3 can form modular 'hybrid complexes' containing an actin-nucleating 'functional core', and 'anchoring domains' (vinculin/p41-ARC) that regulate its subcellular localization.
The COP9 signalosome (CSN) is an evolutionarily conserved protein complex that participates in the regulation of the ubiquitin/26S proteasome pathway by controlling the function of cullin-RING-ubiquitin ligases. Impressive progress has been made in deciphering its critical role in diverse cellular and developmental processes. However, little is known about the underlying regulatory principles that coordinate its function. Through biochemical and fluorescence microscopy analyses, we determined that the complex is localized in the cytoplasm, nucleoplasm, and chromatin-bound fractions, each differing in the composition of posttranslationally modified subunits, depending on its location within the cell. During the cell cycle, the segregation between subcellular localizations remains steady. However, upon UV damage, a dose-dependent temporal shuttling of the CSN complex into the nucleus was seen, accompanied by upregulation of specific phosphorylations within CSN1, CSN3, and CSN8. Taken together, our results suggest that the specific spatiotemporal composition of the CSN is highly controlled, enabling the complex to rapidly adapt and respond to DNA damage.
2013
The invasive Asian ambrosia beetle Euwallacea sp. (Coleoptera, Scolytinae, Xyleborini) and a novel Fusarium sp. that it farms in its galleries as a source of nutrition causes serious damage to more than 20 species of live trees and pose a serious threat to avocado production (Persea americana) in Israel and California. Adult female beetles are equipped with mandibular mycangia in which its fungal symbiont is transported within and from the natal galleries. Damage caused to the xylem is associated with disease symptoms that include sugar or gum exudates, dieback, wilt and ultimately host tree mortality. In 2012 the beetle was recorded on more than 200 and 20 different urban landscape species in southern California and Israel respectively. Euwallacea sp. and its symbiont are closely related to the tea shot-hole borer (E. fornicatus) and its obligate symbiont, F. ambrosium occurring in Sri Lanka and India. To distinguish these beetles, hereafter the unnamed xyleborine in Israel and California will be referred to as Euwallacea sp. IS/CA. Both fusaria exhibit distinctive ecologies and produce clavate macroconidia, which we think might represent an adaption to the species-specific beetle partner. Both fusaria comprise a genealogically exclusive lineage within Clade 3 of the Fusarium solani species complex (FSSC) that can be differentiated with arbitrarily primed PCR. Currently these fusaria can be distinguished only phenotypically by the abundant production of blue to brownish macroconidia in the symbiont of Euwallacea sp. IS/CA and their rarity or absence in F. ambrosium. We speculate that obligate symbiosis of Euwallacea and Fusarium, might have driven ecological speciation in these mutualists. Thus, the purpose of this paper is to describe and illustrate the novel, economically destructive avocado pathogen as Fusarium euwallaceae sp. nov. S. Freeman et al.
Mass spectrometry provides insights into the structure and dynamics of ever-larger protein assemblies and associated biomolecules.
The activity of many proteins, including metabolic enzymes, molecular machines, and ion channels, is often regulated by conformational changes that are induced or stabilized by ligand binding. In cases of multimeric proteins, such allosteric regulation has often been described by the concerted Monod-Wyman-Changeux and sequential Koshland-Némethy-Filmer classic models of cooperativity. Despite the important functional implications of the mechanism of cooperativity, it has been impossible in many cases to distinguish between these various allosteric models using ensemble measurements of ligand binding in bulk protein solutions. Here, we demonstrate that structural MS offers a way to break this impasse by providing the full distribution of ligand-bound states of a protein complex. Given this distribution, it is possible to determine all the binding constants of a ligand to a highly multimeric cooperative system, and thereby infer its allosteric mechanism. Our approach to the dissection of allostericmechanisms relies on advances in MS - which provide the required resolution of ligand-bound states - and in data analysis. We validated our approach using the well-characterized Escherichia coli chaperone GroEL, a double-heptameric ring containing 14 ATP binding sites, which has become a paradigm for molecular machines. The values of the 14 binding constants of ATP to GroEL were determined, and the ATP-loading pathway of the chaperone was characterized. The methodology and analyses presented here are directly applicable to numerous other cooperative systems and are therefore expected to promote further research on allosteric systems.
Identifying the list of subunits that make up protein complexes constitutes an important step towards understanding their biological functions. However, such knowledge alone does not reveal the full complexity of protein assemblies, as each subunit can take on multiple forms. Proteins can be post-translationally modified or cleaved, multiple products of alternative splicing can exist, and a single subunit may be encoded by more than one gene. Thus, for a complete description of a protein complex, it is necessary to expose the diversity of its subunits. Adding this layer of information is an important step towards understanding the mechanisms that regulate the activity of protein assemblies. Here, we describe a mass spectrometry-based approach that exposes the array of protein variants that comprise protein complexes. Our method relies on denaturing the protein complex, and separating its constituent subunits on a monolithic column prepared in-house. Following the subunit elution from the column, the flow is split into two fractions, using a Triversa NanoMate robot. One fraction is directed straight into an on-line ESI-QToF mass spectrometer for intact protein mass measurements, while the rest of the flow is fractionated into a 96-well plate for subsequent proteomic analysis. The heterogeneity of subunit composition is then exposed by correlating the subunit sequence identity with the accurate mass. Below, we describe in detail the methodological setting of this approach, its application on the endogenous human COP9 signalosome complex, and the significance of the method for structural mass spectrometry analysis of intact protein complexes.
A multifunctional porous Si biosensor that can both monitor the enzymatic activity of minute samples and allow subsequent retrieval of the entrapped proteolytic products for mass spectrometry analysis is described. The biosensor is constructed by DNA-directed/reversible immobilization of enzymes onto a Fabry-Pérot thin film. We demonstrate high enzymatic activity levels of the immobilized enzymes (more than 80%), while maintaining their specificity. Mild dehybridization conditions allow enzyme recycling and facile surface regeneration for consecutive biosensing analysis. The catalytic activity of the immobilized enzymes is monitored in real time by reflective interferometric Fourier transform spectroscopy. The real-time analysis of minute quantities of enzymes (concentrations at least 1 order of magnitude lower, 0.1 mg mL -1, in comparison to previous reports, 1 mg mL-1), in particular proteases, paves the way for substrate profiling and the identification of cleavage sites. The biosensor configuration is compatible with common proteomic methods and allows for a successful downstream mass spectrometry analysis of the reaction products.
2012
NAD(P)H:quinone-oxidoreductase-1 (NQO1) is a cytosolic enzyme that catalyzes the reduction of various quinones using flavin adenine dinucleotide (FAD) as a cofactor. NQO1 has been also shown to rescue proteins containing intrinsically unstructured domains, such as p53 and p73, from degradation by the 20S proteasome through an unknown mechanism. Here, we studied the nature of interaction between NQO1 and the 20S proteasome. Our study revealed a double negative feedback loop between NQO1 and the 20S proteasome, whereby NQO1 prevents the proteolytic activity of the 20S proteasome and the 20S proteasome degrades the apo form of NQO1. Furthermore, we demonstrate, both in vivo and in vitro., that NQO1 levels are highly dependent on FAD concentration. These observations suggest a link between 20S proteolysis and the metabolic cellular state. More generally, the results may represent a regulatory mechanism by which associated cofactors dictate the stability of proteins, thus coordinating protein levels with the metabolic status.
Based on software prediction, intrinsically disordered proteins (IDPs) are widely represented in animal cells where they play important instructive roles. Despite the predictive power of the available software programs we nevertheless need simple experimental tools to validate the predictions. IDPs were reported to be preferentially thermo-resistant and also are susceptible to degradation by the 20S proteasome. Analysis of a set of proteins revealed that thermo-resistant proteins are preferred 20S proteasome substrates. Positive correlations are evident between the percent of protein disorder and the level of thermal stability and 20S proteasomal susceptibility. The data obtained from these two assays do not fully overlap but in combination provide a more reliable experimental IDP definition. The correlation was more significant when the IUPred was used as the IDPs predicting software. We demonstrate in this work a simple experimental strategy to improve IDPs identification.
Multifunctional porous Si nanostructure is designed to optically monitor enzymatic activity of horseradish peroxidase. First, an oxidized PSi optical nanostructure, a Fabry-Pérot thin film, is synthesized and is used as the optical transducer element. Immobilization of the enzyme onto the nanostructure is performed through DNA-directed immobilization. Preliminary studies demonstrate high enzymatic activity levels of the immobilized horseradish peroxidase, while maintaining its specificity. The catalytic activity of the enzymes immobilized within the porous nanostructure is monitored in real time by reflective interferometric Fourier transform spectroscopy. We show that we can easily regenerate the surface for consecutive biosensing analysis by mild dehybridization conditions.
2011
Precise knowledge of the three-dimensional structure of a protein is critical, if we are to understand its biological role and mode of action. However, today it is becoming increasingly clear that dissecting the protein's structural architecture is not enough: a complete description of biomolecular activity must also include the dimension of time. Protein motion and dynamics are crucial for protein stability and reactivity. A range of techniques have been developed for probing dynamic processes. In this tutorial review, we focus on one of these approaches - structural mass spectrometry (MS). MS has the ability to capture functional conformational transitions in the slow time regime, from a few milliseconds to hours. The power of this approach lies not only in its sensitivity and speed of analysis, but also in the fact that it is a non-ensemble technique. Thus, within a single spectrum, the entire distribution of co-existing states can be resolved. In discussing the challenges, advantages and limitations of the field, as well as future directions, we highlight the applicability of MS for quantitative monitoring of structural kinetics. In particular, we describe the array of MS-based strategies that are available for capturing protein folding, enzymatic reactions, ligand interactions, subunit exchange and biogenesis pathways.
Certain hypovirulent Rhizoctonia isolates effectively protect plants against well-known important pathogens among Rhizoctonia isolates as well as against other pathogens. The modes of action involved in this protection include resistance induced in plants by colonization with hypovirulent Rhizoctonia isolates. The qualifications of hypovirulent isolates (efficient protection, rapid growth, effective colonization of the plants, and easy application in the field) provide a significant potential for the development of a commercial microbial preparation for application as biological control agents. Understanding of the modes of action involved in protection is important for improving the various aspects of development and application of such preparations. The hypothesis of the present study is that resistance pathways such as systemic acquired resistance (SAR), induced systemic resistance (ISR), and phytoalexins are induced in plants colonized by the protective hypovirulent Rhizoctonia isolates and are involved in the protection of these plants against pathogenic Rhizoctonia. Changes in protection levels of Arabidopsis thaliana mutants defective in defense-related genes (npr1-1, npr1-2, ndr1-1, npr1-2/ndr1-1, cim6, wrky70.1, snc1, and pbs3-1) and colonized with the hypovirulent Rhizoctonia isolates compared with that of the wild type (wt) plants colonized with the same isolates confirmed the involvement of induced resistance in the protection of the plants against pathogenic Rhizoctonia spp., although protection levels of mutants constantly expressing SAR genes (snc1 and cim6) were lower than that of wt plants. Plant colonization by hypovirulent Rhizoctonia isolates induced elevated expression levels of the following genes: PR5 (SAR), PDF1.2, LOX2, LOX1, CORI3 (ISR), and PAD3 (phytoalexin production), which indicated that all of these pathways were induced in the hypovirulent-colonized plants. When SAR or ISR were induced separately in plants after application of
Mass spectrometry has become a powerful tool for determining the composition, stoichiometry, subunit interactions, and architectural organization of non-covalent protein complexes. The vast majority of assemblies studied so far by this approach are those that contain a sufficient amount of electrostatic interactions and hydrogen bonds that can survive the transition from solution to the gas-phase and maintain the structural features of the vaporized ions. An intriguing question that naturally arises is whether mass spectrometry can also be harnessed for the study of molecular systems dominated by non-polar interactions. Here we address this issue and discuss the fate of hydrophobic complexes in the absence of bulk water molecules. We emphasize the progress that has been accomplished in this field that is moving towards the analysis of larger and more complex hydrophobic systems. We attribute this advance to recent developments of mass spectrometry and its application to non-covalent complexes in general, and to the understanding of experimental and biochemical conditions for the preservation of hydrophobic interactions in particular. Furthermore, we discuss the ability of mass spectrometry to serve as a quantitative tool for assessing the strength, binding energies, and stoichiometries of hydrophobic interactions. Overall, we aim to stimulate research in this area and to establish mass spectrometry as a tool for analyzing hydrophobic interactions within complex biological systems.
2010
Jasmonates are a family of plant hormones that regulate plant growth, development and responses to stress. The F-box protein CORONATINE INSENSITIVE 1 (COI1) mediates jasmonate signalling by promoting hormone-dependent ubiquitylation and degradation of transcriptional repressor JAZ proteins. Despite its importance, the mechanism of jasmonate perception remains unclear. Here we present structural and pharmacological data to show that the true Arabidopsis jasmonate receptor is a complex of both COI1 and JAZ. COI1 contains an open pocket that recognizes the bioactive hormone (3R, 7S)-jasmonoyl-l- isoleucine (JA-Ile) with high specificity. High-affinity hormone binding requires a bipartite JAZ degron sequence consisting of a conserved ±-helix for COI1 docking and a loop region to trap the hormone in its binding pocket. In addition, we identify a third critical component of the jasmonate co-receptor complex, inositol pentakisphosphate, which interacts with both COI1 and JAZ adjacent to the ligand. Our results unravel the mechanism of jasmonate perception and highlight the ability of F-box proteins to evolve as multi-component signalling hubs.
Ion-mobility mass spectrometry is emerging as a powerful tool for studying the structures of less established protein assemblies. The method provides simultaneous measurement of the mass and size of intact protein assemblies, providing information not only on the subunit composition and network of interactions but also on the overall topology and shape of protein complexes. However, how the experimental parameters affect the measured collision cross-sections remains elusive. Here, we present an extensive systematic study on a range of proteins and protein complexes with differing sizes, structures, and oligomerization states. Our results indicate that the experimental parameters, T-wave height and velocity, influence the determined collision cross-section independently and in opposite directions. Increasing the T-wave height leads to compaction of the protein structures, while higher T-wave velocities lead to their expansion. These different effects are attributed to differences in energy transmission and dissipation rates. Moreover, by analyzing proteins in their native and denatured states, we could identify the lower and upper boundaries of the collision cross-section, which reflect the "maximally packed" and "ultimately unfolded" states. Together, our results provide grounds for selecting optimal experimental parameters that will enable preservation of the nativelike conformation, providing structural information on uncharacterized protein assemblies.
There is often an interest in knowing, for a given ligand concentration, how many protein molecules have one, two, three, etc. ligands bound in a specific manner. This is a question that cannot be addressed using conventional ensemble techniques. Here, a mathematical method is presented for separating specific from nonspecific binding in nonensemble studies. The method provides a way to determine the distribution of specific binding stoichiometries at any ligand concentration when using nonensemble (e.g., single-molecule) methods. The applicability of the method is demonstrated for ADP binding to creatine kinase using mass spectroscopy data. A major advantage of our method, which can be applied to any protein-ligand system, is that no previous information regarding the mechanism of ligand interaction is required.
Ion mobility (IM) is a method that measures the time taken for an ion to travel through a pressurized cell under the influence of a weak electric field. The speed by which the ions traverse the drift region depends on their size: large ions will experience a greater number of collisions with the background inert gas (usually N2) and thus travel more slowly through the IM device than those ions that comprise a smaller cross-section. In general, the time it takes for the ions to migrate though the dense gas phase separates them, according to their collision cross-section (Ω). Recently, IM spectrometry was coupled with mass spectrometry and a traveling-wave (T-wave) Synapt ion mobility mass spectrometer (IM-MS) was released. Integrating mass spectrometry with ion mobility enables an extra dimension of sample separation and definition, yielding a three-dimensional spectrum (mass to charge, intensity, and drift time). This separation technique allows the spectral overlap to decrease, and enables resolution of heterogeneous complexes with very similar mass, or mass-to-charge ratios, but different drift times. Moreover, the drift time measurements provide an important layer of structural information, as Ω is related to the overall shape and topology of the ion. The correlation between the measured drift time values and Ω is calculated using a calibration curve generated from calibrant proteins with defined cross-sections1. The power of the IM-MS approach lies in its ability to define the subunit packing and overall shape of protein assemblies at micromolar concentrations, and near-physiological conditions1. Several recent IM studies of both individual proteins2,3 and non-covalent protein complexes4-9, successfully demonstrated that protein quaternary structure is maintained in the gas phase, and highlighted the potential of this approach in the study of protein assemblies of unknown geometry. Here, we provide a detailed description of IMS-MS analysis of protein complexes using the Synapt (Quadrupole-Ion Mobility-Time-of-Flight) HDMS instrument (Waters Ltd; the only commercial IM-MS instrument currently available)10. We describe the basic optimization steps, the calibration of collision cross-sections, and methods for data processing and interpretation. The final step of the protocol discusses methods for calculating theoretical Ω values. Overall, the protocol does not attempt to cover every aspect of IM-MS characterization of protein assemblies; rather, its goal is to introduce the practical aspects of the method to new researchers in the field.
Living cells control and regulate their biological processes through the coordinated action of a large number of proteins that assemble themselves into an array of dynamic, multi-protein complexes. To gain a mechanistic understanding of the various cellular processes, it is crucial to determine the structure of such protein complexes, and reveal how their structural organization dictates their function. Many aspects of multi-protein complexes are, however, difficult to characterize, due to their heterogeneous nature, asymmetric structure, and dynamics. Therefore, new approaches are required for the study of the tertiary levels of protein organization. One of the emerging structural biology tools for analyzing macromolecular complexes is mass spectrometry (MS). This method yields information on the complex protein composition, subunit stoichiometry, and structural topology. The power of MS derives from its high sensitivity and, as a consequence, low sample requirement, which enables examination of protein complexes expressed at endogenous levels. Another advantage is the speed of analysis, which allows monitoring of reactions in real time. Moreover, the technique can simultaneously measure the characteristics of separate populations co-existing in a mixture. Here, we describe a detailed protocol for the application of structural MS to the analysis of large protein assemblies. The procedure begins with the preparation of gold-coated capillaries for nanoflow electrospray ionization (nESI). It then continues with sample preparation, emphasizing the buffer conditions which should be compatible with nESI on the one hand, and enable to maintain complexes intact on the other. We then explain, step-by-step, how to optimize the experimental conditions for high mass measurements and acquire MS and tandem MS spectra. Finally, we chart the data processing and analyses that follow. Rather than attempting to characterize every aspect of protein assemblies, this protocol introduces basic MS procedures, enabling the performance of MS and MS/MS experiments on non-covalent complexes. Overall, our goal is to provide researchers unacquainted with the field of structural MS, with knowledge of the principal experimental tools.
Physical interactions between proteins and the formation of stable complexes form the basis of most biological functions. Therefore, a critical step toward understanding the integrated workings of the cell is to determine the structure of protein complexes, and reveal how their structural organization dictates function. Studying the three-dimensional organization of protein assemblies, however, represents a major challenge for structural biologists, due to the large size of the complexes, their heterogeneous composition, their flexibility, and their asymmetric structure. In the last decade, mass spectrometry has proven to be a valuable tool for analyzing such noncovalent complexes. Here, I illustrate the breadth of structural information that can be obtained from this approach, and the steps taken to elucidate the stoichiometry, topology, packing, dynamics, and shape of protein complexes. In addition, I illustrate the challenges that lie ahead, and the future directions toward which the field might be heading.
The primary sequence of proteins usually dictates a single tertiary and quaternary structure. However, certain proteins undergo reversible backbone rearrangements. Such metamorphic proteins provide a means of facilitating the evolution of new folds and architectures. However, because natural folds emerged at the early stages of evolution, the potential role of metamorphic intermediates in mediating evolutionary transitions of structure remains largely unexplored. We evolved a set of new proteins based on ∼100 amino acid fragments derived from tachylectin-2 - a monomeric, 236 amino acids, five-bladed β-propeller. Their structures reveal a unique pentameric assembly and novel β-propeller structures. Although identical in sequence, the oligomeric subunits adopt two, or even three, different structures that together enable the pentameric assembly of two propellers connected via a small linker. Most of the subunits adopt a wild-type-like structure within individual five-bladed propellers. However, the bridging subunits exhibit domain swaps and asymmetric strand exchanges that allow them to complete the two propellers and connect them. Thus, the modular and metamorphic nature of these subunits enabled dramatic changes in tertiary and quaternary structure, while maintaining the lectin function. These oligomers therefore comprise putative intermediates via which β-propellers can evolve from smaller elements. Our data also suggest that the ability of one sequence to equilibrate between different structures can be evolutionary optimized, thus facilitating the emergence of new structures.
2009
The major core promoter-binding factor in polymerase II transcription machinery is TFIID, a complex consisting of TBP, the TATA box-binding protein, and 13 to 14 TBP-associated factors (TAFs). Previously we found that the histone H2A-like TAF paralogs TAF4 and TAF4b possess DNA-binding activity. Whether TAF4/TAF4bDNAbinding directs TFIID to a specific core promoter element or facilitates TFIID binding to established core promoter elements is not known. Here we analyzed the mode of TAF4b·TAF12 DNA binding and show that this complex binds DNA with high affinity. The DNA length required for optimal binding is ~70 bp. Although the complex displays a weak sequence preference, the nucleotide composition is less important than the length of the DNA for high affinity binding. Comparative expression profiling of wild-type and a DNA-binding mutant of TAF4 revealed common core promoter features in the down-regulated genes that include a TATA-box and an Initiator. Further examination of the PEL98 gene from this group showed diminished Initiator activity and TFIID occupancy in TAF4 DNA-binding mutant cells. These findings suggest that DNA binding by TAF4/4b-TAF12 facilitates the association of TFIID with the core promoter of a subset of genes.
The Clp protease is conserved among eubacteria and most eukaryotes, and uses ATP to drive protein substrate unfolding and translocation into a chamber of sequestered proteolytic active sites. The main constitutive Clp protease in photosynthetic organisms has evolved into a functionally essential and structurally intricate enzyme. The model Clp protease from the cyanobacterium Synechococcus consists of the HSP100 molecular chaperone ClpC and a mixed proteolytic core comprised of two distinct subunits, ClpP3 and ClpR. We have purified the ClpP3/R complex, the first for a Clp proteolytic core comprised of heterologous subunits. The ClpP3/R complex has unique functional and structural features, consisting of twin heptameric rings each with an identical ClpP33ClpR4 configuration. As predicted by its lack of an obvious catalytic triad, the ClpR subunit is shown to be proteolytically inactive. Interestingly, extensive modification to ClpR to restore proteolytic activity to this subunit showed that its presence in the core complex is not rate-limiting for the overall proteolytic activity of the ClpCP3/R protease. Altogether, the ClpP3/R complex shows remarkable similarities to the 20 S core of the proteasome, revealing a far greater degree of convergent evolution than previously thought between the development of the Clp protease in photosynthetic organisms and that of the eukaryotic 26 S proteasome.
The COP9 signalosome (CSN) is an eight-subunit protein complex that is found in all eukaryotes. Accumulating evidence indicates its diverse biological functions that are often linked to ubiquitin-mediated proteolysis. Here we applied an emerging mass spectrometry approach to gain insight into the structure of the CSN complex. Our results indicate that the catalytically active human complex, reconstituted in vitro, is composed of a single copy of each of the eight subunits. By forming a total of 35 subcomplexes, we are able to build a comprehensive interaction map that shows two symmetrical modules, Csn1/2/3/8 and Csn4/5/6/7, connected by interactions between Csn1-Csn6. Overall the stable modules and multiple subcomplexes observed here are in agreement with the "mini-CSN" complexes reported previously. This suggests that the propensity of the CSN complex to change and adapt its subunit composition might underlie its ability to perform multiple functions in vivo.
2008
(Figure Presented) Proteomic studies have yielded detailed lists of protein components. Relatively little is known, however, of interactions between proteins or of their spatial arrangement. To bridge this gap, we are developing a mass spectrometry approach based on intact protein complexes. By studying intact complexes, we show that we are able to not only determine the stoichiometry of all subunits present but also deduce interaction maps and topological arrangements of subunits. To construct an interaction network, we use tandem mass spectrometry to define peripheral subunits and partial denaturation in solution to generate series of subcomplexes. These subcomplexes are subsequently assigned using tandem mass spectrometry. To facilitate this assignment process, we have developed an iterative search algorithm (SUMMIT) to both assign protein subcomplexes and generate protein interaction networks. This software package not only allows us to construct the subunit architecture of protein assemblies but also allows us to explore the limitations and potential of our approach. Using series of hypothetical complexes, generated at random from protein assemblies containing between six and fourteen subunits, we highlight the significance of tandem mass spectrometry for defining subunits present. We also demonstrate the importance of pairwise interactions and the optimal numbers of subcomplexes required to assign networks with up to fourteen subunits. To illustrate application of our approach, we describe the overall architecture of two endogenous protein assemblies isolated from yeast at natural expression levels, the 19S proteasome lid and the RNA exosome. In constructing our models, we did not consider previous electron microscopy images but rather deduced the subunit architecture from series of subcomplexes and our network algorithm. The results show that the proteasome lid complex consists of a bicluster with two tetrameric lobes. The exosome lid, by contrast, is a six-membered ring with three additional bridging subunits that confer stability to the ring and with a large subunit located at the base. Significantly, by combining data from MS and homology modeling, we were able to construct an atomic model of the yeast exosome. In summary, the architectural and atomic models of both protein complexes described here have been produced in advance of high-resolution structural data and as such provide an initial model for testing hypotheses and planning future experiments. In the case of the yeast exosome, the atomic model is validated by comparison with the atomic structure from X-ray diffraction of crystals of the reconstituted human exosome, which is homologous to that of the yeast. Overall therefore this mass spectrometry and homology modeling approach has given significant insight into the structure of two previously intractable protein complexes and as such has broad application in structural biology.
Proton-translocating ATPases are central to biological energy conversion. Although eukaryotes contain specialized F-ATPases for ATP synthesis and V-ATPases for proton pumping, eubacteria and archaea typically contain only one enzyme for both tasks. Although many eubacteria contain ATPases of the F-type, some eubacteria and all known archaea contain ATPases of the A-type. A-ATPases are closely related to V-ATPases but simpler in design. Although the nucleotide-binding and transmembrane rotor subunits share sequence homology between A-, V-, and F-ATPases, the peripheral stalk is strikingly different in sequence, composition, and stoichiometry. We have analyzed the peripheral stalk of Thermus thermophilus A-ATPase by using phage display-derived single-domain antibody fragments in combination with electron microscopy and tandem mass spectrometry. Our data provide the first direct evidence for the existence of two peripheral stalks in the A-ATPase, each one composed of heterodimers of subunits E and G arranged symmetrically around the soluble A1 domain. To our knowledge, this is the first description of phage display-derived antibody selection against a multi-subunit membrane protein used for purification and single particle analysis by electron microscopy. It is also the first instance of the derivation of subunit stoichiometry by tandem mass spectrometry to an intact membrane protein complex. Both approaches could be applicable to the structural analysis of other membrane protein complexes.
2007
We have compared micelles, reverse micelles, and reverse micelles encapsulating myoglobin using electrospray mass spectrometry. To enable a direct comparison, the same surfactant (cetyltrimethylammonium bromide (CTAB)) was used in each case and micelle formation was controlled by manipulating the aqueous and organic phases. Tandem mass spectra of the resulting micelle preparations reveal differences in the ions that dissociate: those that dissociate from regular micelles have undergone >90% exchange of bromide ions from the headgroup with acetate ions from bulk solvent. By contrast, for reverse micelles, ions are detected without exchange of bromide ions from the headgroup, consistent with their protection in the core of the micellar structure. Tandem mass spectra of micelles and reverse micelles reveal polydispersed assemblies containing several hundred CTAB molecules, indicating the coalescence of the micellar systems to form large assemblies. For reverse micelles incorporating myoglobin, spectra are consistent with one holo myogolobin molecule in association with ∼270 CTAB molecules. Overall, therefore, our results show that the solution-phase orientation of surfactants is preserved during electrospray and are consistent with interactions being maintained between surfactants and an encapsulated protein.
The 20 S proteasome is an essential proteolytic particle, responsible for degrading short-lived and abnormal intracellular proteins. The 700-kDa assembly is comprised of 14 α-type and 14 β-type subunits, which form a cylindrical architecture composed of four stacked heptameric rings (α7β7β7α7). The formation of the 20 S proteasome is a complex process that involves a cascade of folding, assembly, and processing events. To date, the understanding of the assembly pathway is incomplete due to the experimental challenges of capturing short-lived intermediates. In this study, we have applied a real-time mass spectrometry approach to capture transient species along the assembly pathway of the 20 S proteasome from Rhodococcus erythropolis. In the course of assembly, we observed formation of an early α/β-heterodimer as well as an unprocessed half-proteasome particle. Formation of mature holoproteasomes occurred in concert with the disappearance of half-proteasomes. We also analyzed the β-subunits before and during assembly and reveal that those with longer propeptides are incorporated into half- and full proteasomes more rapidly than those that are heavily truncated. To characterize the preholoproteasome, formed by docking of two unprocessed half-proteasomes and not observed during assembly of wild type subunits, we trapped this intermediate using a β-subunit mutational variant. In summary, this study provides evidence for transient intermediates in the assembly pathway and reveals detailed insight into the cleavage sites of the propeptide.
Keywords: ALTERNATIVE CONFORMATIONS
Auxin is a pivotal plant hormone that controls many aspects of plant growth and development. Perceived by a small family of F-box proteins including transport inhibitor response 1 (TIR1), auxin regulates gene expression by promoting SCF ubiquitin-ligase-catalysed degradation of the Aux/IAA transcription repressors, but how the TIR1 F-box protein senses and becomes activated by auxin remains unclear. Here we present the crystal structures of the Arabidopsis TIR1-ASK1 complex, free and in complexes with three different auxin compounds and an Aux/IAA substrate peptide. These structures show that the leucine-rich repeat domain of TIR1 contains an unexpected inositol hexakisphosphate co-factor and recognizes auxin and the Aux/IAA polypeptide substrate through a single surface pocket. Anchored to the base of the TIR1 pocket, auxin binds to a partially promiscuous site, which can also accommodate various auxin analogues. Docked on top of auxin, the Aux/IAA substrate peptide occupies the rest of the TIR1 pocket and completely encloses the hormone-binding site. By filling in a hydrophobic cavity at the protein interface, auxin enhances the TIR1-substrate interactions by acting as a 'molecular glue'. Our results establish the first structural model of a plant hormone receptor.
Agrobacterium tumefaciens infects plant cells by the transfer of DNA. A key factor in this process is the bacterial virulence protein VirE2, which associates stoichiometrically with the transported single-stranded (ss)DNA molecule (T-strand). As observed in vitro by transmission electron microscopy, VirE2-ssDNA readily forms an extended helical complex with a structure well suited to the tasks of DNA protection and nuclear import. Here we have elucidated the role of the specific molecular chaperone VirE1 in regulating VireE2-VirE2 and VirE2-ssDNA interactions. VirE2 alone formed functional filamentous aggregates capable of ssDNA binding. In contrast, co-expression with VirE1 yielded monodisperse VirE1-VirE2 complexes. Cooperative binding of VirE2 to ssDNA released VirE1, resulting in a controlled formation mechanism for the helical complex that is further promoted by macromolecular crowding. Based on this in vitro evidence, we suggest that the constrained volume of the VirB channel provides a natural site for the exchange of VirE2 binding from VirE1 to the T-strand.
The fact that ions of macromolecular complexes produced by electrospray ionization can be maintained intact in a mass spectrometer has stimulated exciting new lines of research. In this review we chart the progress of this research from the observation of simple homo-oligomers to complex heterogeneous macromolecular assemblies of mega-Dalton proportions. The applications described herein not only confirm the status of mass spectrometry (MS) as a structural biology approach to complement X-ray analysis or electron microscopy, but also highlight unique attributes of the methodology. This is exemplified in studies of the biogenesis of macromolecular complexes and in the exchange of subunits between macromolecular complexes. Moreover, recent successes in revealing the overall subunit architecture of complexes are set to promote MS from a complementary approach to a structural biology tool in its own right.
2006
We have cloned the proteasome and the proteasome activating nucleotidase (PAN) genes from the mesophilic archaeon Methanosarcina mazei and produced the respective proteins in Escherichia coli cultures. The recombinant complexes were purified to homogeneity and characterized biochemically, structurally, and by mass spectrometry. We found that the degradation of Bodipy-casein by Methanosarcina proteasomes was activated by Methanosarcina PAN. Notably, the Methanosarcina PAN unfolded GFP-SsrA only in the presence of Methanosarcina proteasomes. Structural analysis by 2D averaging electron microscopy of negatively stained complexes displayed the typical structure for the proteasome, namely four-striped side-views and sevenfold-symmetric top-views, with 15 nm height and 11 nm diameter. The structural analysis of the PAN preparation revealed also four-striped side-views, albeit with a height of 18 nm and sixfold-symmetric top-views with a diameter of 15 nm, which corresponds most likely to a dimer of two hexameric complexes. Mass spectrometric analysis of both the Methanosarcina and the Methanocaldococcus PAN proteins indicated hexameric complexes. In summary, we performed a functional and structural characterization of the PAN and proteasome complexes from the archaeon M. mazei and described unique new structural and functional features.
HIV-1 coreceptor usage plays a critical role in virus tropism and pathogenesis. A switch from CCR5- to CXCR4-using viruses occurs during the course of HIV-1 infection and correlates with subsequent disease progression. A single mutation at position 322 within the V3 loop of the HIV-1 envelope glycoprotein gp120, from a negatively to a positively charged residue, was found to be sufficient to switch an R5 virus to an X4 virus. In this study, the NMR structure of the V3 region of an RS strain, HIV-1JR-FL, in complex with an HIV-1-neutralizing antibody was determined. Positively charged and negatively charged residues at positions 304 and 322, respectively, oppose each other in the β-hairpin structure, enabling a favorable electrostatic interaction that stabilizes the postulated R5 conformation. Comparison of the R5 conformation with the postulated X4 conformation of the V3 region (positively charged residue at position 322) reveals that electrostatic repulsion between residues 304 and 322 in X4 strains triggers the observed one register shift in the N-terminal strand of the V3 region. We posit that electrostatic interactions at the base of the V3 β-hairpin can modulate the conformation and thereby influence the phenotype switch. In addition, we suggest that interstrand cat ion-π interactions between positively charged and aromatic residues induce the switch to the X4 conformation as a result of the S306R mutation. The existence of three pairs of identical (or very similar) amino acids in the V3 C-terminal strand facilitates the switch between the R5 and X4 conformations.
The 26S proteasome contains a 19S regulatory particle that selects and unfolds ubiquitinated substrates for degradation in the 20S catalytic particle. To date there are no high-resolution structures of the 19S assembly, nor of the lid or base subcomplexes that constitute the 19S. Mass spectra of the intact lid complex from Saccharomyces cerevisiae show that eight of the nine subunits are present stoichiometrically and that a stable tetrameric subcomplex forms in solution. Application of tandem mass spectrometry to the intact lid complex reveals the subunit architecture, while the coupling of a cross-linking approach identifies further interaction partners. Taking together our results with previous analyses we are able to construct a comprehensive interaction map. In summary, our findings allow us to identify a scaffold for the assembly of the particle and to propose a regulatory mechanism that prevents exposure of the active site until assembly is complete. More generally, the results highlight the potential of mass spectrometry to add crucial insight into the structural organization of an endogenous, wild-type complex.
The processing of propeptides and the maturation of 20S proteasomes require the association of β rings from two half proteasomes. We propose an assembly-dependent activation model in which interactions between helix (H3 and H4) residues of the opposing half proteasomes are prerequisite for appropriate positioning of the S2-S3 loop; such positioning enables correct coordination of the active-site residue needed for propeptide cleavage. Mutations of H3 or H4 residues that participate in the association of two half proteasomes inhibit activation and prevent, in nearly all cases, the formation of full proteasomes. In contrast, mutations affecting interactions with residues of the S2-S3 loop allow the assembly of full, but activity impacted, proteasomes. The crystal structure of the inactive H3 mutant, Phe145Ala, shows that the S2-S3 loop is displaced from the position observed in wild-type proteasomes. These data support the proposed assembly-dependent activation model in which the S2-S3 loop acts as an activation switch.
The 20S core of the proteasome, which together with the regulatory particle plays a major role in the degradation of proteins in eukaryotic cells, is traversed by an internal system of cavities, namely two antechambers and one central proteolytic chamber. Little is known about the mechanisms underlying substrate binding and translocation of polypeptide chains into the interior of 20S proteasomes. Specifically, the role of the antechambers is not fully understood, and the number of substrate molecules sequestered within the internal cavities at any one time is unknown. Here we have shown that by applying both electron microscopy and tandem mass spectrometry (MS) approaches to this multisubunit complex we obtain precise information regarding the stoichiometry and location of substrates within the three chambers. The dissociation pattern in tandem MS allows us to conclude that a maximum of three green fluorescent protein and four cytochrome c substrate molecules are bound within the cavities. Our results also show that >95% of the population of proteasomemolecules contain the maximum number of partially folded substrates. Moreover, we deduce that one green fluorescent protein or two cytochrome c molecules must reside within the central proteolytic chamber while the remaining substrate molecules occupy, singly, both antechambers. The results imply therefore an additional role for 20S proteasomes in the storage of substrates prior to their degradation, specifically in cases where translocation rates are slower than proteolysis. More generally, the ability to locate relatively small protein ligands sequestered within the 28-subunit core particle highlights the tremendous potential of tandem MS for deciphering substrate binding within large macromolecular assemblies.
2005
The third variable region (V3) of the HIV-1 envelope glycoprotein gp120 is involved in gp120 binding to the chemokine receptors CCR5 and CXCR4, which serve as co-receptors in HIV-1 infection. The sequence of V3 determines whether the virus binds to CCR5 and infects predominantly macrophages (R5 virus) or to CXCR4 and infects mostly T-cells (X4 virus). This review summarizes structural information for V3 peptides in complex with HIV-1 neutralizing antibodies. Nuclear magnetic resonance studies of the V3 peptides led to the proposal of a mechanism for co-receptor selectivity. Experiments to further explore this mechanism and potential applications of V3 structural information are discussed.
Human monoclonal antibody (mAb) 447-52D neutralizes a broad spectrum of HIV-1 isolates, whereas murine mAb 0.5β, raised against gp120 of the X4 isolate HIV-1IIIB, neutralizes this strain specifically. Two distinct gp120 V3 peptides, V3MN and V3IIIB, adopt alternative β-hairpin conformations when bound to 447-52D and 0.5β, respectively, suggesting that the alternative conformations of this loop play a key role in determining the coreceptor specificity of HIV-1. To test this hypothesis and to better understand the molecular basis underlying an antibody's breadth of neutralization, the solution structure of the V3IIIB peptide bound to 447-52D was determined by NMR. V3IIIB and V3MN peptides bound to 447-52D exhibited the same N-terminal strand conformation, while the V3IIIB peptide revealed alternative N-terminal conformations when bound to 447-52D and 0.5β. Comparison of the three known V3 structures leads to a model in which a 180° change in the orientation of the side chains and the resulting one-residue shift in hydrogen bonding patterns in the N-terminal strand of the β-hairpins markedly alter the topology of the surface that interacts with antibodies and that can potentially interact with the HIV-1 coreceptors. Predominant interactions of 447-52D with three conserved residues of the N-terminal side of the V3 loop, K312, 1314, and 1316, can account for its broad cross reactivity, whereas the predominant interactions of 0.5β with variable residues underlie its strain specificity.
2003
The Fv is the smallest antigen binding fragment of the antibody and is made of the variable domains of the light and heavy chains, VL and VH, respectively. The 26-kDa Fv is amenable for structure determination in solution using multi-dimensional hetero-nuclear NMR spectroscopy. The human monoclonal antibody 447-52D neutralizes a broad spectrum of HIV-1 isolates. This anti-HIV-1 antibody elicited in an infected patient is directed against the third variable loop (V3) of the envelope glycoprotein (gp120) of the virus. The V3 loop is an immunodominant neutralizing epitope of HIV-1. To obtain the 447-52D Fv for NMR studies, an Escherichia coli bicistronic expression vector for the heterodimeric 447-52D Fv and vectors for single chain Fv and individually expressed VH and VL were constructed. A pe1B signal peptide was linked to the antibody genes to enable secretion of the expressed polypeptides into the periplasm. For easy cloning of any antibody gene without potential modification of the antibody sequence, restriction sites were introduced in the pe1B sequence and following the termination codon. A set of oligonucleotides that prime the leader peptide genes of all potential antibody human antibodies were designed as backward primers. The forward primers for the VL and VH were based on constant region sequences. The 447-52D Fv could not be expressed either by a bicistronic vector or as single chain Fv, probably due to its toxicity to Escherichia coli. High level of expression was obtained by individual expression of the VH and the VL chains, which were then purified and recombined to generate a soluble and active 447-52D Fv fragment. The VL of mAb 447-52D was uniformly labeled with 13C and 15N nuclei (U-13C/15N). Preliminary NMR spectra demonstrate that structure determination of the recombinant 447-52D Fv and its complex with V3 peptides is feasible.
The V3 loop of the HIV-1 envelope glycoprotein gp120 is involved in binding to the CCR5 and CXCR4 coreceptors. The structure of an HIV-1MN V3 peptide bound to the Fv of the broadly neutralizing human monoclonal antibody 447-52D was solved by NMR and found to be a β hairpin. This structure of V3MN was found to have conformation and sequence similarities to β hairpins in CD8 and CCR5 ligands MIP-1α, MIP-1β, and RANTES and differed from the β hairpin of a V3IIIB peptide bound to the strain-specific murine anti-gp120IIIB antibody 0.5β. In contrast to the structure of the bound V3MN peptide, the V3IIIB peptide resembles a β hairpin in SDF-1, a CXCR4 ligand. These data suggest that the 447-52D-bound V3MN and the 0.5β-bound V3IIIB structures represent alternative V3 conformations responsible for selective interactions with CCR5 and CXCR4, respectively.
2002
Most human immunodeficiency virus type 1 (HIV-1) neutralizing antibodies in infected individuals and in immunized animals are directed against the third variable loop (V3) of the envelope glycoprotein (gp120) of the virus. This loop plays a crucial role in phenotypic determination, cytopathicity (syncytium induction), and coreceptor usage of HIV-1. The human monoclonal antibody 447-52D was found to neutralize a broad spectrum of HIV-1 strains. In order to solve the solution structure of the V3MN peptide bound to the 447-52D Fab fragment by NMR, large quantities of labeled peptide and a protocol for the purification of the Fab fragment were needed. An expression plasmid coding for the 23-residue V3 peptide of the HIV-1MN strain (V3MN peptide, YNKRKRIHIGPGRAFYTTKNIIG) linked to a derivative of the RNA-binding domain of hnRNCP1 was constructed. The fusion protein attached to the V3 peptide prevents its degradation. Using this system, U-15N, U-13C,15N, and U-13C,15N, 50% 2H labeled fusion protein molecules were expressed in Escherichia coli grown on rich Celtone medium with yields of about 240 mg/liter. The V3MN peptide was released by CNBr cleavage and purified by RP-HPLC, giving final yields of 6-13 mg/liter. This expression system is generally applicable for biosynthesis of V3-related peptides and was also used to prepare the V3JR-FL. The 447-52D Fab fragment was obtained by a short enzymatic papain cleavage of the whole antibody. Preliminary NMR spectra demonstrate that full structural analysis of the V3MN complexed to the 447-52D Fab is feasible. This system enables studies of the same epitope bound to different HIV-1 neutralizing antibodies.
1999
'Melittin, a 26 residue, non-cell-selective cycolytic peptide, is the major component of the venom of the honey bee Apis mellifera. In a previous study, a diastereomer ([D]-V-5,V-8,I-17,K-21-melittin, D-amino acids at positions V-5,V-8,I-17,K-21) of melittin was synthesized and its function was investigated [Oren, Z., and Shai, Y. (1997) Biochemistry 36, 1826-1835]. [D]-V-5 8,I-17,K-21-melittin lost its cytotoxic effects on mammalian cells; however, it retained antibacterial activity. Furthermore, [D]-V-5,V-8,I-17,K-21-melittin binds strongly and destabilizes only negatively charged phospholipid vesicles, in contrast to native melittin, which binds strongly also zwitterionic phospholipids. To understand the differences in the properties of melittin and its diastereomer, 2D-NMR experiments were carried out with [D]-V-5,V-8,I-17,K-21-melittin, and polarized attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy experiments were-done with both melittin and [D]-V-5,V-8,I-17,K-21-melittin. The structure of the diastereomer was characterized by NMR in water, as well as in three different membrane-mimicking environment, 40% 2,2,2-trifluoroethanol (TFE)/water, methanol, and dodecylphosphocholine/phosphatidylglycerol (DPC/DMPG) micelles. The NMR data revealed an amphipathic alpha-helix only in the C-terminal region of the diastereomer in TFE/water and methanol solutions and in DPC/DMPG micelles. ATR-FTIR experiments revealed that melittin and [D]-V-5,V-8,I-17,K-21-melittin are oriented parallel to the membrane surface. This study indicates the role of secondary structure formation in selective cytolytic activity of [D]-V-5,V-8 ,I-17,K-21- melittin. While the N-terminal helical structure is not required for the cytolytic activity toward negatively charged membranes and bacterial cells, it appears to be a crucial structural element for binding and insertion into zwitterionic membranes and for hemolytic activity.