Publications
-
(2024) Astronomy and Astrophysics. 686, L7. Abstract
Context. NASA's Juno mission provided exquisite measurements of Jupiter's gravity field that together with the Galileo entry probe atmospheric measurements constrains the interior structure of the giant planet. Inferring its interior structure range remains a challenging inverse problem requiring a computationally intensive search of combinations of various planetary properties, such as the cloud-level temperature, composition, and core features, requiring the computation of 109 interior models. Aims. We propose an efficient deep neural network (DNN) model to generate high-precision wide-ranged interior models based on the very accurate but computationally demanding concentric MacLaurin spheroid (CMS) method. Methods. We trained a sharing-based DNN with a large set of CMS results for a four-layer interior model of Jupiter, including a dilute core, to accurately predict the gravity moments and mass, given a combination of interior features. We evaluated the performance of the trained DNN (NeuralCMS) to inspect its predictive limitations. Results. NeuralCMS shows very good performance in predicting the gravity moments, with errors comparable with the uncertainty due to differential rotation, and a very accurate mass prediction. This allowed us to perform a broad parameter space search by computing only 104 actual CMS interior models, resulting in a large sample of plausible interior structures, and reducing the computation time by a factor of 105. Moreover, we used a DNN explainability algorithm to analyze the impact of the parameters setting the interior model on the predicted observables, providing information on their nonlinear relation.
-
(2024) Geophysical Research Letters. 51, 6, e2023GL107. Abstract
Jupiter's equatorial eastward zonal flows reach wind velocities of ∼100 m s−1, while on Saturn they are three times as strong and extend about twice as wide in latitude, despite the two planets being overall dynamically similar. Recent gravity measurements obtained by the Juno and Cassini spacecraft uncovered that the depth of zonal flows on Saturn is about three times greater than on Jupiter. Here we show, using 3D deep convection simulations, that the atmospheric depth is the determining factor controlling both the strength and latitudinal extent of the equatorial zonal flows, consistent with the measurements for both planets. We show that the atmospheric depth is proportional to the convectively driven eddy momentum flux, which controls the strength of the zonal flows. These results provide a mechanistic explanation for the observed differences in the equatorial regions of Jupiter and Saturn, and offer new understandings about the dynamics of gas giants beyond the Solar System.
-
(2024) Geophysical Research Letters. 51, 6, e2023GL106. Abstract
Projected tropical precipitation changes by the end of the century include increased net precipitation over the Pacific Ocean and drying over the Indian Ocean, prompting ongoing debate about the underlying mechanisms. Previous studies argued for the importance of the zonal circulation in the longitudinally dependent tropical precipitation response, as the meridional circulation is often defined and analyzed as the zonal mean. Here we show that the projected changes in the meridional circulation are highly longitudinally dependent, and explain the zonally dependent changes in net precipitation. Our analysis exposes a zonal shift in the ascending branch of the meridional circulation, associated with a strengthened net precipitation over the central Pacific and weakened precipitation in the Indo Pacific. The zonal circulation has minor influence on these projected tropical precipitation changes. These results point to the importance of monitoring the longitudinal changes in the meridional circulation for improving our preparedness for climate change impacts.
-
(2023) Nature Astronomy. 7, 12, p. 1463-1472 Abstract[All authors]
The atmospheric dynamics of Jupiter are dominated by strong zonal winds engulfing the planet. Since the first gravity measurements taken by Juno at Jupiter, the low-degree gravity harmonics (J 3J 10) have been used to determine the depth and structure of the zonal winds observed at the cloud level, limiting inferences on the deep flows to the wide latitudinal structure of these harmonics. Here, using constraints on the dynamical contribution to gravity at high latitude, we present the gravity harmonics up to J 40. We find an excellent correlation between these measurements and the gravity harmonics resulting from the observed cloud-level winds extending inwards cylindrically to depths of ~105 bar (3,000 km). These measurements provide direct evidence that the flows penetrate inwards along the direction of the spin axis, confirming the cylindrical nature of the flow, which has been postulated theoretically since the 1970s. Furthermore, this detailed new gravity spectrum allows us to quantify the contribution of the various jets to the gravity signal, showing the dominance of the strong zonal flows around 20° latitude in both hemispheres.
-
(2023) AGU Advances. 4, 6, e2023AV000. Abstract
Abstract Jupiter's atmosphere comprises several dynamical regimes: the equatorial eastward flows and surrounding retrograde jets; the midlatitudes, with the eddy-driven, alternating jet-streams and meridional circulation cells; and the jet-free turbulent polar region. Despite intensive research conducted on each of these dynamical regimes over the past decades, they remain only partially understood. Saturn's atmosphere also encompasses similar distinguishable regimes, but observational evidence for midlatitude deep meridional cells is lacking. Models offer a variety of explanations for each of these regions, but only a few are capable of simulating more than one of the regimes at once. This study presents new numerical simulations using a 3D deep anelastic model that can reproduce the equatorial flows as well as the midlatitudinal pattern of the mostly barotropic, alternating eddy-driven jets and the meridional circulation cells accompanying them. These simulations are consistent with recent Juno mission gravity and microwave data. We find that the vertical eddy momentum fluxes are as important as the meridional eddy momentum fluxes, which drive the midlatitudinal circulation on Earth. In addition, we discuss the parameters controlling the number of midlatitudinal jets/cells, their extent, strength, and location. We identify the strong relationship between meridional circulation and the zonal jets in a deep convection setup, and analyze the mechanism responsible for their generation and maintenance. The analysis presented here provides another step in the ongoing pursuit of understanding the deep atmospheres of gas giants.
-
(2023) Space Science Reviews. 219, 7, 53. Abstract[All authors]
ESAs Jupiter Icy Moons Explorer (JUICE) will provide a detailed investigation of the Jovian system in the 2030s, combining a suite of state-of-the-art instruments with an orbital tour tailored to maximise observing opportunities. We review the Jupiter science enabled by the JUICE mission, building on the legacy of discoveries from the Galileo, Cassini, and Juno missions, alongside ground- and space-based observatories. We focus on remote sensing of the climate, meteorology, and chemistry of the atmosphere and auroras from the cloud-forming weather layer, through the upper troposphere, into the stratosphere and ionosphere. The Jupiter orbital tour provides a wealth of opportunities for atmospheric and auroral science: global perspectives with its near-equatorial and inclined phases, sampling all phase angles from dayside to nightside, and investigating phenomena evolving on timescales from minutes to months. The remote sensing payload spans far-UV spectroscopy (50-210 nm), visible imaging (340-1080 nm), visible/near-infrared spectroscopy (0.49-5.56 μm), and sub-millimetre sounding (near 530-625 GHz and 1067-1275 GHz). This is coupled to radio, stellar, and solar occultation opportunities to explore the atmosphere at high vertical resolution; and radio and plasma wave measurements of electric discharges in the Jovian atmosphere and auroras. Cross-disciplinary scientific investigations enable JUICE to explore coupling processes in giant planet atmospheres, to show how the atmosphere is connected to (i) the deep circulation and composition of the hydrogen-dominated interior; and (ii) to the currents and charged particle environments of the external magnetosphere. JUICE will provide a comprehensive characterisation of the atmosphere and auroras of this archetypal giant planet.
-
(2023) Astronomy and Astrophysics. 672, A33. Abstract[All authors]
Context. The Juno mission has provided measurements of Jupiter's gravity field with an outstanding level of accuracy, leading to better constraints on the interior of the planet. Improving our knowledge of the internal structure of Jupiter is key to understanding its formation and evolution but is also important in the framework of exoplanet exploration. Aims. In this study, we investigated the differences between the state-of-the-art equations of state and their impact on the properties of interior models. Accounting for uncertainty on the hydrogen and helium equation of state, we assessed the span of the interior features of Jupiter. Methods. We carried out an extensive exploration of the parameter space and studied a wide range of interior models using Markov chain Monte Carlo simulations. To consider the uncertainty on the equation of state, we allowed for modifications of the equation of state in our calculations. Results. Our models harbour a dilute core and indicate that Jupiter's internal entropy is higher than what is usually assumed from the Galileo probe measurements. We obtain solutions with extended dilute cores, but contrary to other recent interior models of Jupiter, we also obtain models with small dilute cores. The dilute cores in such solutions extend to ∼20% of Jupiter's mass, leading to better agreement with formation-evolution models. Conclusions. We conclude that the equations of state used in Jupiter models have a crucial effect on the inferred structure and composition. Further explorations of the behaviour of hydrogen-helium mixtures at the pressure and temperature conditions in Jupiter will help to constrain the interior of the planet, and therefore its origin.
-
(2023) Geophysical Research Letters. 50, 6, e2022GL102. Abstract
The shape of the two gas giants, Jupiter and Saturn, is determined primarily by their rotation rate, and interior density distribution. It is also affected by their zonal winds, causing an anomaly of O(10 km) at low latitudes. However, uncertainties in the observed cloud-level wind and the polar radius, translate to an uncertainty in the shape with the same order of magnitude. The Juno (Jupiter) and Cassini (Saturn) missions gave unprecedented accurate gravity measurements, constraining better the uncertainty in the wind structure. Using an accurate shape calculation, and a joint optimization, given both gravity and radio-occultation measurements, we calculate the possible range of dynamical height for both planets. We find that for Saturn there is an excellent match to the radio-occultation measurements, while at Jupiter such a match is not achieved. This may point to deviations from a barotropic flow above the cloud level, which might be tested with the forthcoming radio-occultation measurements by Juno.
-
(2022) Nature Communications. 13, 1, 4632. Abstract[All authors]
The Juno spacecraft has been collecting data to shed light on the planets origin and characterize its interior structure. The onboard gravity science experiment based on X-band and Ka-band dual-frequency Doppler tracking precisely measured Jupiters zonal gravitational field. Here, we analyze 22 Junos gravity passes to investigate the gravity field. Our analysis provides evidence of new gravity field features, which perturb its otherwise axially symmetric structure with a time-variable component. We show that normal modes of the planet could explain the anomalous signatures present in the Doppler data better than other alternative explanations, such as localized density anomalies and non-axisymmetric components of the static gravity field. We explain Juno data by p-modes having an amplitude spectrum with a peak radial velocity of 1050 cm/s at 9001200 μHz (compatible with ground-based observations) and provide upper bounds on lower frequency f-modes (radial velocity smaller than 1 cm/s). The new Juno results could open the possibility of exploring the interior structure of the gas giants through measurements of the time-variable gravity or with onboard instrumentation devoted to the observation of normal modes, which could drive spacecraft operations of future missions.
-
(2022) Planetary Science Journal. 3, 8, 185. Abstract[All authors]
The Juno spacecraft measured Jupiters gravity field and determined the even and odd zonal harmonics, Jn, with unprecedented precision. However, interpreting these observations has been a challenge because it is difficult to reconcile the unexpectedly small magnitudes of the moments J4 and J6 with conventional interior models that assume a large, distinct core of rock and ice. Here we show that the entire set of gravity harmonics can be matched with models that assume an ab initio equation of state, wind profiles, and a dilute core of heavy elements that are distributed as far out as 63% of the planets radius. In the core region, heavy elements are predicted to be distributed uniformly and make up only 18% by mass because of dilution with hydrogen and helium. Our models are consistent with the existence of primary and secondary dynamo layers that will help explain the complexity of the observed magnetic field.
-
(2022) Astronomy and Astrophysics. 662, A18. Abstract[All authors]
Context. While Jupiter's massive gas envelope consists mainly of hydrogen and helium, the key to understanding Jupiter's formation and evolution lies in the distribution of the remaining (heavy) elements. Before the Juno mission, the lack of high-precision gravity harmonics precluded the use of statistical analyses in a robust determination of the heavy-element distribution in Jupiter's envelope. Aims. In this paper, we assemble the most comprehensive and diverse collection of Jupiter interior models to date and use it to study the distribution of heavy elements in the planet's envelope. Methods. We apply a Bayesian statistical approach to our interior model calculations, reproducing the Juno gravitational and atmospheric measurements and constraints from the deep zonal flows. Results. Our results show that the gravity constraints lead to a deep entropy of Jupiter corresponding to a 1 bar temperature that is 515 K higher than traditionally assumed. We also find that uncertainties in the equation of state are crucial when determining the amount of heavy elements in Jupiter's interior. Our models put an upper limit to the inner compact core of Jupiter of 7 MEarth, independently of the structure model (with or without a dilute core) and the equation of state considered. Furthermore, we robustly demonstrate that Jupiter's envelope is inhomogeneous, with a heavy-element enrichment in the interior relative to the outer envelope. This implies that heavy-element enrichment continued through the gas accretion phase, with important implications for the formation of giant planets in our Solar System and beyond.
-
(2022) Journal of geophysical research. Atmospheres. 127, 2, e2021JD035. Abstract
The large-scale Hadley circulation is a key element in the global heat and moisture transport. It is traditionally defined as the zonally averaged meridional circulation in the tropics, but was shown to have a strong longitudinal dependence, as seen in a decomposition of the three-dimensional atmospheric flow into spatially dependent meridional and zonal circulations. Recent studies provided a useful analysis of the regional strengthening/weakening of the decomposed circulation but not its patterns. Here, we study the interannual variability of the longitudinally dependent meridional circulation (LMC), with a focus on its spatial patterns. We use hierarchical clustering to objectively determine the four main modes of the LMC interannual variability, and apply a Lagrangian air parcel tracking method to reveal the full circulation patterns. While El Niño and La Niña are found, as in previous studies, to play a role in setting these patterns, we find the patterns are not uniquely characterized by standard El Niño-Southern Oscillation (ENSO) indices (Nino3.4 or Southern Oscillation Index). Instead, ENSO flavors (i.e., East Pacific vs. Central Pacific) have different effects on the LMC. The most prominent interannual variability of the LMC is an east-west shift. Latitudinal shifts, as well as contraction/expansion in both latitude and longitude are also identified. Multiple linear regression analysis shows that while a large fraction of the LMC variance is explained by Sea Surface Temperature, the Madden-Julian Oscillation makes a nonnegligible independent contribution. The clustering patterns are also used to study the remote precipitation and surface air temperature teleconnections.
-
(2021) Geophysical Research Letters. 48, 23, e2021GL095. Abstract[All authors]
Jupiter's atmosphere is dominated by multiple jet streams which are strongly tied to its 3D atmospheric circulation. Lacking a rigid bottom boundary, several models exist for how the meridional circulation extends into the planetary interior. Here, we show, collecting evidence from multiple instruments of the Juno mission, the existence of midlatitudinal meridional circulation cells which are driven by turbulence, similar to the Ferrel cells on Earth. Different than Earth, which contains only one such cell in each hemisphere, the larger, faster rotating Jupiter can incorporate multiple cells. The cells form regions of upwelling and downwelling, which we show are clearly evident in Juno's microwave data between latitudes (Formula presented.) and (Formula presented.). The existence of these cells is confirmed by reproducing the ammonia observations using a simplistic model. This study solves a long-standing puzzle regarding the nature of Jupiter's subcloud dynamics and provides evidence for eight cells in each Jovian hemisphere.
-
(2021) The Planetary Science Journal. 2, 6, 241. Abstract
Interior modeling of Jupiter and Saturn has advanced to a state where thousands of models are generated that cover the uncertainty space of many parameters. This approach demands a fast method of computing their gravity field and shape. Moreover, the Cassini mission at Saturn and the ongoing Juno mission delivered gravitational harmonics up to J12. Here we report the expansion of the theory of figures, which is a fast method for gravity field and shape computation, to the seventh order (ToF7), which allows for computation of up to J14. We apply three different codes to compare the accuracy using polytropic models. We apply ToF7 to Jupiter and Saturn interior models in conjunction with CMS-19 H/He equation of state. For Jupiter, we find that J6 is best matched by a transition from an He-depleted to He-enriched envelope at 22.5 Mbar. However, the atmospheric metallicity reaches 1 × solar only if the adiabat is perturbed toward lower densities, or if the surface temperature is enhanced by ∼14 K from the Galileo value. Our Saturn models imply a largely homogeneous-in-Z envelope at 1.54 × solar atop a small core. Perturbing the adiabat yields metallicity profiles with extended, heavy-element-enriched deep interior (diffuse core) out to 0.4 RSat, as for Jupiter. Classical models with compact, dilute, or no core are possible as long as the deep interior is enriched in heavy elements. Including a thermal wind fitted to the observed wind speeds, representative Jupiter and Saturn models are consistent with all observed Jn values.
-
(2021) Science. 374, 6570, p. 968-972 Abstract[All authors]
Jupiters atmosphere has a system of zones and belts punctuated by small and large vortices, the largest being the Great Red Spot. How these features change with depth is unknown, with theories of their structure ranging from shallow meteorological features to surface expressions of deep-seated convection. We present observations of atmospheric vortices using the Juno spacecrafts Microwave Radiometer. We found vortex roots that extend deeper than the altitude at which water is expected to condense, and we identified density inversion layers. Our results constrain the three-dimensional structure of Jupiters vortices and their extension below the clouds.
-
(2021) Journal of geophysical research. Planets. 126, 10, e2021JE006. Abstract[All authors]
Juno microwave radiometer (MWR) observations of Jupiter's midlatitudes reveal a strong correlation between brightness temperature contrasts and zonal winds, confirming that the banded structure extends throughout the troposphere. However, the microwave brightness gradient is observed to change sign with depth: the belts are microwave-bright in the p<5 bar range and microwave-dark in the p>10 bar range. The transition level (which we call the "jovicline") is evident in the MWR 11.5 cm channel, which samples the 5-14 bar range when using the limb-darkening at all emission angles. The transition is located between 4 and 10 bars, and implies that belts change with depth from being NH3-depleted to NH3-enriched, or from physically warm to physically cool, or more likely a combination of both. The change in character occurs near the statically stable layer associated with water condensation. The implications of the transition are discussed in terms of ammonia redistribution via meridional circulation cells with opposing flows above and below the water condensation layer, and in terms of the "mushball" precipitation model, which predicts steeper vertical ammonia gradients in the belts versus the zones. We show via the moist thermal wind equation that both the temperature and ammonia interpretations can lead to vertical shear on the zonal winds, but the shear is similar to 50x weaker if only NH3 gradients are considered. Conversely, if MWR observations are associated with kinetic temperature gradients then it would produce zonal winds that increase in strength down to the "jovicline", consistent with Galileo probe measurements; then decay slowly at higher pressures.<br />
-
(2021) Science (American Association for the Advancement of Science). 374, 6570, eabf1396. Abstract[All authors]
Jupiters Great Red Spot (GRS) is the largest atmospheric vortex in the Solar System and has been observed for at least two centuries. It has been unclear how deep the vortex extends beneath its visible cloud tops. We examined the gravity signature of the GRS using data from 12 encounters of the Juno spacecraft with the planet, including two direct overflights of the vortex. Localized density anomalies due to the presence of the GRS caused a shift in the spacecraft line-of-sight velocity. Using two different approaches to infer the GRS depth, which yielded consistent results, we conclude that the GRS is contained within the upper 500 kilometers of Jupiters atmosphere.
-
(2021) Geophysical Research Letters. 48, 9, e2021GL092. Abstract[All authors]
The observed zonal winds at Jupiter's cloud tops have been shown to be closely linked to the asymmetric part of the planet's measured gravity field. Here, we examine to what extent, and at which latitudes, must the flows at depth resemble those at the cloud level to match the gravity signal. We show, using both the symmetric and asymmetric parts of the measured gravity field, that the observed cloud-level wind profile between 25°S and 25°N must extend unaltered to depths of thousands of kilometers. Poleward, the midlatitude deep jets also contribute to the gravity signal, but might differ somewhat from the cloud-level winds. We analyze the likelihood of this difference and give bounds to its strength. We also find that to match the gravity measurements, the winds must project inward in the direction parallel to Jupiter's spin axis, and decay inward in the radial direction.
-
(2021) Monthly Notices of the Royal Astronomical Society. 501, 2, p. 2352-2362 Abstract
During the past few years, both the Cassini mission at Saturn and the Juno mission at Jupiter provided measurements with unprecedented accuracy of the gravity and magnetic fields of the two gas giants. Using the gravity measurements, it was found that the strong zonal flows observed at the cloud level of the gas giants are likely to extend thousands of kilometres deep into the planetary interior. However, the gravity measurements alone, which are by definition an integrative measure of mass, cannot constrain with high certainty the exact vertical structure of the flow. Taking into account the recent Cassini magnetic field measurements of Saturn, and past secular variations of Jupiter's magnetic field, we obtain an additional physical constraint on the vertical decay profile of the observed zonal flows on these planets. Our combined gravity-magnetic analysis reveals that the cloud-level winds on Saturn (Jupiter) extend with very little decay, i.e. barotropically, down to a depth of around 7000 km (2000 km) and then decay rapidly in the semiconducting region, so that within the next 1000 km (600 km) their value reduces to about 1 per cent of that at the cloud level. These results indicate that there is no significant mechanism acting to decay the flow in the outer neutral region, and that the interaction with the magnetic field in the semiconducting region might play a central role in the decay of the flows.
-
(2020) Journal of Geophysical Research: Planets. 125, 11, 2020JE0064. Abstract
Early gravity measurements performed by the Juno spacecraft determined Jupiter's lowdegree gravity harmonics, including the first estimate of the planet's northsouth asymmetric field. The retrieved information was used to infer that the strong zonal winds visible at the cloud tops must extend down a few thousand kilometers, where they are suppressed in the deep interior. The next frontier for the Juno gravity experiment includes, among other goals, the determination of Jupiter's smallscale gravity field with high accuracy, and its relation to atmospheric circulation at shorter length scales. The geometry of the Juno closest approaches to the planet poses a challenge to this task, as they span latitudes between 4∘N and 29∘N over the course of the nominal mission. Since Doppler measurements are the most sensitive to gravity anomalies when the spacecraft is close to the body, observations of Jupiter's gravity field are mostly concentrated in the northern hemisphere, while the traditional spherical harmonic functions are not orthonormal over a latitudinal subdomain. Here we define customized Slepian functions, which are orthogonal in a specific latitude range and are optimized to represent Jupiter's local surface gravity at north latitudes. We show that with the new functions, the shortscale latitudinal variability of the gravity field is resolved with high accuracy between 15∘S and 45∘N latitude. Furthermore, preliminary results show that the estimated values for the Slepian coefficients from the Juno data match the predictions obtained using thermal wind balance to relate the dynamical density anomalies and the winds with an optimized scale height.
-
(2020) Journal of Geophysical Research-Planets. 125, 8, e2019JE006. Abstract
The asymmetric gravity field measured by the Juno spacecraft has allowed the estimation of the depth of Jupiter's zonal jets, showing that the winds extend approximately 3,000 km beneath the cloud level. This estimate was based on an analysis using a combination of all measured odd gravity harmonics, J 3, J 5, J 7, and J 9, but the wind profile's dependence on each of them separately has yet to be investigated. Furthermore, these calculations assumed the meridional profile of the cloud-level wind extends to depth. However, it is possible that the interior jet profile varies somewhat from that of the cloud level. Here we analyze in detail the possible meridional and vertical structure of Jupiter's deep jet streams that can match the gravity measurements. We find that each odd gravity harmonic constrains the flow at a different depth, with J 3 the most dominant at depths below 3,000 km, J 5 the most restrictive overall, whereas J 9 does not add any constraint on the flow if the other odd harmonics are considered. Interior flow profiles constructed from perturbations to the cloud-level winds allow a more extensive range of vertical wind profiles, yet when the meridional profiles differ substantially from the cloud level, the ability to match the gravity data significantly diminishes. Overall, we find that while interior wind profiles that do not resemble the cloud level are possible, they are statistically unlikely. Finally, inspired by the Juno microwave radiometer measurements, assuming the brightness temperature is dominated by the ammonia abundance, we find that depth-dependent flow profiles are still compatible with the gravity measurements.
-
(2020) Space Science Reviews. 216, 5, 84. Abstract
The nature and structure of the observed east-west flows on Jupiter and Saturn have been a long-standing mystery in planetary science. This mystery has been recently unraveled by the accurate gravity measurements provided by the Juno mission to Jupiter and the Grand Finale of the Cassini mission to Saturn. These two experiments, which coincidentally happened around the same time, allowed the determination of the overall vertical and meridional profiles of the zonal flows on both planets. This paper reviews the topic of zonal jets on the gas giants in light of the new data from these two experiments. The gravity measurements not only allow the depth of the jets to be constrained, yielding the inference that the jets extend to roughly 3000 and 9000 km below the observed clouds on Jupiter and Saturn, respectively, but also provide insights into the mechanisms controlling these zonal flows. Specifically, for both planets this depth corresponds to the depth where electrical conductivity is within an order of magnitude of 1 S m(-1), implying that the magnetic field likely plays a key role in damping the zonal flows. An intrinsic characteristic of any gravity inversion, as discussed here, is that the solutions might not be unique. We analyze the robustness of the solutions and present several independent lines of evidence supporting the results presented here.
-
(2020) Geophysical Research Letters. 47, 10, e2019GL086. Abstract
The Hadley circulation is a key element of the climate system. It is traditionally defined as the zonally averaged meridional circulation in the tropics, therefore treated as a zonally symmetric phenomenon. However, differences in temperature between land and sea cause zonal asymmetries on Earth, dramatically affecting the circulation. This longitudinal dependence of the meridional circulation evokes questions about where and when the actual large-scale tropical circulation occurs. Here, we look into the connection between the longitudinally dependent meridional circulation, and the actual large-scale transport of air in the tropics using a coupled Eulerian and Lagrangian approach. Decomposing the velocity field into rotational and divergent components, we identify how each component affects the actual circulation. We propose an alternative definition for the circulation, which describes the actual path of air parcels in the tropics, as a tropical atmospheric conveyor belt.
-
A mascon approach to estimating the depth of Jupiter's Great Red Spot with Juno gravity measurements(2020) Planetary and Space Science. 181, 104781. Abstract
We evaluate a method for determining the depth of Jupiter's Great Red Spot (GRS) with two Jima overflights dedicated to gravity science. The small-scale, localized nature of the anticyclone requires a detection method where the gravity perturbations are regional. To this end, we model the GRS as a dipole of flat disk mass concentrations (mascons), separated along the radial direction of Jupiter. Thermal wind theory predicts such structure composed of two equal and opposite masses below the visible cloud tops, condition that is used to constrain our estimation algorithm. Furthermore, Juno radiometer observations of the GRS brightness temperature indicate the presence of anomalies of opposite sign at different depths. We present the results of both a covariance and recovery analyses of the simulated data, in terms of accuracy in the estimation of the GRS mass and depth of winds. The analyses are carried out using precise Doppler tracking of the Juno spacecraft and by posing constraints on the interior model of the vortex from theory. We find that, if the surface dynamics extend at least several hundred kilometers below the cloud tops, it is possible to resolve the mass concentrations using both gravity passes, and tie the mass to the vortex's depth through thermal wind.
-
(2019) Astrophysical Journal Letters. 879, 2, 22. Abstract
Jupiter's internal flow structure is still not fully known, but can be now better constrained due to Juno's highprecision measurements. The recently published gravity and magnetic field measurements have led to new information regarding the planet and its internal flows, and future magnetic measurements will help to solve this puzzle. In this study, we propose a new method to better constrain Jupiter's internal flow field using the Juno gravity measurements combined with the expected measurements of magnetic secular variation. Based on a combination of hydrodynamical and magnetic field considerations we show that an optimized vertical profile of the zonal flows that fits both measurements can be obtained. Incorporating the magnetic field effects on the flow better constrains the flow decay profile. This will get us closer to answering the persistent question regarding the depth and nature of the flows on Jupiter.
-
(2019) Science. 364, 6445, eaat2965. Abstract[All authors]
The interior structure of Saturn, the depth of its winds, and the mass and age of its rings constrain its formation and evolution. In the final phase of the Cassini mission, the spacecraft dived between the planet and its innermost ring, at altitudes of 2600 to 3900 kilometers above the cloud tops. During six of these crossings, a radio link with Earth was monitored to determine the gravitational field of the planet and the mass of its rings. We find that Saturn’s gravity deviates from theoretical expectations and requires differential rotation of the atmosphere extending to a depth of at least 9000 kilometers. The total mass of the rings is (1.54 ± 0.49) × 10 19 kilograms (0.41 ± 0.13 times that of the moon Mimas), indicating that the rings may have formed 10 7 to 10 8 years ago.
-
(2019) Astrophysical Journal Letters. 874, 2, 24. Abstract
One of Jupiter's most prominent atmospheric features, the Great Red Spot (GRS), has been observed for more than two centuries, yet little is known about its structure and dynamics below its observed cloud level. While its anticyclonic vortex appearance suggests it might be a shallow weather-layer feature, the very long time span for which it was observed implies it is likely deeply rooted, otherwise it would have been sheared apart by Jupiter's turbulent atmosphere. Determining the GRS depth will shed light not only on the processes governing the GRS, but on the dynamics of Jupiter's atmosphere as a whole. The Juno mission single flyby over the GRS (PJ7) discovered using microwave radiometer measurements that the GRS is at least a couple hundred kilometers deep. The next flybys over the GRS (PJ18 and PJ21), will allow high-precision gravity measurements that can be used to estimate how deep the GRS winds penetrate below the cloud level. Here we propose a novel method to determine the depth of the GRS based on the new gravity measurements and a Slepian function approach that enables an effective representation of the wind-induced spatially confined gravity signal, and an efficient determination of the GRS depth given the limited measurements. We show that with this method the gravity signal of the GRS should be detectable for wind depths deeper than 300 km, with reasonable uncertainties that depend on depth (e.g., +/- 100 km for a GRS depth of 1000 km).
-
(2019) Geophysical Research Letters. 46, 2, p. 616-624 Abstract
How deep do Saturn's zonal winds penetrate below the cloud level has been a decades-long question, with important implications not only for the atmospheric dynamics but also for the interior density structure, composition, magnetic field, and core mass. The Cassini Grand Finale gravity experiment enables answering this question for the first time, with the premise that the planet's gravity harmonics are affected not only by the rigid body density structure but also by its flow field. Using a wide range of rigid body interior models and an adjoint based optimization for the flow field using thermal wind balance, we calculate the flow structure below the cloud level and its depth. We find that with a wind profile, largely consistent with the observed winds, when extended to a depth of around 8,800 km, all the gravity harmonics measured by Cassini are explained. This solution is in agreement with considerations of angular momentum conservation and is consistent with magnetohydrodynamics constraints.Plain Language Summary Observations show strong east-west flows at the cloud level of Saturn. These winds are strongest at the equatorial regions, reaching up to 400 m/s, about 4 times stronger than tornado strength winds on Earth. Yet until now we had no knowledge on how deep these winds penetrate into the interior of the gas giant. The gravity experiment executed during the Grand Finale stage (May-August 2017) of the NASA Cassini mission helps answering this question. It is well established that any large-scale motion of the fluid would have a signature in the density distribution and therefore in the planet gravity field. If we can estimate the internal structure and shape of the planet, we might be able to decipher the depth of the winds from its signal in the gravity measurements. Moreover, the rigid-body and flow contribution to gravity field are entangled together, therefore it is necessary to use a wide range of rigid-body models in order to define the wind-induced gravity signal. In this work we propose a solution to the problem. We find that the gravity measurements can be explained with a flow pattern, similar to that observed at the cloud level, penetrating to depths of more than 8,000 km into the planet interior. This has important implications not only for the atmospheric dynamics but also for the interior density structure, composition, magnetic field, and core mass.
-
(2018) Nature. 555, 7695, p. 223-226 Abstract[All authors]
The depth to which Jupiter's observed east-west jet streams extend has been a long-standing question(1,2). Resolving this puzzle has been a primary goal for the Juno spacecraft(3,4), which has been in orbit around the gas giant since July 2016. Juno's gravitational measurements have revealed that Jupiter's gravitational field is north-south asymmetric(5), which is a signature of the planet's atmospheric and interior flows(6). Here we report that the measured odd gravitational harmonics J(3), J(5), J(7) and J(9) indicate that the observed jet streams, as they appear at the cloud level, extend down to depths of thousands of kilometres beneath the cloud level, probably to the region of magnetic dissipation at a depth of about 3,000 kilometres(7,8). By inverting the measured gravity values into a wind field(9), we calculate the most likely vertical profile of the deep atmospheric and interior flow, and the latitudinal dependence of its depth. Furthermore, the even gravity harmonics J(8) and J(10) resulting from this flow profile also match the measurements, when taking into account the contribution of the interior structure(10). These results indicate that the mass of the dynamical atmosphere is about one per cent of Jupiter's total mass.
-
(2018) Nature. 555, 7695, p. 227-230 Abstract[All authors]
Jupiter's atmosphere is rotating differentially, with zones and belts rotating at speeds that differ by up to 100 metres per second. Whether this is also true of the gas giant's interior has been unknown(1,2), limiting our ability to probe the structure and composition of the planet(3,4). The discovery by the Juno spacecraft that Jupiter's gravity field is north-south asymmetric(5) and the determination of its non-zero odd gravitational harmonics J(3), J(5), J(7) and J(9) demonstrates that the observed zonal cloud flow must persist to a depth of about 3,000 kilometres from the cloud tops(6). Here we report an analysis of Jupiter's even gravitational harmonics J(4), J(6), J(8) and J(10) as observed by Juno(5) and compared to the predictions of interior models. We find that the deep interior of the planet rotates nearly as a rigid body, with differential rotation decreasing by at least an order of magnitude compared to the atmosphere. Moreover, we find that the atmospheric zonal flow extends to more than 2,000 kilometres and to less than 3,500 kilometres, making it fully consistent with the constraints obtained independently from the odd gravitational harmonics. This depth corresponds to the point at which the electric conductivity becomes large and magnetic drag should suppress differential rotation(7). Given that electric conductivity is dependent on planetary mass, we expect the outer, differentially rotating region to be at least three times deeper in Saturn and to be shallower in massive giant planets and brown dwarfs.
-
(2018) Nature. 555, 7695, p. 220-222 Abstract[All authors]
The gravity harmonics of a fluid, rotating planet can be decomposed into static components arising from solid-body rotation and dynamic components arising from flows. In the absence of internal dynamics, the gravity field is axially and hemispherically symmetric and is dominated by even zonal gravity harmonics J 2n that are approximately proportional to q n, where q is the ratio between centrifugal acceleration and gravity at the planet's equator. Any asymmetry in the gravity field is attributed to differential rotation and deep atmospheric flows. The odd harmonics, J 3, J 5, J 7, J 9 and higher, are a measure of the depth of the winds in the different zones of the atmosphere. Here we report measurements of Jupiter's gravity harmonics (both even and odd) through precise Doppler tracking of the Juno spacecraft in its polar orbit around Jupiter. We find a north-south asymmetry, which is a signature of atmospheric and interior flows. Analysis of the harmonics, described in two accompanying papers, provides the vertical profile of the winds and precise constraints for the depth of Jupiter's dynamical atmosphere.
-
(2017) Geophysical Research Letters. 44, 16, p. 8173-8181 Abstract
Deciphering the flow below the cloud-level of Jupiter remains a critical milestone in understanding Jupiter's internal structure and dynamics. The expected high-precision Juno measurements of both the gravity field and the magnetic field might help to reach this goal. Here we propose a method that combines both fields to constrain the depth-dependent flow field inside Jupiter. This method is based on a mean-field electrodynamic balance that relates the flow field to the anomalous magnetic field, and geostrophic balance that relates the flow field to the anomalous gravity field. We find that the flow field has two distinct regions of influence: an upper region in which the flow affects mostly the gravity field and a lower region in which the flow affects mostly the magnetic field. An optimization procedure allows to reach a unified flow structure that is consistent with both the gravity and the magnetic fields.
-
(2017) Astrophysical Journal Letters. 843, 2, L25. Abstract
The Cassini measurements of Saturn's gravity field during its Grand Finale might shed light on a long-standing question regarding the flow on Saturn. While the cloud-level winds are well known, little is known about whether these winds are confined to the outer layers of the planet or penetrate deep into the interior. An additional complexity is added by the uncertainty in the exact rotation period of Saturn, a key factor in determining the cloudlevel winds, with an effect on the north-south symmetric part of the winds. Using Saturn's cloud-level winds we relate the flow to the gravity harmonics. We give a prediction for the odd harmonicsJ(3), J(5), J(7), and J(9) as a function of the flow depth, identifying three ranges of depths. Since the odd harmonics depend solely on the flow, and are not influenced by Saturn's shape and static density distribution, any measured value of the odd harmonics by Cassini can be used to uniquely determine the depth of the flow. We also discuss the flow-induced even harmonics Delta J(2), Delta J(4),...., Delta J(12) that are affected by Saturn's rotation period. While the high-degree even harmonics might also be used to determine the flow depth, the lower-degree even harmonics serve as uncertainties for analysis of the planet's interior structure and composition. Thus, the gravity harmonics measured during the Cassini Grand Finale may be used to get a first-order estimate of the flow structure and to better constrain the planet's density structure and composition.
-
(2017) Astronomical Journal. 154, 1, 2. Abstract
The upcoming Juno spacecraft measurements have the potential of improving our knowledge of Jupiter's gravity field. The analysis of the Juno Doppler data will provide a very accurate reconstruction of spatial gravity variations, but these measurements will be very accurate only over a limited latitudinal range. In order to deduce the full gravity field of Jupiter, additional information needs to be incorporated into the analysis, especially regarding the Jovian flow structure and its depth, which. can influence the measured gravity field. In this study we propose a new iterative method for the estimation of the Jupiter gravity field, using a simulated Juno trajectory, a trajectory estimation model, and an adjoint-based inverse model for the flow dynamics. We test this method both for zonal harmonics only and with a full gravity field including tesseral harmonics. The results show that. this method. can fit. some of the gravitational harmonics. better to the "measured" harmonics, mainly because of. the added information from the dynamical model, which includes the flow structure. Thus, it is suggested that the method presented here has the potential of improving the accuracy of the expected gravity harmonics estimated from the Juno and Cassini radio science experiments.
-
(2017) Geophysical Research Letters. 44, 12, p. 5960-5968 Abstract
The close-by orbits of the ongoing Juno mission allow measuring with unprecedented accuracy Jupiter's low-degree even gravity moments J2, J4, J6, and J8. These can be used to better determine Jupiter's internal density profile and constrain its core mass. Yet the largest unknown on these gravity moments comes from the effect of differential rotation, which gives a degree of freedom unaccounted for by internal structure models. Here considering a wide range of possible internal flow structures and dynamical considerations, we provide upper bounds to the effect of dynamics (differential rotation) on the low-degree gravity moments. In light of the recent Juno gravity measurements and their small uncertainties, this allows differentiating between the various models suggested for Jupiter's internal structure.
[All authors] -
(2017) Geophysical Research Letters. 44, 10, p. 4649-4659 Abstract[All authors]
The Juno spacecraft has measured Jupiter's low-order, even gravitational moments, J2J8, to an unprecedented precision, providing important constraints on the density profile and core mass of the planet. Here we report on a selection of interior models based on ab initio computer simulations of hydrogen-helium mixtures. We demonstrate that a dilute core, expanded to a significant fraction of the planet's radius, is helpful in reconciling the calculated Jn with Juno's observations. Although model predictions are strongly affected by the chosen equation of state, the prediction of an enrichment of Z in the deep, metallic envelope over that in the shallow, molecular envelope holds. We estimate Jupiter's core to contain a 725 Earth mass of heavy elements. We discuss the current difficulties in reconciling measured Jn with the equations of state and with theory for formation and evolution of the planet.
-
(2017) Icarus. 286, p. 46-55 Abstract
Observations of the flow on Jupiter exists essentially only for the cloud-level, which is dominated by strong east-west jet-streams. These have been suggested to result from dynamics in a superficial thin weather-layer, or alternatively be a manifestation of deep interior cylindrical flows. However, it is possible that the observed wind is indeed superficial, yet there exists a completely decoupled deep flow. To date, all models linking the wind, via the induced density anomalies, to the gravity field, to be measured by Juno, consider only flow that is a projection of the observed cloud-level wind. Here we explore the possibility of complex wind dynamics that include both the shallow weather-layer wind, and a deep flow that is decoupled from the flow above it. The upper flow is based on the observed cloud-level flow and is set to decay with depth. The deep flow is constructed to produce cylindrical structures with variable width and magnitude, thus allowing for a wide range of possible scenarios for the unknown deep flow. The combined flow is then related to the density anomalies and gravitational moments via a dynamical model. An adjoint inverse model is used for optimizing the parameters controlling the setup of the deep and surface-bound flows, so that these flows can be reconstructed given a gravity field. We show that the model can be used for examination of various scenarios, including cases in which the deep flow is dominating over the surface wind, and discuss the uncertainties associated with the model solution. The flexibility of the adjoint method allows for a wide range of dynamical setups, so that when new observations and physical understanding will arise, these constraints could be easily implemented and used to better decipher Jupiter flow dynamics. (C) 2017 Elsevier Inc. All rights reserved.
-
(2017) Journal of Fluid Mechanics. 810, p. 175-195 Abstract
The nature of the flow below the cloud level on Jupiter and Saturn is still unknown. Relating the flow on these planets to perturbations in their density field is key to the analysis of the gravity measurements expected from both the Juno (Jupiter) and Cassini (Saturn) spacecrafts during 2016-2018. Both missions will provide latitude-dependent gravity fields, which in principle could be inverted to calculate the vertical structure of the observed cloud-level zonal flow on these planets. Theories to date connecting the gravity field and the flow structure have been limited to potential theories under a barotropic assumption, or estimates based on thermal wind balance that allow baroclinic wind structures to be analysed, but have made simplifying assumptions that neglected several physical effects. These include the effects of the deviations from spherical symmetry, the centrifugal force due to density perturbations and self-gravitational effects of the density perturbations. Recent studies attempted to include some of these neglected terms, but lacked an overall approach that is able to include all effects in a self-consistent manner. The present study introduces such a self-consistent perturbation approach to the thermal wind balance that incorporates all physical effects, and applies it to several example wind structures, both barotropic and baroclinic. The contribution of each term is analysed, and the results are compared in the barotropic limit with those of potential theory. It is found that the dominant balance involves the original simplified thermal wind approach. This balance produces a good order-of-magnitude estimate of the gravitational moments, and is able, therefore, to address the order one question of how deep the flows are given measurements of gravitational moments. The additional terms are significantly smaller yet can affect the gravitational moments to some degree. However, none of these terms is dominant so any approximation attempting to improve over the simplified thermal wind approach needs to include all other terms.
-
(2016) Icarus. 276, p. 170-181 Abstract
The upcoming Juno and Cassini gravity measurements of Jupiter and Saturn, respectively, will allow probing the internal dynamics of these planets through accurate analysis of their gravity spectra. To date, two general approaches have been suggested for relating the flow velocities and gravity fields. In the first, barotropic potential surface models, which naturally take into account the oblateness of the planet, are used to calculate the gravity field. However, barotropicity restricts the flows to be constant along cylinders parallel to the rotation axis. The second approach, calculated in the reference frame of the rotating planet, assumes that due to the large scale and rapid rotation of these planets, the winds are to leading order in geostrophic balance. Therefore, thermal wind balance relates the wind shear to the density gradients. While this approach can take into account any internal flow structure, it is limited to only calculating the dynamical gravity contributions, and has traditionally assumed spherical symmetry. This study comes to relate the two approaches both from a theoretical perspective, showing that they are analytically identical in the barotropic limit, and numerically, through systematically comparing the different model solutions for the gravity harmonics. For the barotropic potential surface models we employ two independent solution methods - the potential-theory and Maclaurin spheroid methods. We find that despite the sphericity assumption, in the barotropic limit the thermal wind solutions match well the barotropic oblate potential-surface solutions.
-
(2016) Astrophysical Journal. 820, 2, 91. Abstract
During 2016-17, the Juno and Cassini spacecraft will both perform close eccentric orbits of Jupiter and Saturn, respectively, obtaining high-precision gravity measurements for these planets. These data will be used to estimate the depth of the observed surface flows on these planets. All models to date, relating the winds to the gravity field, have been in the forward direction, thus only allowing the calculation of the gravity field from given wind models. However, there is a need to do the inverse problem since the new observations will be of the gravity field. Here, an inverse dynamical model is developed to relate the expected measurable gravity field, to perturbations of the density and wind fields, and therefore to the observed cloud-level winds. In order to invert the gravity field into the 3D circulation, an adjoint model is constructed for the dynamical model, thus allowing backward integration. This tool is used for the examination of various scenarios, simulating cases in which the depth of the wind depends on latitude. We show that it is possible to use the gravity measurements to derive the depth of the winds, both on Jupiter and Saturn, also taking into account measurement errors. Calculating the solution uncertainties, we show that the wind depth can be determined more precisely in the low-to-mid-latitudes. In addition, the gravitational moments are found to be particularly sensitive to flows at the equatorial intermediate depths. Therefore, we expect that if deep winds exist on these planets they will have a measurable signature by Juno and Cassini.
-
(2016) Icarus. 267, p. 232-242 Abstract
Jupiter's Great Red Spot (GRS) is the most dominant and long-lived feature in Jupiter's atmosphere. However, whether this is a shallow atmospheric feature or a deeply rooted vortex has remained an open question. In this study, we assess the possibility of inferring the depth of the GRS by the upcoming Juno gravity experiment. This is achieved by an exploration of the possible gravitational signature of the vortex by systematically extending the surface winds into the interior and analyzing the resulting gravity signal. The gravity anomaly is then compared to the expected accuracy in the retrieval of the surface gravity at the GRS location obtained with numerical simulations of the Doppler data inversion based on the expected trajectory of the spacecraft. Starting from observations of the atmospheric velocity at the cloud level, we project the wind using a decay scale height along coaxial cylinders parallel to the spin axis and explore a wide range of decay scale heights in the radial direction. Assuming the large scale vortex dynamics are geostrophic, and therefore thermal wind balance holds, the density anomaly distribution due to Jupiter's winds can be derived from the velocity maps. The novelty of this approach is in the integration of thermal wind relations over a three-dimensional grid, and in the inclusion of the observed meridional velocity as measured during the Cassini flyby of Jupiter. The perturbations in the mean zonal flow give rise to non zero tesseral spherical harmonics in Jupiter's gravitational potential. We provide an estimate of this asymmetric gravity coefficients for different values of the wind decay scale height. We conclude that the mass anomaly associated with the GRS is detectable by the Juno gravity experiment if the vortex is deep, characterized by a vertical height larger than 2,000 km below the cloud level of Jupiter, and that the large mass involved with deep winds does not render much the ability to measure the feature.
-
(2015) Boundary-Layer Meteorology. 156, 3, p. 471-487 Abstract
Capping inversions act as barriers to the vertical diffusion of pollutants, occasionally leading to significant low-level air pollution episodes in the lower troposphere. Here, we conducted two summer campaigns where global positioning system radiosondes were operated in Haifa Bay on the eastern Mediterranean coast, a region of steep terrain with significant pollution. The campaigns provided unique high resolution measurements related to capping inversions. It was found that the classical definition of a capping inversion was insufficient for an explicit identification of a layer; hence additional criteria are required for a complete spatial analysis of inversion evolution. Based on the vertical temperature derivative, an inner fine structure of inversion layers was explored, and was then used to track inversion layers spatially and to investigate their evolution. The exploration of the inner structure of inversion layers revealed five major patterns: symmetric peak, asymmetric peak, double peak, flat peak, and the zig-zag pattern. We found that the symmetric peak is related to the strongest inversions, double peak inversions tended to break apart into two layers, and the zig-zag pattern was related to the weakest inversions. Employing this classification is suggested for assistance in following the evolution of inversion layers.
-
(2015) Journal of Geophysical Research-Space Physics. 120, 7, p. 6036-6044 Abstract
There are many sources of very low frequency (VLF3-30kHz) and extremely low frequency (ELF3-3000Hz) radiation in the Earth-ionosphere waveguide (e.g., lightning and ELF/VLF communication transmitters). At distances of thousands of kilometers from these sources, the vertical component of the ELF/VLF AC magnetic fields is expected to be very weak and several orders of magnitude lower than the horizontal magnetic components. However, measurements in Israel show a relatively strong vertical magnetic component in both the ELF and VLF bands, at the same order of magnitude as the horizontal components. Our measurements suggest that the real Earth-ionosphere waveguide might often be very different from the theoretical waveguide used in model calculations. In addition, our results imply that using only the horizontal components for direction finding or the absolute magnetic field strength may result in errors, since often a significant fraction of the magnetic field energy hides in the vertical component.
-
(2015) Nature. 520, 7546, p. 202-204 Abstract
The alignment of Saturn's magnetic pole with its rotation axis precludes the use of magnetic field measurements to determine its rotation period(1). The period was previously determined from radio measurements by the Voyager spacecraft to be 10 h 39 min 22.4s (ref. 2). When the Cassini spacecraft measured a period of 10 h 47 min 6s, which was additionally found to change between sequential measurements(3,4,5), it became clear that the radio period could not be used to determine the bulk planetary rotation period. Estimates based upon Saturn's measured wind fields have increased the uncertainty even more, giving numbers smaller than the Voyager rotation period, and at present Saturn's rotation period is thought to be between 10 h 32 mm and 10 h 47 min, which is unsatisfactory for such a fundamental property. Here we report a period of 10 h 32 mm 45 s 46 s, based upon an optimization approach using Saturn's measured gravitational field and limits on the observed shape and possible internal density profiles. Moreover, even when solely using the constraints from its gravitational field, the rotation period can be inferred with a precision of several minutes. To validate our method, we applied the same procedure to Jupiter and correctly recovered its well-known rotation period.
-
(2014) Environmental Research Letters. 9, 12, 124023. Abstract
Estimates of global thunderstorm activity have been made predominately by direct measurements of lightning discharges around the globe, either by optical measurements from satellites, or using ground-based radio antennas. In this paper we propose a new methodology in which thunderstorm clusters are constructed based on the lightning strokes detected by the World Wide Lightning Location Network (WWLLN) in the very low frequency range. We find that even with low lightning detection efficiency on a global scale, the spatial and temporal distribution of global thunderstorm cells is well reproduced. This is validated by comparing the global diurnal variations of the thunderstorm cells, and the currents produced by these storms, with the well-known Carnegie Curve, which represents the mean diurnal variability of the global atmospheric electric circuit, driven by thunderstorm activity. While the Carnegie Curve agrees well with our diurnal thunderstorm cluster variations, there is little agreement between the Carnegie Curve and the diurnal variation in the number of lightning strokes detected by the WWLLN. When multiplying the number of clusters we detect by the mean thunderstorm conduction current for land and ocean thunderstorms (Mach et al 2011 J. Geophys. Res. 116 D05201) we get a total average current of about 760 A. Our results show that thunderstorms alone explain more than 90% in the variability of the global electric circuit. However, while it has been previously shown that 90% of the global lightning occurs over continental landmasses, we show that around 50% of the thunderstorms are over the oceans, and from 00-09UTC there are more thunderstorm cells globally over the oceans than over the continents. Since the detection efficiency of the WWLLN system has increased over time, we estimate that the lower bound of the mean number of global thunderstorm cells in 2012 was around 1050 per hour, varying from around 840 at 03UTC to 1150 storms at 19UTC.
-
(2014) Journal of Climate. 27, 19, p. 7319-7334 Abstract
The North Atlantic jet stream during winter 2010 was unusually zonal, so the typically separated Atlantic and African jets were merged into one zonal jet. Moreover, the latitude-height structure and temporal variability of the North Atlantic jet during this winter were more characteristic of the North Pacific. This work examines the possibility of a flow regime change from an eddy-driven to a mixed eddy-thermally driven jet. A monthly jet zonality index is defined, which shows that a persistent merged jet state has occurred in the past, both at the end of the 1960s and during a few sporadic months. The anomalously zonal jet is found to be associated with anomalous tropical Pacific diabatic heating and eddy anomalies similar to those found during a negative North Atlantic Oscillation (NAO) state. A Lagrangian back-trajectory diagnosis of eight winters suggests the tropical Pacific is a source of momentum to the Atlantic and African jets and that this source was stronger during the winter of 2010. The results suggest that the combination of weak eddy variance and fluxes in the North Atlantic, along with strong tropical heating, act to push the jet toward a merged eddy-thermally driven state. The authors also find significant SST anomalies in the North Atlantic, which reinforce the anomalous zonal winds, particularly in the eastern Atlantic.
-
(2011) Surveys in Geophysics. 32, 6, p. 733-751 Abstract
One of the costliest natural hazards around the globe is flash floods, resulting from localized intense convective precipitation over short periods of time. Since intense convective rainfall (especially over the continents) is well correlated with lightning activity in these storms, a European Union FP6 FLASH project was realized from 2006 to 2010, focusing on using lightning observations to better understand and predict convective storms that result in flash floods. As part of the project, 23 case studies of flash floods in the Mediterranean region were examined. For the analysis of these storms, lightning data were used together with rainfall estimates in order to understand the storms' development and electrification processes. In addition, these case studies were simulated using mesoscale meteorological models to better understand the local and synoptic conditions leading to such intense and damaging storms. As part of this project, tools for short-term predictions (nowcasts) of intense convection across the Mediterranean and Europe, and long-term forecasts (a few days) of the likelihood of intense convection, were developed and employed. The project also focused on educational outreach through a special Web site http://flashproject.org supplying real-time lightning observations, real-time experimental nowcasts, medium-range weather forecasts and educational materials. While flash floods and intense thunderstorms cannot be prevented, long-range regional lightning networks can supply valuable data, in real time, for warning the public, end-users and stakeholders of imminent intense rainfall and possible flash floods.
[All authors] -
(2011) ENVIRONMENTAL SCIENCE & POLICY. 14, 7, p. 898-911 Abstract
The FLASH project was implemented from 2006 to 2010 under the EU FP6 framework. The project focused on using lightning observations to better understand and predict convective storms that result in flash floods. As part of the project 23 case studies of flash floods in the Mediterranean region were examined. For the analysis of these storms lightning data from the ZEUS network were used together with satellite derived rainfall estimates in order to understand the storm development and electrification. In addition, these case studies were simulated using mesoscale meteorological models to better understand the meteorological and synoptic conditions leading up to these intense storms. As part of this project tools for short term predictions (nowcasts) of intense convection across the Mediterranean and Europe, and long term forecasts (a few days) of the likelihood of intense convection were developed. The project also focused on educational outreach through our website http://flashproject.org supplying real time lightning observations, real time experimental nowcasts, forecasts and educational materials. While flash floods and intense thunderstorms cannot be prevented as the climate changes, long-range regional lightning networks can supply valuable data, in real time, for warning end-users and stakeholders of imminent intense rainfall and possible flash floods. (C) 2011 Elsevier Ltd. All rights reserved.
[All authors] -
(2011) Atmospheric Research. 100, 4, p. 489-502 Abstract
Thunderstorms are often the cause of severe and disastrous flash floods. Lightning activity within these storms can be detected and monitored continuously from thousands of kilometers away and can therefore be very useful in improving forecasts and now-casts of severe thunderstorms. An improvement in the now-casting of such storms can assist in reducing damages and saving lives.Using the ZEUS ground-based VLF lightning detection network and the Warning Decision Support System-Integrated Information (WDSS-II) software, we performed now-casting simulations using 1 year of lightning data over the Mediterranean area. Thousands of thunderstorms were observed and now-cast 30, 60, 90 and 120 min ahead. Statistical analysis was then done by calculating the hit, miss and false-alarm rates, as well as the POD, FAR and CSI scores in order to determine the success of the now-casting.The results show that the algorithm is overall successful in now-casting the location of the lightning clusters, especially when applied to strong and consistent lightning events (it is these events which also have the strongest connection to flash floods). The probability of detection (POD) values range between 0.46 for 30 minute now-casts and 0.25 for 120 minute now-casts. The critical success index (CSI) values are quite similar, but slightly lower. The now-casting has a low false-alarm rate, 0.03 for 30 minute now-casts, which is also beneficial for operational use.This method has been implemented for the use in real-time now-casting and is used in the EU FLASH project to seek and track areas of thunderstorm risk according to lightning intensity. The experimental now-casts appear on the project website (www.flashproject.org/). (C) 2010 Elsevier B.V. All rights reserved.
-
A high resolution study of Atmospheric dispersion over a coastal urban area with complex terrain(2010) Air Pollution Modeling and its Application XX. p. 75-80 Abstract
-
A study of ENSO prediction using a hybrid coupled model and the adjoint method for data assimilation(2003) Monthly Weather Review. 131, 11, p. 2748-2764 Abstract
An experimental ENSO prediction system is presented, based on an ocean general circulation model (GCM) coupled to a statistical atmosphere and the adjoint method of 4D variational data assimilation. The adjoint method is used to initialize the coupled model, and predictions are performed for the period 1980-99. The coupled model is also initialized using two simpler assimilation techniques: forcing the ocean model with observed sea surface temperature and surface fluxes, and a 3D variational data assimilation (3DVAR) method, similar to that used by the National Centers for Environmental Prediction (NCEP) for operational ENSO prediction. The prediction skill of the coupled model initialized by the three assimilation methods is then analyzed and compared. The effect of the assimilation period used in the adjoint method is studied by using 3-,6-, and 9-month assimilation periods. Finally, the possibility of assimilating only the anomalies with respect to observed climatology in order to circumvent systematic model biases is examined. It is found that the adjoint method does seem to have the potential for improving over simpler assimilation schemes. The improved skill is mainly at prediction intervals of more than 6 months, where the coupled model dynamics start to influence the model solution. At shorter prediction time intervals, the initialization using the forced ocean model or the 3DVAR may result in a better prediction skill. The assimilation of anomalies did not have a substantial effect on the prediction skill of the coupled model. This seems to indicate that in this model the climatology bias, which is compensated for by the anomaly assimilation, is less significant for the predictive skill than the bias in the model variability, which cannot be eliminated using the anomaly assimilation. Changing the optimization period from 6 to 3 to 9 months showed that the period of 6 months seems to be a near-optimal choice for this model.
-
(2003) Journal of Physical Oceanography. 33, 9, p. 1877-1888 Abstract
The possibility of generating decadal ENSO variability via an ocean teleconnection to the midlatitude Pacific is studied. This is done by analyzing the sensitivity of the equatorial stratification to midlatitude processes using an ocean general circulation model, the adjoint method, and a quasigeostrophic normal-mode stability analysis. It is found that, on timescales of 2-15 yr, the equatorial Pacific is most sensitive to midlatitude planetary Rossby waves traveling from the midlatitudes toward the western boundary and then to the equator. Those waves that propagate through baroclinically unstable parts of the subtropical gyre are amplified by the baroclinic instability and therefore dominate the midlatitude signal arriving at the equator. This result implies that decadal variability in the midlatitude Pacific would be efficiently transmitted to the equatorial Pacific from specific areas of the midlatitude Pacific that are baroclinically unstable, such as the near-equatorial edges of the subtropical gyres (15°N and 12°S). The Rossby waves that propagate via the baroclinically unstable areas are of the advective mode type, which follow the gyre circulation to some degree and arrive from as far as 25°N and 30°S in the east Pacific. It is shown that the baroclinic instability amplifying these waves involves critical layers due to the vertical shear of the subtropical gyre circulation, at depths of 150-200 m.
-
(2002) Journal of Climate. 15, 19, p. 2721-2739 Abstract
One of the major factors determining the strength and extent of ENSO events is the instability state of the equatorial Pacific coupled ocean-atmosphere system and its seasonal variations. This study analyzes the coupled instability in a hybrid coupled model of the Indo-Pacific region, using the adjoint method for sensitivity studies. It is found that the seasonal changes in the ocean-atmosphere instability strength in the model used here are related to the outcropping of the thermocline in the east equatorial Pacific. From July to December, when the thermocline outcrops over a wide area in the east Pacific, there is a strong surface-thermocline connection and anomalies that arrive as Kelvin waves from the west along the thermocline can reach the surface and affect the SST and thus the coupled system. Conversely, from February to June, when the thermocline outcropping is minimal, the surface decouples from the thermocline and temperature anomalies in the thermocline depth range do not affect the surface and dissipate within the thermocline. The role of vertical mixing rather than upwelling in linking vertical thermocline movements to SST change is emphasized. It is therefore suggested that the seasonal ocean-atmosphere instability strength in the equatorial Pacific is strongly influenced by the thermocline outcropping and its seasonal modulation, a physical mechanism that is often neglected in intermediate coupled models and that can be represented properly only in models that employ the full dynamics of the mixed layer.
-
(2002) Monthly Weather Review. 130, 3, p. 723-732 Abstract
This paper presents a quantitative methodology for evaluating air-sea fluxes related to ENSO from different atmospheric products. A statistical model of the fluxes from each atmospheric product is coupled to an ocean general circulation model (GCM). Four different products are evaluated: reanalyses from the National Centers for Environmental Prediction (NCEP) and the European Centre for Medium-Range Weather Forecasts (ECMWF), satellite-derived data from the Special Sensor Microwave/Imaging (SSM/I) platform and the International Satellite Cloud Climatology Project (ISCCP), and an atmospheric GCM developed at the Geophysical Fluid Dynamics Laboratory (GFDL) as part of the Atmospheric Model Intercomparison Project (AMIP) II. For this study, comparisons between the datasets are restricted to the dominant air-sea mode. The stability of a coupled model using only the dominant mode and the associated predictive skill of the model are strongly dependent on which atmospheric product is used. The model is unstable and oscillatory for the ECMWF product, damped and oscillatory for the NCEP and GFDL products, and unstable (nonoscillatory) for the satellite product. The ocean model is coupled with patterns of wind stress as well as heat fluxes. This distinguishes the present approach from the existing paradigm for ENSO models where surface heat fluxes are parameterized as a local damping term in the sea surface temperature (SST) equation.
-
(2000) Journal Of The Atmospheric Sciences. 57, 17, p. 2936-2950 Abstract
The physical mechanism underlying ENSO's phase locking to the seasonal cycle is examined in three parameter regimes: the fast-SST limit, the fast-wave limit, and the mixed SST-wave dynamics regime. The seasonal cycle is imposed on simple ordinary differential equation models for each physical regime either as a seasonal ocean-atmosphere coupling strength obtained from the model of Zebiak and Cane or as a climatological seasonal upwelling. In all three parameter regimes, the seasonal variations in the ocean-atmosphere coupling strength force the events to peak toward the end of the calendar year, whereas the effect of upwelling is shown to be less important. The phase locking mechanism in the mixed-mode and fast-SST regimes relies on the seasonal excitation of the Kelvin and the Rossby waves by wind stress anomalies in the central Pacific basin. The peak time of the events is set by the dynamics to allow a balance between the warming and cooling trends due to downwelling Kelvin and upwelling Rossby waves. This balance is obtained because the warming trend due to the large-amplitude Kelvin waves, amplified by a weak Northern Hemisphere wintertime ocean-atmosphere coupling strength, balances the cooling trend due to weak Rossby waves, amplified by a strong summertime coupling strength. The difference between the locking mechanisms in the mixed-mode regime and in the fast-SST regime is used to understand the effect of the SST adjustment time on the timing of the phase locking. Finally, in the less realistic fast-wave regime, a different physical mechanism for ENSO's phase locking is revealed through the SST adjustment time and the interaction between the east Pacific region and the central Pacific region.