Publications
2024
Nuclear magnetic resonance (NMR) plays a central role in the elucidation of chemical structures but is often limited by low sensitivity. Dissolution dynamic nuclear polarization (dDNP) emerges as a transformative methodology for both solution-state NMR and metabolic NMR imaging, which could overcome this limitation. Typically, dDNP relies on combining a stable radical with the analyte within a uniform glass under cryogenic conditions. The electron polarization is then transferred through microwave irradiation to the nuclei. The present study explores the use of radicals introduced via γ-irradiation, as bearers of the electron spins that will enhance 1H or 13C nuclides. 1H solid-state NMR spectra of γ-irradiated powders at 1-5 K revealed, upon microwave irradiation, signal enhancements that, in general, were higher than those achieved through conventional glass-based DNP. Transfer of these samples to a solution-state NMR spectrometer via a rapid dissolution driven by a superheated water provided significant enhancements of solution-state 1H NMR signals. Enhancements of 13C signals in the γ-irradiated solids were more modest, as a combined consequence of a low radical concentration and of the dilute concentration of 13C in the natural abundant samples examined. Nevertheless, ca. 700-800-fold enhancements in 13C solution NMR spectra of certain sites recorded at 11.7 T could still be achieved. A total disappearance of the radicals upon performing a dDNP-like aqueous dissolution and a high stability of the samples were found. Overall, the study showcases the advantages and limitations of γ-irradiated radicals as candidates for advancing spectroscopic dDNP-enhanced NMR.
Heteronuclear 13C-15N couplings were measured in single-scan nuclear magnetic resonance (NMR) experiments for a variety of nitrogen-containing chemical compounds with varied structural characteristics, by using a one-dimensional (1D) 13C-15N multiple-quantum (MQ)-filtered experiment. Sensitivity limitations of the MQ filtering were overcome by the combined use of 15N labeling and dissolution dynamic nuclear polarization (dDNP), performed at cryogenic conditions and followed by quick and optimized sample melting and transfer procedures. Coupling information could thus be obtained from nucleotide bases, amino acids, urea, and aliphatic and aromatic amides, including the measurement of relatively small J-couplings directly from the 1D filtered spectra. This experiment could pave the way for NMR-based analytical applications that investigate structural and stereochemical insights into nitrogen-containing compounds, including dipeptides and proteins, while relying on heteronuclear couplings and nuclear hyperpolarization.
Purpose: Demonstrate the potential of spatiotemporal encoding (SPEN) MRI to deliver largely undistorted 2D, 3D, and diffusion weighted images on a 110 mT portable system. Methods: SPEN's quadratic phase modulation was used to subsample the low-bandwidth dimension of echo planar acquisitions, delivering alias-free images with an enhanced immunity to image distortions in a laboratory-built, low-field, portable MRI system lacking multiple receivers. Results: Healthy brain images with different SPEN time-bandwidth products and subsampling factors were collected. These compared favorably to EPI acquisitions including topup corrections. Robust 3D and diffusion weighted SPEN images of diagnostic value were demonstrated, with 2.5 mm isotropic resolutions achieved in 3 min scans. This performance took advantage of the low specific absorption rate and relative long TEs associated with low-field MRI. Conclusion: SPEN MRI provides a robust and advantageous fast acquisition approach to obtain faithful 3D images and DWI data in low-cost, portable, low-field systems without parallel acceleration.
This work aims to develop fast T1 mapping methods for preclinical and clinical scanners based on subspace-constrained reconstructions. Two sequences are explored for rapid T1 characterizations: 1) Interleaved spatiotemporal encoding incorporating variable repetition times. 2) Inversion recovery gradient echo with random sampling of the phase-encoding (PE) dimension. For both sequences, the subspace reconstruction of the signal recovery was applied, to jointly reconstruct the down-sampled images while characterizing the T1 relaxation. In vivo scans on human brains and abdomens confirmed the efficiency of the proposed methods, including compatibility with breath-holding. In addition, Scans on animals with abdominal tumors and dynamic contrast-enhanced T1 mapping on kidneys support the applicability of the proposed methods also in preclinical settings.
Cancer diagnosis by metabolic MRI proposes to follow the fate of glycolytic precursors such as pyruvate or glucose, and their in vivo conversion into lactate. This study compares the 2H MRI outlooks afforded by these metabolites when targeting a pancreatic cancer model. Exogenously injected [3,3',3″-2H3]-pyruvate was visible only briefly; it generated a deuterated lactate signal throughout the body that faded after ~5 min, showing a minor concentration bias at the rims of the tumors. [6,6'-2H2]-glucose by contrast originated a lactate signal that localized clearly within the tumors, persisting for over an hour. Investigations alternating deuterated and nondeuterated glucose injections revealed correlations between the lactate generation and the glucose available at the tumor, evidencing a continuous and avid glucose consumption generating well-localized lactate signatures as driven by the Warburg effect. This is by contrast to the transient and more promiscuous pyruvate-to-lactate transformation, which seemed subject to transporter and kinetics effects. The consequences of these observations within metabolic MRI are briefly discussed.
Pulsed Fourier transform nuclear magnetic resonance (FT-NMR) has reigned supreme in high-resolution, high-field spectroscopy─particularly when targeting complex liquid-state samples involving multiple sharp peaks spread over large spectral bandwidths. It is known, however, that if spectral resolution is not a must, the FT-based approach is not necessarily the optimal route for maximizing NMR sensitivity: if T2 ≈ T1, as often found in solutions, Carr\u2019s steady-state free-precession (SSFP) approach can in principle provide a superior signal-to-noise ratio per √(acquisition_time) (SNRt). A rapid train of pulses will then lead to a transverse component that reaches up to 50% of the thermal equilibrium magnetization, provided that pulses are applied at repetition times TR ≪ T2, T1, and that a single suitable offset is involved. It is generally assumed that having to deal with multiple chemical shifts deprives SSFP from its advantages. The present study revisits this assumption by introducing an approach whereby arbitrarily short SSFP-derived free induction decays (FIDs) can deliver high-resolution spectra, without suffering from peak broadenings or phase distortions. To achieve discrimination among nearby frequencies, signals arising from a series of regularly phase-increased excitation pulses are collected. Given SSFP\u2019s amplitude and phase sensitivity to the spins\u2019 offset, this enables the resolution of sites according to their chemical shift position. In addition, the extreme fold-over associated with SSFP acquisitions is dealt with by a customized discrete FT of the interpulse time-domain signal. Solution-state 13C NMR spectra which compare well with FT-NMR data in terms of sensitivity, bandwidth, and resolution can then be obtained.
2023
Quantitative correlations between T2 and ADC values were explored on cancerous breast lesions using spatiotemporally encoded (SPEN) MRI. To this end, T2 maps of patients were measured at more than one b-value, and ADC maps at several echo time values were recorded. SPEN delivered quality, artifact-free, TE-weighted DW images, from which T2-ADC correlations could be obtained despite the signal losses brought about by diffusion and relaxation. Data confirmed known aspects of breast cancer lesions, including their reduced ADC values vs. healthy tissue. Data also revealed an anticorrelation between the T2 and ADC values, when comparing regions with healthy and diseased tissues. This is contrary to expectations based on simple water restriction considerations. It is also contrary to what has been observed in a majority of porous materials and tissues. Differences between the healthy tissue of the lesion-affected breast and healthy tissue in the contralateral breast were also noticed. The potential significance of these trends is discussed, as is the potential of combining T2- and ADC-weightings to achieve an enhanced endogenous MRI contrast about the location of breast cancer lesions.
2D NOESY and TOCSY play central roles in contemporary NMR. We have recently discussed how solvent-driven exchanges can significantly enhance the sensitivity of such methods when attempting correlations between labile and nonlabile protons. This study explores two scenarios where similar sensitivity enhancements can be achieved in the absence of solvent exchange: the first one involves biomolecular paramagnetic systems, while the other involves small organic molecules in natural abundance. It is shown that, in both cases, the effects introduced by either differential paramagnetic shift and relaxation or by polarization sharing among networks of protons can provide a similar sensitivity boost, as previously discussed for solvent exchange. The origin and potential of the resulting enhancements are analyzed, and experiments that demonstrate them in protein and natural products are exemplified. Limitations and future improvements of these approaches are also briefly discussed.
A recently developed homonuclear dipolar recoupling scheme, Adiabatic Linearly FREquency Swept reCOupling (AL FRESCO), was applied to record two-dimensional (2D) 15N\u201315N correlations on uniformly 15N-labeled GB1 powders. A major feature exploited in these 15N\u201315N correlations was AL FRESCO\u2019s remarkably low RF power demands, which enabled seconds-long mixing schemes when establishing direct correlations. These 15N\u201315N mixing schemes proved efficient regardless of the magic-angle spinning (MAS) rate and, being nearly free from dipolar truncation effects, they enabled the detection of long-range, weak dipolar couplings, even in the presence of strong short-range dipolar couplings. This led to a connectivity information that was significantly better than that obtained with spontaneously proton-driven, 15N spin-diffusion experiments. An indirect approach producing long-range 15N\u201315N correlations was also tested, relying on short (ms-long) 1HN\u20131HN mixings schemes while applying AL FRESCO chirped pulses along the 15N channel. These indirect mixing schemes produced numerous long-distance Ni\u2013Ni±n (n = 2 − 5) correlations, that might be useful for characterizing three-dimensional arrangements in proteins. Once again, these AL FRESCO mediated experiments proved more informative than variants based on spin-diffusion-based 1HN\u20131HN counterparts.
Techniques for enhancing the signals arising from low-γ, insensitive (I) nuclei are central to solid-state nuclear magnetic resonance. One of the leading and best-established methods to sensitize these unreceptive species is Hartmann-Hahn cross polarization (HH-CP), a polarization transfer mechanism often executed under MAS. Herein, we explore the possibility of utilizing the 1H dipolar order created via adiabatic demagnetization in the rotating frame (ADRF), to enhance the unreceptive spins under MAS. It is found that an efficient polarization transfer via ADRF-CPMAS is not only possible but can exceed, at least in some instances involving plastic crystals, the efficiency of an optimized HH-CPMAS transfer. The experiment requires low radiofrequency nutation fields on both the 1H- and the I-spin channels, and displays unusual matching conditions that are reminiscent of the zero- and double-quantum matching conditions arising under CPMAS, albeit centered at zero frequency and demanding the simultaneous involvement of several spins. The origin of these multi-spin transfer processes is analytically derived and numerically simulated in predictions that compare well with experimental 13C and 15N results collected on model compounds at different spinning speeds. These derivations start from descriptions that depart from traditional thermodynamic arguments, and treat instead the ADRF processes in static and spinning solids on the basis of coherent evolutions. The predictions of these analytical derivations are corroborated by numerical simulations. The effects of additional factors, including chemical shift anisotropies, J-couplings, and radiofrequency inhomogeneities, are also theoretically and experimentally explored.
Deuterium metabolic imaging (DMI) is a promising tool for investigating a tumor\u2019s biology, and eventually contribute in cancer diagnosis and prognosis. In DMI, [6,6\u2032-2H2]-glucose is taken up and metabolized by different tissues, resulting in the formation of HDO but also in an enhanced formation of [3,3\u2032-2H2]-lactate at the tumor site as a result of the Warburg effect. Recent studies have shown DMI\u2019s suitability to highlight pancreatic cancer in murine models by [3,3\u2032-2H2]-lactate formation; an important question is whether DMI can also differentiate between these tumors and pancreatitis. This differentiation is critical, as these two diseases are hard to distinguish today radiologically, but have very different prognoses requiring distinctive treatments. Recent studies have shown the limitations that hyperpolarized MRI faces when trying to distinguish these pancreatic diseases by monitoring the [1-13C1]-pyruvate→[1-13C1]-lactate conversion. In this work, we explore DMI\u2019s capability to achieve such differentiation. Initial tests used a multi-echo (ME) SSFP sequence, to identify any metabolic differences between tumor and acute pancreatitis models that had been previously elicited very similar [1-13C1]-pyruvate→[1-13C1]-lactate conversion rates. Although ME-SSFP provides approximately 5 times greater signal-to-noise ratio (SNR) than the standard chemical shift imaging (CSI) experiment used in DMI, no lactate signal was observed in the pancreatitis model. To enhance lactate sensitivity further, we developed a new, weighted-average, CSI-SSFP approach for DMI. Weighted-average CSI-SSFP improved DMI\u2019s SNR by another factor of 4 over ME-SSFP\u2014a sensitivity enhancement that sufficed to evidence natural abundance 2H fat in abdominal images, something that had escaped the previous approaches even at ultrahigh (15.2 T) MRI fields. Despite these efforts to enhance DMI\u2019s sensitivity, no lactate signal could be detected in acute pancreatitis models (n = 10; [3,3\u2032-2H2]-lactate limit of detection
Deuterium metabolic imaging (DMI) is a promising molecular MRI approach, which follows the administration of deuterated substrates and their metabolization. [6,6\u2019-2H2]-glucose for instance is preferentially converted in tumors to [3,3\u2019-2H2]-lactate as a result of the Warburg effect, providing a distinct resonance whose mapping using time-resolved spectroscopic imaging can diagnose cancer. The MR detection of low-concentration metabolites such as lactate, however, is challenging. It has been recently shown that multi-echo balanced steady-state free precession (ME-bSSFP) increases the signal-to-noise ratio (SNR) of these experiments approximately threefold over regular chemical shift imaging; the present study examines how DMI's sensitivity can be increased further by advanced processing methods. Some of these, such as compressed sensing multiplicative denoising and block-matching/3D filtering, can be applied to any spectroscopic/imaging methods. Sensitivity-enhancing approaches were also specifically tailored to ME-bSSFP DMI, by relying on priors related to the resonances' positions and to features of the metabolic kinetics. Two new methods are thus proposed that use these constraints for enhancing the sensitivity of both the spectral images and the metabolic kinetics. The ability of these methods to improve DMI is evidenced in pancreatic cancer studies carried at 15.2 T, where suitable implementations of the proposals imparted eightfold or more SNR improvement over the original ME-bSSFP data, at no informational cost. Comparisons with other propositions in the literature are briefly discussed.
One of solution-state Nuclear Magnetic Resonance (NMR)\u2019s main weaknesses, is its relative insensitivity. J-driven Dynamic Nuclear Polarization (JDNP) was recently proposed for enhancing solution-state NMR's sensitivity, by bypassing the limitations faced by conventional Overhauser DNP (ODNP), at the high magnetic fields where most analytical research is performed. By relying on biradicals with inter-electron exchange couplings Jex on the order of the electron Larmor frequency ωE, JDNP was predicted to introduce a transient enhancement in NMR's nuclear polarization at high magnetic fields, and for a wide range of rotational correlation times of medium-sized molecules in conventional solvents. This communication revisits the JDNP proposal, including additional effects and conditions that were not considered in the original treatment. These include relaxation mechanisms arising from local vibrational modes that often dominate electron relaxation in organic radicals, as well as the possibility of using biradicals with Jex of the order of the nuclear Larmor frequency ωN as potential polarizing agents. The presence of these new relaxation effects lead to variations in the JDNP polarization mechanism originally proposed, and indicate that triplet-to-singlet cross-relaxation processes may lead to a nuclear polarization enhancement that persists even at steady states. The physics and potential limitations of the ensuing theoretical derivations, are briefly discussed.
Efficient acquisition of wideline solid-state nuclear magnetic resonance (NMR) spectra with patterns affected by large inhomogeneous broadening is accomplished with the use of broadband pulse sequences. These specialized pulse sequences often use frequency-swept pulses, which feature time-dependent phase and amplitude modulations that in turn deliver broad and uniform excitation across large spectral bandwidths. However, the resulting NMR spectra are often affected by complex frequency-dependent phase dispersions, owing to the interplay between the frequency-swept excitations and anisotropic resonance frequencies. Such phase distortions necessitate the use of multi-order non-linear corrections in order to obtain absorptive, distortion-free patterns with uniform phasing. Performing such corrections is often challenging due to the complex interdependence of the linear and non-linear phase contributions, and how these may affect the NMR signal. Hence, processing of these data usually involves calculating the spectra in magnitude mode wherein the phase information is discarded. Herein, we present a fully automated phasing routine that is capable of processing and phase correcting such wideline NMR spectra. Its performance is corroborated via processing of NMR data acquired using both the WURST-CPMG (Wideband, Uniform-Rate, Smooth Truncation with Carr-Purcell Meiboom-Gill acquisition) and BRAIN-CP (BRoadband Adiabatic Inversion Cross Polarization) pulse sequences for a variety of nuclei (i.e., 119Sn, 195Pt, 35Cl, 87Rb, and 14N). Based on both simulated and experimental NMR datasets, it is demonstrated that automatic phase corrections up to and including second order can be readily achieved without a priori information regarding the nature of the phase-distorted NMR datasets, and independently of the exact manner in which time-domain NMR data are collected and subsequently processed. In addition, it is shown that NMR spectra acquired at both single and multiple transmitter frequencies that are processed with this automated phasing routine have improved signal-to-noise properties than those processed with conventional magnitude calculations, along with powder patterns that better match those of ideal NMR spectra, even for datasets possessing low signal-to-noise ratios and/or affected by spectral artifacts.
Correction to: Scientific Reports, published on 16 August 2023 In the original version of this Article, Tali Kimchi was omitted as a corresponding author. Correspondence and requests for materials should also be addressed to tali.kimchi@weizmann.ac.il Also, The Funding section in the original version of this Article was omitted. The Funding section now reads: \u201cSupport from the Minerva Foundation (Germany), the Israel Science Foundation (grants 3594/21, 2141/21 and 1874/22) and the Perlman Family Foundation, are gratefully acknowledged. OC is the recipient from an Israel Ministry of Absorption fellowship. LF holds the Bertha and Isadore Gudelsky Professorial Chair and Heads the Clore Institute for High-Field Magnetic Resonance Imaging and Spectroscopy (Weizmann Institute) whose support is also acknowledged\u201d The original Article has been corrected.
Thanks to its increased sensitivity, single-shot ultrahigh field functional MRI (UHF fMRI) could lead to valuable insight about subtle brain functions such as olfaction. However, UHF fMRI experiments targeting small organs next to air voids, such as the olfactory bulb, are severely affected by field inhomogeneity problems. Spatiotemporal Encoding (SPEN) is an emerging single-shot MRI technique that could provide a route for bypassing these complications. This is here explored with single-shot fMRI studies on the olfactory bulbs of male and female mice performed at 15.2T. SPEN images collected on these organs at a 108 µm in-plane resolution yielded remarkably large and well-defined responses to olfactory cues. Under suitable T2* weightings these activation-driven changes exceeded 5% of the overall signal intensity, becoming clearly visible in the images without statistical treatment. The nature of the SPEN signal intensity changes in such experiments was unambiguously linked to olfaction, via single-nostril experiments. These experiments highlighted specific activation regions in the external plexiform region and in glomeruli in the lateral part of the bulb, when stimulated by aversive or appetitive odors, respectively. These strong signal activations were non-linear with concentration, and shed light on how chemosensory signals reaching the olfactory epithelium react in response to different cues. Second-level analyses highlighted clear differences among the appetitive, aversive and neutral odor maps; no such differences were evident upon comparing male against female olfactory activation regions.
Purpose: To assess the feasibility and reliability of a DWI protocol based on spatiotemporally encoding (SPEN), to target prostate lesions along guidelines normally used in EPI-based DWI clinical practice. Methods: Prostate Imaging\u2014Reporting and Data System recommendations underlying clinical prostate scans were used to develop a SPEN-based DWI protocol, which included a novel, local, low-rank regularization algorithm. These DWI acquisitions were run at 3 T under similar nominal spatial resolutions and diffusion-weighting b-values as used in EPI-based clinical studies. Prostates of 11 patients suspected of clinically significant prostate cancer lesions were therefore scanned using the two methods, with the same number of slices, same slice thickness, and same interslice gaps. Results: Of the 11 patients scanned, SPEN and EPI provided comparable information in 7 of the cases, whereas EPI was deemed superior in a case for which SPEN images had to be acquired with a shorter effective TR owing to scan-time constraints. SPEN provided reduced susceptibility to field-derived distortions in 3 of the cases. Conclusions: SPEN's ability to provide prostate lesion contrast was most clearly evidenced for DW images acquired with b ≥ 900 s/mm2. SPEN also succeeded in decreasing occasional image distortions in regions close to the rectum, affected by field inhomogeneities. EPI advantages arose when using short effective TRs, a regime in which SPEN-based DWI was handicapped by its use of nonselective spin inversions, leading to the onset of an additional T1 weighting.
INEPT-based experiments are widely used for 1H→15N transfers, but often fail when involving labile protons due to solvent exchanges. J-based cross polarization (CP) strategies offer a more efficient alternative to perform such transfers, particularly when leveraging the Hwater (Formula presented.) HN exchange process to boost the 1H→15N transfer process. This leveraging, however, demands the simultaneous spin-locking of both Hwater and HN protons by a strong 1H RF field, while fulfilling the γHB1,H=γNB1,N Hartmann-Hahn matching condition. Given the low value of γN/γH, however, these demands are often incompatible\u2014particularly when experiments are executed by the power-limited cryogenic probes used in contemporary high field NMR. The present manuscript discusses CP alternatives that can alleviate this limitation, and evaluates their performance on urea, amino acids, and intrinsically disordered proteins. These alternatives include new CP variants based on frequency-swept and phase-modulated pulses, designed to simultaneously fulfill the aforementioned conflicting conditions. Their performances vis-à-vis current options are theoretically analyzed with Liouville-space simulations, and experimentally tested with double and triple resonance transfer experiments.
Purpose: To characterize the mechanism of formation and the removal of aliasing artifacts and edge ghosts in spatiotemporally encoded (SPEN) MRI within a k-space theoretical framework. Methods: SPEN's quadratic phase modulation can be described in k-space by a convolution matrix whose coefficients derive from Fourier relations. This k-space model allows us to pose SPEN's reconstruction as a deconvolution process from which aliasing and edge ghost artifacts can be quantified by estimating the difference between a full sampling and reconstructions resulting from undersampled SPEN data. Results: Aliasing artifacts in SPEN MRI reconstructions can be traced to image contributions corresponding to high-frequency k-space signals. The k-space picture provides the spatial displacements, phase offsets, and linear amplitude modulations associated to these artifacts, as well as routes to removing these from the reconstruction results. These new ways to estimate the artifact priors were applied to reduce SPEN reconstruction artifacts on simulated, phantom, and human brain MRI data. Conclusion: A k-space description of SPEN's reconstruction helps to better understand the signal characteristics of this MRI technique, and to improve the quality of its resulting images.
Chemical exchange saturation transfer (CEST) NMR is widely used for enhancing the sensitivity of low-abundance exchanging sites in general, and for the water-based detection of labile metabolite protons under in vivo conditions in particular. CEST, however, faces a number of limitations when targeting multiple metabolites, including a radiofrequency (RF)-induced broadening of the detected peaks, and relatively long acquisition times deriving from its continuous-wave nature. Methods have been proposed to overcome these limitations, including a Fourier-encoded version of CEST \u2013the Frequency-Labeled EXchange (FLEX) experiment\u2013 and the incorporation of background gradients during the RF saturation time. This work explores an alternative avenue, based on spatiotemporally encoded ultrafast (UF) 2D NMR. UF NMR can compress the time-domain indirect-dimension encoding of 2D NMR into a single shot; to exploit these potential time savings, an UF version of the FLEX experiment was taken as starting point, and the multiple t1-incremented amplitude modulation cycles that the FLEX experiment normally requires were replaced by a single-shot spatiotemporal encoding. The ensuing UF 2D FLEX experiment was then used to monitor the spectral signatures of multiple moieties as they exchange with the solvent, by imprinting these onto the water resonance as in the original experiment \u2013but now all within a single shot. Upon incorporating two-scan phase cycling and quadrature detection, the resulting method showed an experimental performance similar to t1-encoded FLEX, while providing significant time savings plus imaging information that could be of further use in in vivo studies. The main advantages, features and drawbacks observed for UF 2D FLEX are briefly discussed.
Static satellite-transitions (ST) NMR line shapes from half-integer quadrupolar nuclei could be very informative: they can deliver information on local motions over a wide range of timescales, and can report on small changes in the local electronic environments as reflected by the quadrupolar parameters. Satellite transitions, however, are typically \u201cinvisible\u201d for half-integer quadrupolar nuclei due to their sheer breadth, leading to low signal-to-noise ratio \u2013especially for unreceptive low-gamma or dilute quadrupolar nuclei. Very recently we have introduced a method for enhancing the NMR sensitivity of unreceptive X nuclei in static solids dubbed PROgressive Saturation of the Proton Reservoir (PROSPR), which opens the possibility of magnifying the signals from such spins by repeatedly imprinting frequency-selective X-driven depolarizations on the much more sensitive 1H NMR signal. Here, we show that PROSPR's efficacy is high enough for enabling the detection of static ST NMR for challenging species like 35Cl, 33S and even 17O \u2013all at natural-abundance. The ensuing ST-PROSPR NMR experiment thus opens new approaches to probe ultra-wideline (6\u20138\u202fMHz wide) spectra; these highly pronounced anisotropies can in turn deliver new vistas about dynamic changes in solids, as here illustrated by tracking ST line shapes as a function of temperature during thermally-driven events.
Magnetization transfer experiments are versatile nuclear magnetic resonance (NMR) tools providing site-specific information. We have recently discussed how saturation magnetization transfer (SMT) experiments could leverage repeated repolarizations arising from exchanges between labile and water protons to enhance connectivities revealed via the nuclear Overhauser effect (NOE). Repeated experience with SMT has shown that a number of artifacts may arise in these experiments, which may confound the information being sought \u2013 particularly when seeking small NOEs among closely spaced resonances. One of these pertains to what we refer to as \u201cspill-over\u201d effects, originating from the use of long saturation pulses leading to changes in the signals of proximate peaks. A second, related but in fact different effect, derives from what we describe as NOE \u201coversaturation\u201d, a phenomenon whereby the use of overtly intense RF fields overwhelms the cross-relaxation signature. The origin and ways to avoid these two effects are described. A final source of potential artifact arises in applications where the labile 1Hs of interest are bound to 15N-labeled heteronuclei. SMT\u2019s long 1H saturation times will then be usually implemented while under 15N decoupling based on cyclic schemes leading to decoupling sidebands. Although these sidebands usually remain invisible in NMR, they may lead to a very efficient saturation of the main resonance when touched by SMT frequencies. All of these phenomena are herein experimentally demonstrated, and solutions to overcome them are proposed.
J-driven dynamic nuclear polarization (JDNP) was recently proposed for enhancing the sensitivity of solution-state nuclear magnetic resonance (NMR), while bypassing the limitations faced by conventional (Overhauser) DNP at magnetic fields of interest in analytical applications. Like Overhauser DNP, JDNP also requires saturating the electronic polarization using high-frequency microwaves known to have poor penetration and associated heating effects in most liquids. The present microwave-free JDNP (MF-JDNP) proposal seeks to enhance solution NMR's sensitivity by shuttling the sample between higher and lower magnetic fields, with one of these fields providing an electron Larmor frequency that matches the interelectron exchange coupling Jex. If spins cross this so-called JDNP condition sufficiently fast, we predict that a sizable nuclear polarization will be created without microwave irradiation. This MF-JDNP proposal requires radicals whose singlet-triplet self-relaxation rates are dominated by dipolar hyperfine relaxation, and shuttling times that can compete with these electron relaxation processes. This paper discusses the theory behind the MF-JDNP, as well as proposals for radicals and conditions that could enable this new approach to NMR sensitivity enhancement.
Purpose: Subject head motion is a major challenge in DWI, leading to image blurring, signal losses, and biases in the estimated diffusion parameters. Here, we investigate a combined application of prospective motion correction and spatial-angular locally low-rank constrained reconstruction to obtain robust, multi-shot, high-resolution diffusion-weighted MRI under substantial motion. Methods: Single-shot EPI with retrospective motion correction can mitigate motion artifacts and resolve any mismatching of gradient encoding orientations; however, it is limited by low spatial resolution and image distortions. Multi-shot acquisition strategies could achieve higher resolution and image fidelity but increase the vulnerability to motion artifacts and phase variations related to cardiac pulsations from shot to shot. We use prospective motion correction with optical markerless motion tracking to remove artifacts and reduce image blurring due to bulk motion, combined with locally low-rank regularization to correct for remaining artifacts due to shot-to-shot phase variations. Results: The approach was evaluated on healthy adult volunteers at 3 Tesla under different motion patterns. In multi-shot DWI, image blurring due to motion with 20 mm translations and 30° rotations was successfully removed by prospective motion correction, and aliasing artifacts caused by shot-to-shot phase variations were addressed by locally low-rank regularization. The ability of prospective motion correction to preserve the orientational information in DTI without requiring a reorientation of the b-matrix is highlighted. Conclusion: The described technique is proved to hold valuable potential for mapping brain diffusivity and connectivity at high resolution for studies in subjects/cohorts where motion is common, including neonates, pediatrics, and patients with neurological disorders.
The structural and chemical complexities within the brain pose a challenge that few noninvasive techniques can tackle with the dexterity of nuclear magnetic resonance (NMR) spectroscopy. Still, even with the advent of ultrahigh fields and of cryogenically cooled coils for in vivo research, the superposition of metabolic resonances arising from the brain remains a challenge. The present study explores the potential to tackle this milieu using a combination of two-dimensional (2D) NMR techniques, implemented on murine brains in vivo at 15.2 T and ex vivo at 14.1 T. While both experiments were affected by substantial inhomogeneous broadenings conveying distinct elongated lineshapes to the cross-peaks, the ability of increased fields to resolve off-diagonal resonances was clear. A comparison between the corresponding conventional and double quantum-filtered correlated spectroscopy traces enabled an improved assignment of in vivo resonances on the basis of more sensitive ex vivo 2D acquisitions, foremost on the basis of homonuclear cross-relaxation-driven correlations for peaks resonating downfield from water, and of heteronuclear correlations at natural abundance for the upfield protons. With the aid of such 2D correlations approximately 29 metabolites could be resolved and identified. This enhanced resolution was used to explore features related to the metabolites' diffusivities, their exposure to water, and their facility to undergo magnetization transfers to amide/amine/hydroxyl resonances. Cross-peaks from main murine brain biomolecules, including choline, creatine, gamma-aminobutyric acid, N-acetyl aspartate, glutamine, and glutamate, showed enhancements in several of these various features, opening interesting vistas about metabolite compartmentalization as viewed by these 2D NMR experiments.
Spatiotemporal encoding (SPEN) is a state-of-the-art nuclear magnetic resonance (NMR) technique, utilized to acquire 2-D or even multidimensional ( n -D) NMR spectra and/or images in a single (or a few) scans. Benefitting from special encoding and decoding schemes, SPEN can thus accelerate the classical 2-D NMR experiment by orders of magnitude. SPEN\u2019s decoding in particular is executed under the effects of oscillating magnetic field gradients; inevitable hardware imperfections may then give rise to inconsistencies between odd and even SPEN data lines, making only half (odd or even) of the acquired data available for processing. This halves the spectral bandwidth available in the direct dimension and decreases the spectral sensitivity, leading to the emergence of peak folding artifacts and/or a decline of the spectral quality. Past research has been carried out to correct these distortions induced by gradient imperfections, but requires an extra reference scan collected under identical experimental conditions. This work presents a detailed theoretical analysis of the impacts of various imperfections on the 2-D SPEN NMR spectrum and proposes a three-step reference-free calibration algorithm in accordance with theoretical analysis. Experimental data on single-shot 2-D correlation spectroscopy (COSY) and heteronuclear single-quantum correlation (HSQC) NMR spectra collected using SPEN were performed and processed, which demonstrate the feasibility and applicability of the proposed reference-free algorithm.
2022
The benefits of performing locally low-rank (LLR) reconstructions on subsampled diffusion weighted and diffusion kurtosis imaging data employing spatiotemporal encoding (SPEN) methods, is investigated. SPEN allows for self-referenced correction of motion-induced phase errors in case of interleaved diffusion-oriented acquisitions, and allows one to overcome distortions otherwise observed along EPI's phase-encoded dimension. In combination with LLR-based reconstructions of the pooled imaging data and with a joint subsampling of b-weighted and interleaved images, additional improvements in terms of sensitivity as well as shortened acquisition times are demonstrated, without noticeable penalties. Details on how the LLR-regularized, subspace-constrained image reconstructions were adapted to SPEN are given; the improvements introduced by adopting these reconstruction frameworks for the accelerated acquisition of diffusivity and of kurtosis imaging data in both relatively homogeneous regions like the human brain and in more challenging regions like the human prostate, are presented and discussed within the context of similar efforts in the field.
Overhauser dynamic nuclear polarization (ODNP) NMR of solutions at high fields is usually mediated by scalar couplings that polarize the nuclei of heavier, electron-rich atoms. This leaves 1H-detected NMR outside the realm of such studies. This study presents experiments that deliver 1H-detected NMR experiments on relatively large liquid volumes (60 ∼ 100 μL) and at high fields (14.1 T), while relying on ODNP enhancements. To this end 13C NMR polarizations were first enhanced by relying on a mechanism that utilizes e--13C scalar coupling interactions; the nuclear spin alignment thus achieved was then passed on to neighboring 1H for observation, by a reverse INEPT scheme relying on one-bond JCH-couplings. Such 13C → 1H polarization transfer ported the 13C ODNP gains into the 1H, permitting detection at higher frequencies and with higher potential sensitivities. For a model solution of labeled 13CHCl3 comixed with a nitroxide-based TEMPO derivative as polarizing agent, an ODNP enhancement factor of ca. 5x could thus be imparted to the 1H signal. When applied to bigger organic molecules like 2-13C-phenylacetylene and 13C8-indole, ODNP enhancements in the 1.2-3x range were obtained. Thus, although handicapped by the lower γ of the 13C, enhancements could be imparted on the 1H thermal acquisitions in all cases. We also find that conventional 1H\u201313C nuclear Overhauser enhancements (NOEs) are largely absent in these solutions due to the presence of co-dissolved radicals, adding negligible gains and playing negligible roles on the scalar e-→13C ODNP transfer. Potential rationalizations of these effects as well as extensions of these experiments, are briefly discussed.
17O and 14N are attractive targets for in\u2005vivo NMR spectroscopy and imaging, but low gyromagnetic ratios γ and fast spin relaxation complicate observations. This work explores indirect ways of detecting some of these sites with the help of proton-detected double resonance techniques. As standard coherence transfer methods are of limited use for such indirect detection, alternative routes for probing the quadrupolar spectra on 1H were tested. These centered on modulating the broadening effects imparted onto protons adjacent to the low-γ species through J couplings through either continuous wave or spin-echo double-resonance decoupling/recoupling sequences. As in all cases, the changes imparted by these double-resonance strategies were small due to the fast relaxation undergone by the quadrupoles, the sensitivity of these approaches was amplified by transferring their effects onto the abundant water 1H signal. These amplifications were mediated by the spontaneous exchanges that the labile 1Hs bound to 17O or 14N undergo with the water protons. In experiments designed on the basis of double-resonance spin echoes, these enhancements were imparted by looping the transverse encodings together with multiple longitudinal storage periods, leading to decoupling-recoupling with exchange (D-REX) sequences. In experiments designed on the basis of continuous on/off quadrupolar decoupling, these solvent exchanges were incorporated into chemical-exchange saturation transfer schemes, leading to decoupling-recoupling with saturation transfer (D-REST) sequences. Both of these variants harnessed sizable proportions of the easily detectable water signals, in order to characterize the NMR spectra and/or to image with atomic-site specificity the 17O and 14N species.
There are currently no methods for the acquisition of ultra-wideline (UW) solid-state NMR spectra under static conditions that enable reliable separation and resolution of overlapping powder patterns arising from magnetically distinct nuclei. This stands in contrast to the variety of techniques available for spin-1/2 or half-integer quadrupolar nuclei with narrow central transition patterns under magic-angle spinning (MAS). Resolution of overlapping signals is routinely achieved in MRI and solution-state NMR by exploiting relaxation differences between nonequivalent sites. Preliminary studies of relaxation assisted separation (RAS) for separating overlapping UWNMR patterns using pseudo-inverse Laplace Transforms have reported two-dimensional spectra featuring relaxation rates correlated to NMR interaction frequencies. However, RAS methods are inherently sensitive to experimental noise, and require that relaxation rates associated with overlapped patterns be significantly different from one another. Herein, principal component analysis (PCA) denoising is implemented to increase the signal-to-noise ratios of the relaxation datasets and RAS routines are stabilized with truncated singular value decomposition (TSVD) and elastic net (EN) regularization to resolve overlapped patterns with a larger tolerance for differences in relaxation rates. We extend these methods for improved pattern resolution by utilizing 3D frequency-R1\u2013R2 correlation spectra. Synthetic and experimental datasets, including 35Cl (I = 3/2), 2H (I = 1), and 14N (I = 1) NMR of organic and biological compounds, are explored with both regularized 2D RAS and 3D RAS; comparison of these data reveal improved resolution in the latter case. These methods have great potential for separating overlapping powder patterns under both static and MAS conditions.
NMR spectroscopy is the only method to access the structural dynamics of biomolecules at high (atomistic) resolution in their native solution state. However, this method's low sensitivity has two important consequences: (i) typically experiments have to be performed at high concentrations that increase sensitivity but are not physiological, and (ii) signals have to be accumulated over long periods, complicating the determination of interaction kinetics on the order of seconds and impeding studies of unstable systems. Both limitations are of equal, fundamental relevance: non-native conditions are of limited pharmacological relevance, and the function of proteins, enzymes and nucleic acids often relies on their interaction kinetics. To overcome these limitations, we have developed applications that involve 'hyperpolarized water' to boost signal intensities in NMR of proteins and nucleic acids. The technique includes four stages: (i) preparation of the biomolecule in partially deuterated buffers, (ii) preparation of 'hyperpolarized' water featuring enhanced H-1 NMR signals via cryogenic dynamic nuclear polarization, (iii) sudden melting of the cryogenic pellet and dissolution of the protein or nucleic acid in the hyperpolarized water (enabling spontaneous exchanges of protons between water and target) and (iv) recording signal-amplified NMR spectra targeting either labile H-1 or neighboring N-15/C-13 nuclei in the biomolecule. Water in the ensuing experiments is used as a universal 'hyperpolarization' agent, rendering the approach versatile and applicable to any biomolecule possessing labile hydrogens. Thus, questions can be addressed, ranging from protein and RNA folding problems to resolving structure-function relationships of intrinsically disordered proteins to investigating membrane interactions.
Out of all the magnetic resonance communities active in the world today, few are as vibrant and influential as that of India. India has done well both in terms of generating the basis of scientists that drive magnetic resonance research throughout the world, as well as in terms of its own magneticresonance productivity and impact. Prof. Anil Kumar has played a central role in both of these endeavors. As tribute to Prof. Kumar's 80th birthday (June 2021) and to pay homage to India's blossoming magnetic resonance landscape, we are co-editing a special Golden Open Access issue of Journal of Magnetic Resonance Open (JMRO), entitled \u201cCelebrating Magnetic Resonance in India - Today\u201d.
The creation of radicals via electrical discharge is a unique approach capable of facilitating dynamic nuclear polarization (DNP) in solids without the need to co-dissolve them with exogenous polarization agents. This method has previously been shown to generate high proton polarization in a variety of organic and inorganic solid compounds. In this work, we extend the scope of applicability for these so-called electrical discharge-induced radicals (EDIRs), by showing their use in DNP of 13C nuclei of glucose. We achieved significant NMR signal enhancement in low temperature solid-state DNP experiments. This enhancement was further improved by the use of a frequency modulated microwave pump instead of conventional DNP with single-frequency microwaves. We demonstrated successful dissolution DNP experiments with such hyperpolarized solid glucose, achieving 13C polarization levels of up to ∼0.6% in the resulting solution (∼0.95% at the exit of the polarizer). This is to be compared with the ∼6% polarization levels achieved with a trityl radical mixed with glucose in a frozen aqueous solution using the same DNP setup and experimental conditions. It is concluded that the use of EDIRs can serve as a suitable polarizing approach for metabolic MRI using glucose, avoiding the need to employ diluted solutions and eliminating the filtration stage of the polarizing agents.
Quadrupolar solid-state NMR carries a wealth of structural information, including insights about chemical environments arising through the determination of local coupling parameters. Current methods can successfully resolve these parameters for individual sites using sample-spinning methods techniques applicable to quadrupolar I ≥ 1 nuclei, provided second-order central transition broadenings do not exceed by much the spinning rate. For large quadrupolar coupling (CQ) values, however, static acquisitions are often preferable, leading to challenges in extracting local structural information. This study explores the use of two-dimensional QUadrupolar Isotope Correlation SpectroscopY (QUICSY) experiments as a means to increase the NMR spectral resolution and enrich the characterization of quadrupolar NMR patterns under static conditions. QUICSY seeks to correlate the solid-state NMR powder line shapes for two quadrupolar isotopes belonging to the same element via a 2D experiment. In general, two isotopes of the same element will have different nuclear quadrupole moments, gyromagnetic ratios, and spin numbers but essentially identical chemical environments. The possibility then arises of obtaining sharp "ridges"in these 2D correlations, even in static samples showing large quadrupolar effects, which lead to second-order line shapes that are several kilohertz wide. Moreover, pairs of quadrupolar isotopes are recurrent in the periodic table and include important elements such as 35,37Cl, 69,71Ga, 79,81Br, and 85,87Rb. The potential of this approach is explored theoretically and experimentally on two rubidium-containing salts: RbClO4 and Rb2SO4. We find that each compound gives rise to distinctive 2D QUICSY line shapes, depending on the quadrupolar and chemical shift anisotropy (CSA) parameters of its sites. These experimental line shapes show good agreement with analytically derived 2D spectra relying on literature values of the quadrupolar and CSA tensors of these compounds. The approach underlined here paves the way toward better characterization of wideline NMR spectra of quadrupolar nuclei possessing different nuclear isotopes.
The ongoing pandemic of the respiratory disease COVID-19 is caused by the SARS-CoV-2 (SCoV2) virus. SCoV2 is a member of the Betacoronavirus genus. The 30 kb positive sense, single stranded RNA genome of SCoV2 features 5\u2032- and 3\u2032-genomic ends that are highly conserved among Betacoronaviruses. These genomic ends contain structured cis-acting RNA elements, which are involved in the regulation of viral replication and translation. Structural information about these potential antiviral drug targets supports the development of novel classes of therapeutics against COVID-19. The highly conserved branched stem-loop 5 (SL5) found within the 5\u2032-untranslated region (5\u2032-UTR) consists of a basal stem and three stem-loops, namely SL5a, SL5b and SL5c. Both, SL5a and SL5b feature a 5\u2032-UUUCGU-3\u2032 hexaloop that is also found among Alphacoronaviruses. Here, we report the extensive 1H, 13C and 15N resonance assignment of the 37 nucleotides (nts) long sequence spanning SL5b and SL5c (SL5b\u2009+\u2009c), as basis for further in-depth structural studies by solution NMR spectroscopy.
Homonuclear isotropic mixing modules allow J-coupled spins to exchange magnetization even when separated by chemical shift offsets that exceed their couplings. This is exploited in TOtal Correlation SpectroscopY (TOCSY) experiments and its variants, which facilitate these homonuclear polarization exchanges by applying broadband RF pulses. These then establish an effective Hamiltonian in which chemical shift offsets are erased, while J-coupling terms \u2013including flip-flop components\u2013 remain active. The polarization that these non-secular terms will transfer among systems of chemically inequivalent sites over the course of a mixing period, are widely used modules in 1D and in multidimensional liquid-state NMR. Homonuclear correlation experiments are also common in solids NMR, particularly among X = 13C or 15N nuclei. Solids NMR experiments are often challenged by high-power RF demands which have led to a family of homonuclear solid-state correlation experiments that avoid pulsing on the nuclei of interest, and focus instead on the 1Hs that are bonded to them. These solid experiments usually reintroduce/strengthen 1H-X dipolar couplings; these, in conjunction with assistance from rotational resonance effects, bring back the truncated X-X dipolar interactions and facilitate the generation of cross peaks. The present study explores whether a similar goal can be achieved for solution-state counterparts, based on the reintroduction of truncated flip-flop terms in the J-coupling Hamiltonian via the pulsing on other, heteronuclear species. A proposal to achieve this is derived, and the resulting HOmonucleaR Recoupling by hEteroNuclear DecOUplingS (HORRENDOUS) approach to provide correlations between like nuclei without pulsing on them, is demonstrated.
Both in spectroscopy and imaging, t1-noise arising from instabilities such as temperature alterations, field-related frequency drifts, electronic and sample-spinning instabilities, or motions in in vivo experiments, affects many 2D Magnetic Resonance experiments. This work introduces a post-processing method that aims to attenuate t1-noise, by suitably averaging multiple signals/representations that have been reconstructed from the sampled data. The ensuing Compressed Sensing Multiplicative (CoSeM) denoising starts from a fully sampled 2D MR data set, discards random indirect-domain points, and makes up for these missing, masked data, by a compressed sensing reconstruction of the now incompletely sampled 2D data set. This procedure is repeated for multiple renditions of the masked data \u2013some of which will have been more strongly affected by t1-noise than others. This leads to a large set of 2D NMR spectra/images compatible with the collected data; CoSeM chooses out of these those renditions that reduce the noise according to a suitable criterion, and then sums up their spectra/images leading to a reduction in t1-noise. The performance of the method was assessed in synthetic data, as well as in numerous different experiments: 2D solid and solution state NMR, 2D localized MRS of live brains, and 2D abdominal MRI. Throughout all these data, CoSeM processing evidenced 2\u20133 fold increases in SNR, without introducing biases, false peaks, or spectral/image blurring. CoSeM also retains a quantitative linearity in the information \u2013allowing, for instance, reliable T1 inversion-recovery MRI mapping experiments.
Hadamard encoded saturation transfer can significantly improve the efficiency of NOE-based NMR correlations from labile protons in proteins, glycans and RNAs, increasing the sensitivity of cross-peaks by an order of magnitude and shortening experimental times by ≥100-fold. These schemes, however, fail when tackling correlations within a pool of labile protons –for instance imino-imino correlations in RNAs or amide-amide correlations in proteins. Here we analyze the origin of the artifacts appearing in these experiments, and propose a way to obtain artifact-free correlations both within the labile pool as well as between labile and non-labile 1 Hs, while still enjoying the gains arising from Hadamard encoding and solvent repolarizations. The principles required for implementing what we define as the extended Hadamard scheme are derived, and its clean, artifact-free, sensitivity-enhancing performance is demonstrated on RNA fragments derived from the SARS-CoV-2 genome. Sensitivity gains per unit time approaching an order of magnitude are then achieved in both imino-imino and imino-amino/aromatic protons 2D correlations; similar artifact-free sensitivity gains can be observed when carrying out extended Hadamard encodings of 3D NOESY/HSQC-type experiments. The resulting spectra reveal significantly more correlations than their conventionally acquired counterparts, which can support the spectral assignment and secondary structure determination of structured RNA elements.
Cover feature (ChemPhysChem 4/2022).
Nuclear magnetic resonance (NMR) spectroscopy provides detailed information about dynamic processes through line-shape changes, which are traditionally limited to equilibrium conditions. However, a wealth of information is available by studying chemical reactions under off-equilibrium conditions-e.g., in states that arise upon mixing reactants that subsequently undergo chemical changes-and in monitoring the reactants and products in real time. Herein, we propose and demonstrate a time-resolved kinetic NMR experiment that combines rapid mixing techniques, continuous flow, and single-scan spectroscopic imaging methods, leading in unison to a 2D spectrotemporal NMR correlation that provides high-quality kinetic information of off-equilibrium chemical reactions. These kinetic 2D NMR spectra possess a high-resolution spectral dimension revealing the individual chemical sites, correlated with a time-independent, steady-state spatial axis that delivers information concerning temporal changes along the reaction coordinate. A comprehensive description of the kinetic, spectroscopic, and experimental features associated with these spectrotemporal NMR analyses is presented. Experimental demonstrations are carried out using an enzymatically catalyzed reaction leading to site- and time-resolved kinetic NMR data, that are in excellent agreement with control experiments and literature values.
Chemical exchange saturation transfer (CEST) is widely used for enhancing the solution nuclear magnetic resonance (NMR) signatures of magnetically dilute spin pools, in particular, species at low concentrations undergoing chemical exchanges with an abundant spin pool. CEST\u2019s main feature involves encoding and then detecting weak NMR signals of the magnetically dilute spin pools on a magnetically abundant spin pool of much easier detection, for instance, the protons of H2O. Inspired by this method, we propose and exemplify a methodology to enhance the sensitivity of magic-angle spinning (MAS) solid-state NMR spectra. Our proposal uses the abundant 1H reservoir arising in organic solids as the magnetically abundant spin pool and relies on proton spin diffusion in lieu of chemical exchange to mediate polarization transfer between a magnetically dilute spin pool and this magnetically abundant spin reporter. As an initial test of this idea, we target the spectroscopy of naturally abundant 13C and rely on a Fourier-encoded version of the CEST experiment for achieving broadbandness in coordination with both MAS and heteronuclear decoupling, features normally absent in CEST. Arbitrary evolutions of multiple 13C sites can, thus, be imprinted on the entire 1H reservoir, which is subsequently detected. Theoretical predictions suggest that orders-of-magnitude signal enhancements should be achievable in this manner, on the order of the ratio between the 13C and the 1H reservoirs\u2019 abundances. Experiments carried out under magic-angle spinning conditions evidenced 5\u201310× gains in signal amplitudes. Further opportunities and challenges arising in this Fourier-encoded saturation transfer MAS NMR approach are briefly discussed.
Dynamic nuclear polarization (DNP) is widely used to enhance solid state nuclear magnetic resonance (NMR) sensitivity. Its efficiency as a generic signal-enhancing approach for liquid state NMR, however, decays rapidly with magnetic field B0, unless mediated by scalar interactions arising only in exceptional cases. This has prevented a more widespread use of DNP in structural and dynamical solution NMR analyses. This study introduces a potential solution to this problem, relying on biradicals with exchange couplings Jex of the order of the electron Larmor frequency ωE. Numerical and analytical calculations show that in such Jex ≈ ±ωE cases a phenomenon akin to that occurring in chemically induced DNP (CIDNP) happens, leading to different relaxation rates for the biradical singlet and triplet states which are hyperfine-coupled to the nuclear α or β states. Microwave irradiation can then generate a transient nuclear polarization build-up with high efficiency, at all magnetic fields that are relevant in contemporary NMR, and for all rotational diffusion correlation times that occur in small- and medium-sized molecules in conventional solvents.
2021
Chemical exchange saturation transfer (CEST) enhances solution-state NMR signals of labile and otherwise invisible chemical sites, by indirectly detecting their signatures as a highly magnified saturation of an abundant resonance─for instance, the 1H resonance of water. Stimulated by this sensitivity magnification, this study presents PROgressive Saturation of the Proton Reservoir (PROSPR), a method for enhancing the NMR sensitivity of dilute heteronuclei in static solids. PROSPR aims at using these heteronuclei to progressively deplete the abundant 1H polarization found in most organic and several inorganic solids, and implements this 1H signal depletion in a manner that reflects the spectral intensities of the heteronuclei as a function of their chemical shifts or quadrupolar offsets. To achieve this, PROSPR uses a looped cross-polarization scheme that repeatedly depletes 1H-1H local dipolar order and then relays this saturation throughout the full 1H reservoir via spin-diffusion processes that act as analogues of chemical exchanges in the CEST experiment. Repeating this cross-polarization/spin-diffusion procedure multiple times results in an effective magnification of each heteronucleus's response that, when repeated in a frequency-stepped fashion, indirectly maps their NMR spectrum as sizable attenuations of the abundant 1H NMR signal. Experimental PROSPR examples demonstrate that, in this fashion, faithful wideline NMR spectra can be obtained. These 1H-detected heteronuclear NMR spectra can have their sensitivity enhanced by orders of magnitude in comparison to optimized direct-detect experiments targeting unreceptive nuclei at low natural abundance, using modest hardware requirements and conventional NMR equipment at room temperature.
Nuclear magnetic resonance (NMR) spectroscopy is a principal analytical technique used for the structure elucidation of molecules. This Primer covers different approaches to accelerate data acquisition and increase sensitivity of NMR measurements through parallelization, enabled by hardware design and/or pulse sequence development. Starting with hardware-based methods, we discuss coupling multiple detectors to multiple samples so each detector/sample combination provides unique information. We then cover spatio-temporal encoding, which uses magnetic field gradients and frequency-selective manipulations to parallelize multidimensional acquisition and compress it into a single shot. We also consider the parallel manipulation of different magnetization reservoirs within a sample to yield new, information-rich pulse schemes using either homonuclear or multinuclear detection. The Experimentation section describes the set-up of parallel NMR techniques. Practical examples revealing improvements in speed and sensitivity offered by the parallel methods are demonstrated in Results. Examples of use of parallelization in small-molecule analysis are discussed in Applications, with experimental constraints addressed under the Limitations and optimizations and Reproducibility and data deposition sections. The most promising future developments are considered in the Outlook, where the largest gains are expected to emerge once the discussed techniques are combined.
INEPT- and HMQC-based pulse sequences are widely used to transfer polarization between heteronuclei, particularly in biomolecular spectroscopy: they are easy to setup and involve low power deposition. Still, these short-pulse polarization transfers schemes are challenged by fast solvent chemical exchange. An alternative to improve these heteronuclear transfers is J-driven cross polarization (J-CP), which transfers polarization by spin-locking the coupled spins under Hartmann-Hahn conditions. J-CP provides certain immunity against chemical exchange and other T2-like relaxation effects, a behavior that is here examined in depth by both Liouville-space numerical and analytical derivations describing the transfer efficiency. While superior to INEPT-based transfers, fast exchange may also slow down these J-CP transfers, hurting their efficiency. This study therefore explores the potential of repeated projective operations to improve 1H→15N and 1H→15N→13C J-CP transfers in the presence of fast solvent chemical exchanges. It is found that while repeating J-CP provides little 1H→15N transfer advantages over a prolonged CP, multiple contacts that keep both the water and the labile protons effectively spin-locked can improve 1H→15N→13C transfers in the presence of chemical exchange. The ensuing Looped, Concatenated Cross Polarization (L-CCP) compensates for single J-CP losses by relying on the 13C\u2019s longer lifetimes, leading to a kind of \u201calgorithmic cooling\u201d that can provide high polarization for the 15N as well as carbonyl and alpha 13Cs. This can facilitate certain experiments, as demonstrated with triple resonance experiments on intrinsically disordered proteins involving labile, chemically exchanging protons.
We show that TOCSY and multiple-quantum (MQ) 2D NMR spectra can be obtained for mixtures of substrates hyperpolarised by dissolution dynamic nuclear polarisation (D-DNP). This is achieved by combining optimised transfer settings for D-DNP, with ultrafast 2D NMR experiments based on spatiotemporal encoding. TOCSY and MQ experiments are particularly well suited for mixture analysis, and this approach opens the way to significant sensitivity gains for analytical applications of NMR, such as authentication and metabolomics.
Recent magnetic resonance studies in healthy and cancerous organs have concluded that deuterated metabolites possess highly desirable properties for mapping non-invasively and, as they happen, characterizing glycolysis and other biochemical processes in animals and humans. A promising avenue of this deuterium metabolic imaging (DMI) approach involves looking at the fate of externally administered 2H6,6′-glucose, as it is taken up and metabolized into different products as a function of time. This study employs deuterium magnetic resonance to follow the metabolism of wildtype and preeclamptic pregnant mice models, focusing on maternal and fetoplacental organs over ≈2 h post-injection. 2H6,6′-glucose uptake was observed in the placenta and in specific downstream organs such as the fetal heart and liver. Main metabolic products included 2H3,3′-lactate and 2H-water, which were produced in individual fetoplacental organs with distinct time traces. Glucose uptake in the organs of most preeclamptic animals appeared more elevated than in the control mice (p = 0.02); also higher was the production of 2H-water arising from this glucose. However, the most notable differences arose in the 2H3,3′-lactate concentration, which was ca. two-fold more abundant in the placenta (p = 0.005) and in the fetal (p = 0.01) organs of preeclamptic-like animals, than in control mice. This is consistent with literature reports about hypoxic conditions arising in preeclamptic and growth-restricted pregnancies, which could lead to an enhancement in anaerobic glycolysis. Overall, the present measurements suggest that DMI, a minimally invasive approach, may offer new ways of studying and characterizing health and disease in mammalian pregnancies, including humans.
Detecting and mapping metabolism in tissues represents a major step in detecting, characterizing, treating and understanding cancers. Recently introduced deuterium metabolic imaging techniques could offer a noninvasive route for the metabolic imaging of animals and humans, based on using 2H magnetic resonance spectroscopic imaging (MRSI) to detect the uptake of deuterated glucose and the fate of its metabolic products. In this study, 2H6,6\u2032-glucose was administered to mice cohorts that had been orthotopically implanted with two different models of pancreatic ductal adenocarcinoma (PDAC), involving PAN-02 and KPC cell lines. As the tumors grew, 2H6,6\u2032-glucose was administered as bolii into the animals' tail veins, and 2H MRSI images were recorded at 15.2 T. 2D phase-encoded chemical shift imaging experiments could detect a signal from this deuterated glucose immediately after the bolus injection for both the PDAC models, reaching a maximum in the animals' tumors ~ 20\u2009min following administration, and nearly total decay after ~ 40\u2009min. The main metabolic reporter of the cancers was the 2H3,3\u2032-lactate signal, which MRSI could detect and localize on the tumors when these were 5 mm or more in diameter. Lactate production time traces varied slightly with the animal and tumor model, but in general lactate peaked at times of 60 min or longer following injection, reaching concentrations that were ~ 10-fold lower than those of the initial glucose injection. This 2H3,3\u2032-lactate signal was only visible inside the tumors. 2H-water could also be detected as deuterated glucose's metabolic product, increasing throughout the entire time course of the experiment from its ≈10 mM natural abundance background. This water resonance could be imaged throughout the entire abdomen of the animals, including an enhanced presence in the tumor, but also in other organs like the kidney and bladder. These results suggest that deuterium MRSI may serve as a robust, minimally invasive tool for the monitoring of metabolic activity in pancreatic tumors, capable of undergoing clinical translation and supporting decisions concerning treatment strategies. Comparisons with in vivo metabolic MRI experiments that have been carried out in other animal models are presented and their differences/similarities are discussed.
Purpose: Deuterium metabolic imaging (DMI) maps the uptake of deuterated precursors and their conversion into lactate and other markers of tumor metabolism. Even after leveraging 2H\u2019s short T1s, DMI\u2019s signal-to-noise ratio (SNR) is limited. We hypothesize that a multi-echo balanced steady-state free precession (ME-bSSFP) approach would increase SNR compared to chemical shift imaging (CSI), while achieving spectral isolation of the metabolic precursors and products. Methods: Suitably tuned 2H ME-bSSFP (five echo times [TEs], ΔTE = 2.2 ms, repetition time [TR]/flip-angle = 12 ms/60°) was implemented at 15.2T and compared to CSI (TR/flip-angle = 95 ms/90°) regarding SNR and spectral isolation, in simulations, in deuterated phantoms and for the in vivo diagnosis of a mouse tumor model of pancreatic adenocarcinoma (N = 10).
Results: Simulations predicted an SNR increase vs. CSI of 3-5, and that the peaks of 2H-water, 2H6,6\u2019-glucose, and 2H3,3\u2019-lactate can be well isolated by ME-bSSFP; phantoms confirmed this. In vivo, at equal spatial resolution (1.25 × 1.25 mm2) and scan time (10 min), 2H6,6\u2019-glucose\u2019s and 2H3,3\u2019-lactate\u2019s SNR were indeed higher for bSSFP than for CSI, three-fold for glucose (57 ± 30 vs. 19 ± 11, P
Spatiotemporal Encoding (SPEN) is an ultrafast imaging technique where the low-bandwidth axis is rasterized in a joint spatial/k-domain. SPEN benefits from increased robustness to field inhomogeneities, folding-free reconstruction of subsampled data, and an ability to combine multiple interleaved or signal averaged scans \u2013yet its relatively high SAR complicates volumetric uses. Here we show how this can be alleviated by merging simultaneous multi-band excitation, with intra-slab multi-echo (ME) phase encoding, for the acquisition of high definition volumetric DWI/DTI data. A protocol involving phase-cycling of simultaneous multi-banded z-slab excitations in independently ky-interleaved scans, together with ME trains that kz-encoded positions within these slabs, was implemented. A reconstruction incorporating a CAIPIRINHA-like encoding of the multiple bands and exploiting SPEN's ability to deliver self-referenced, per-shot phase maps, then led to high-definition diffusivity acquisitions, with reduced SAR and acquisition times vis-à-vis non-optimized 3D counterparts. The new protocol was used to collect full brain 3\u202fT DTI experiments at a variety of nominal voxel sizes, ranging from 1.95 to 2.54\u202fmm3. In general, the new protocol yielded superior sensitivity and fewer distortions than what could be observed in comparably timed phase-encoded 3D SPEN, multi-slice 2D SPEN, or optimized EPI counterparts. A robust procedure for acquiring volumetric DWI/DTI data was developed and demonstrated.
Glycan structures are often stabilized by a repertoire of hydrogen-bonded donor/acceptor groups, revealing longer-lived structures that could represent biologically relevant conformations. NMR provides unique data on these hydrogen-bonded networks from multidimensional experiments detecting cross-peaks resulting from through-bond (TOCSY) or through-space (NOESY) interactions. However, fast OH/H2O exchange, and the spectral proximity among these NMR resonances, hamper the use of glycans\u2019 labile protons in such analyses; consequently, studies are often restricted to aprotic solvents or supercooled aqueous solutions. These nonphysiological conditions may lead to unrepresentative structures or to probing a small subset of accessible conformations that may miss \u201cactive\u201d glycan conformations. Looped, projected spectroscopy (L-PROSY) has been recently shown to substantially enhance protein NOESY and TOCSY cross-peaks, for 1Hs that undergo fast exchange with water. This study shows that even larger enhancements can be obtained for rapidly exchanging OHs in saccharides, leading to the retrieval of previously undetectable 2D TOCSY/NOESY cross-peaks with nonlabile protons. After demonstrating ≥300% signal enhancements on model monosaccharides, these experiments were applied at 1 GHz to elucidate the structural network adopted by a sialic acid homotetramer, used as a model for α,2\u20138 linked polysaccharides. High-field L-PROSY NMR enabled these studies at higher temperatures and provided insight previously unavailable from lower-field NMR investigations on supercooled samples, involving mostly nonlabile nuclei. Using L-PROSY\u2019s NOEs and other restraints, a revised structural model for the homotetramer was obtained combining rigid motifs and flexible segments, that is well represented by conformations derived from 40 μs molecular dynamics simulations.
2D NOESY plays a central role in structural NMR. We have recently discussed methods that rely on solvent\u2010driven exchanges, to enhance NOE correlations between exchangeable and non\u2010exchangeable protons in nucleic acids. Such methods, however, fail when trying to establish connectivities within pools of labile protons. This study introduces an alternative that also enhances NOEs between such labile sites, based on encoding a priori selected peaks by selective saturations. The resulting selective magnetization transfer (SMT) experiment proves particularly useful for enhancing the imino\u2010imino cross\u2010peaks in RNAs, which is a first step in the NMR resolution of these structures. The origins of these enhancements are discussed, and their potential demonstrated on RNA fragments derived from the genome of SARS\u2010CoV\u20102, recorded with better sensitivity and an order of magnitude faster than conventional 2D counterparts.
Nuclear magnetic resonance (NMR) spectroscopy provides detailed information pertaining to dynamic processes through line-shape changes, which have been traditionally limited to equilibrium conditions. However, there is a wealth of information to be gained by studying chemical reactions under off-equilibrium conditions -- e.g., in states that arise upon mixing reactants that subsequently undergo chemical changes -- and in monitoring the formation of reaction products in real time. Herein, we propose and demonstrate a time-resolved kinetic NMR experiment that combines rapid mixing techniques, continuous flow, and single-scan spectroscopic imaging methods, leading in unison to a new 2D spectro-temporal NMR correlation which provides high-quality kinetic information of off-equilibrium dynamics. These kinetic 2D NMR spectra possess a spectral dimension conveying with high resolution the individual chemical sites, correlated with a time-independent, steady-state spatial axis that delivers unique information concerning temporal changes along the chemical reaction coordinate. A comprehensive description of the kinetic and spectroscopic features associated to these spectro-temporal NMR analyses is presented, factoring in the rapid-mixing, the flow and the spectroscopic NMR imaging. An experimental demonstration of this method's novel aspects was carried out using an enzymatically catalyzed reaction, leading to site- and time-resolved kinetic NMR data that are in excellent agreement with control experiments and literature values.
At the magnetic fields of common NMR instruments, electron Zeeman frequencies are too high for efficient electron-nuclear dipolar cross-relaxation to occur in solution. The rate of that process fades with the electron Zeeman frequency as ω-2 \u2013 in the absence of isotropic hyperfine couplings, liquid state dynamic nuclear polarisation (DNP) in high-field magnets is therefore impractical. However, contact coupling and dipolar cross-relaxation are not the only mechanisms that can move electron magnetisation to nuclei in liquids: multiple cross-correlated (CC) relaxation processes also exist, involving various combinations of interaction tensor anisotropies. The rates of some of those processes have more favourable high-field behaviour than dipolar cross-relaxation, but due to the difficulty of their numerical \u2013 and particularly analytical \u2013 treatment, they remain largely uncharted. In this communication, we report analytical evaluation of every rotationally driven relaxation process in liquid state for 1e1n and 2e1n spin systems, as well as numerical optimisations of the steady-state DNP with respect to spin Hamiltonian parameters. A previously unreported cross-correlated DNP (CCDNP) mechanism was identified for the 2e1n system, involving multiple relaxation interference effects and inter-electron exchange coupling. Using simulations, we found realistic spin Hamiltonian parameters that yield stronger nuclear polarisation at high magnetic fields than dipolar cross-relaxation.
Multidimensional NOESY experiments targeting correlations between exchangeable imino and amino protons provide valuable information about base pairing in nucleic acids. It has been recently shown that the sensitivity of homonuclear correlations involving RNA's labile imino protons can be significantly enhanced, by exploiting the repolarization brought about by solvent exchanges. Homonuclear correlations, however, are of limited spectral resolution, and usually incapable of tackling relatively large homopolymers with repeating structures like RNAs. This study presents a heteronuclear-resolved version of those NOESY experiments, in which magnetization transfers between the aqueous solvent and the nucleic acid protons are controlled by selecting specific chemical shift combinations of a coupled H-N spin pair. This selective control effectively leads to a pseudo-3D version of HSQC-NOESY, but with cross-peaks enhanced by ∼2-5× as compared with conventional 2D NOESY counterparts. The enhanced signal sensitivity as well as access to both N-H and H-H NOESY dimensions can greatly facilitate RNA assignments and secondary structure determinations, as demonstrated here with the analysis of genome fragments derived from the SARS-CoV-2 virus.
This study explored the usefulness of multiple quantitative MRI approaches to detect pancreatic ductal adenocarcinomas in two murine models, PAN\u201002 and KPC. Methods assayed included 1H T1 and T2 measurements, quantitative diffusivity mapping, magnetization transfer (MT) 1H MRI throughout the abdomen and hyperpolarized 13C spectroscopic imaging. The progress of the disease was followed as a function of its development; studies were also conducted for wildtype control mice and for mice with induced mild acute pancreatitis. Customized methods developed for scanning the motion\u2010 and artifact\u2010prone mice abdomens allowed us to obtain quality 1H images for these targeted regions. Contrasts between tumors and surrounding tissues, however, were significantly different. Anatomical images, T2 maps and MT did not yield significant contrast unless tumors were large. By contrast, tumors showed statistically lower diffusivities than their surroundings (≈8.3 ± 0.4 x 10−4 for PAN\u201002 and ≈10.2 ± 0.6 x 10−4 for KPC vs 13 ± 1 x 10−3 mm2 s−1 for surroundings), longer T1 relaxation times (≈1.44 ± 0.05 for PAN\u201002 and ≈1.45 ± 0.05 for KPC vs 0.95 ± 0.10 seconds for surroundings) and significantly higher lactate/pyruvate ratios by hyperpolarized 13C MR (0.53 ± 0.2 for PAN\u201002 and 0.78 ± 0.2 for KPC vs 0.11 ± 0.04 for control and 0.31 ± 0.04 for pancreatitis\u2010bearing mice). Although the latter could also distinguish early\u2010stage tumors from healthy animal controls, their response was similar to that in our pancreatitis model. Still, this ambiguity could be lifted using the 1H\u2010based reporters. If confirmed for other kinds of pancreatic tumors this means that these approaches, combined, can provide a route to an early detection of pancreatic cancer.
Nuclear magnetic resonance (NMR) is a well-established technique, to study crystalline and amorphous solids, that provides rich structural and dynamical insights. Many solids NMR experiments, however, are challenged by sensitivity considerations, which demand the use of optimized data acquisition protocols. When inhomogeneous broadenings dominate the lineshapes, as is often the case when dealing with quadrupolar nuclei, the application of multiple echoes by means of Carr-Purcell Meiboom-Gill (CPMG) sequence variants can considerably facilitate the acquisition of solid-state NMR data. This study explores the use of steady-state free precession (SSFP) experiments, another proposal derived from Carr\u2019s early work. SSFP sequences are commonly utilized in magnetic resonance imaging acquisitions, which are also dominated by (gradient-imposed) inhomogeneous broadenings, where they are well-known to provide the highest sensitivity per unit time. SSFP sequences are also common in nuclear quadrupole resonance\u2014yet to our knowledge they have been less explored within the realm of high-field solids NMR on static and spinning samples. The present study examines the application of SSFP to these scenarios, in particular, in what concerns its ability to enhance the sensitivity of wide-line spectra. The regimes when SSFP could be advantageous compared to CPMG acquisitions are examined, and sensitivity enhancements of between 1 and 2 orders of magnitude per unit time are theoretically predicted and experimentally demonstrated in certain instances. Aspects in need of improvement to enable a wider use of SSFP-based approaches, particularly to wide-line quadrupolar studies, are also examined.
2020
The current pandemic situation caused by the Betacoronavirus SARS-CoV-2 (SCoV2) highlights the need for coordinated research to combat COVID-19. A particularly important aspect is the development of medication. In addition to viral proteins, structured RNA elements represent a potent alternative as drug targets. The search for drugs that target RNA requires their high-resolution structural characterization. Using nuclear magnetic resonance (NMR) spectroscopy, a worldwide consortium of NMR researchers aims to characterize potential RNA drug targets of SCoV2. Here, we report the characterization of 15 conserved RNA elements located at the 5' end, the ribosomal frameshift segment and the 3'-untranslated region (3'-UTR) of the SCoV2 genome, their large-scale production and NMR-based secondary structure determination. The NMR data are corroborated with secondary structure probing by DMS footprinting experiments. The close agreement of NMR secondary structure determination of isolated RNA elements with DMS footprinting and NMR performed on larger RNA regions shows that the secondary structure elements fold independently. The NMR data reported here provide the basis for NMR investigations of RNA function, RNA interactions with viral and host proteins and screening campaigns to identify potential RNA binders for pharmaceutical intervention.
Diffusion\u2010weighted imaging (DWI) can improve breast cancer characterizations, but often suffers from low image quality \u2013particularly at informative b\u2009>\u20091000\u2009s/mm2 values. The aim of this study was to evaluate multishot approaches characterizing Gaussian and non\u2010Gaussian diffusivities in breast cancer. This was a prospective study, in which 15 subjects, including 13 patients with biopsy\u2010confirmed breast cancers, were enrolled. DWI was acquired at 3\u2009T using echo planar imaging (EPI) with and without zoomed excitations, readout\u2010segmented EPI (RESOLVE), and spatiotemporal encoding (SPEN); dynamic contrast\u2010enhanced (DCE) data were collected using three\u2010dimensional gradient\u2010echo T1 weighting; anatomies were evaluated with T2\u2010weighted two\u2010dimensional turbo spin\u2010echo. Congruence between malignancies delineated by DCE was assessed against high\u2010resolution DWI scans with b\u2010values in the 0\u20131800\u2009s/mm2 range, as well as against apparent diffusion coefficient (ADC) and kurtosis maps. Data were evaluated by independent magnetic resonance scientists with 3\u201320\u2009years of experience, and radiologists with 6 and 20\u2009years of experience in breast MRI. Malignancies were assessed from ADC and kurtosis maps, using paired t tests after confirming that these values had a Gaussian distribution. Agreements between DWI and DCE datasets were also evaluated using Sorensen\u2013Dice similarity coefficients. Cancerous and normal tissues were clearly separable by ADCs: by SPEN their average values were (1.03\u2009±\u20090.17)\u2009×\u200910−3 and (1.69\u2009±\u20090.19)\u2009×\u200910−3 mm2/s (p\u2009
Diffusion tensor distribution (DTD) imaging builds on principles from diffusion, solid-state and low-field NMR spectroscopies, to quantify the contents of heterogeneous voxels as nonparametric distributions, with tensor \u201csize\u201d, \u201cshape\u201d and orientation having direct relations to corresponding microstructural properties of biological tissues. The approach requires the acquisition of multiple images as a function of the magnitude, shape and direction of the diffusion-encoding gradients, leading to long acquisition times unless fast image read-out techniques like EPI are employed. While in previous in vivo human brain studies performed at 3 T this proved a viable option, porting these measurements to very high magnetic fields and/or to heterogeneous organs induces B
0- and B
1-inhomogeneity artifacts that challenge the limits of EPI. To overcome such challenges, we demonstrate here that high spatial resolution DTD of mouse brain can be carried out at 15.2 T with a surface-cryoprobe, by relying on SPatiotemporal ENcoding (SPEN) imaging sequences. These new acquisition and data-processing protocols are demonstrated with measurements on in vivo mouse brain, and validated with synthetic phantoms designed to mimic the diffusion properties of white matter, gray matter and cerebrospinal fluid. While still in need of full extensions to 3D mappings and of scanning additional animals to extract more general physiological conclusions, this work represents another step towards the model-free, noninvasive in vivo characterization of tissue microstructure and heterogeneity in animal models, at ≈0.1 mm resolutions.
Diffusion tensor imaging (DTI) is a well-established technique for mapping brain microstructure and white matter tracts in vivo. High resolution DTI, however, is usually associated with low intrinsic sensitivity and therefore long acquisition times. By increasing sensitivity, high magnetic fields can alleviate these demands, yet high fields are also typically associated with significant susceptibility-induced image distortions. This study explores the potential arising from employing new pulse sequences and emerging hardware at ultrahigh fields, to overcome these limitations. To this end, a 15.2 T MRI instrument equipped with a cryocooled surface transceiver coil was employed, and DTI experiments were compared between SPatiotemporal ENcoding (SPEN), a technique that tolerates well susceptibility-induced image distortions, and double-sampled Spin-Echo Echo-Planar Imaging (SE-EPI) methods. Following optimization, SE-EPI afforded whole brain DTI maps at 135 μm isotropic resolution that possessed higher signal-to-noise ratios (SNRs) than SPEN counterparts. SPEN, however, was a better alternative to SE-EPI when focusing on challenging regions of the mouse brain \u2013including the olfactory bulb and the cerebellum. In these instances, the higher robustness of fully refocused SPEN acquisitions coupled to its built-in zooming abilities, provided in vivo DTI maps with 75 μm nominal isotropic spatial resolution. These DTI maps, and in particular the mean diffusion direction (MDD) details, exhibited variations that matched very well the anatomical features known from histological brain Atlases. Using these capabilities, the development of the olfactory bulb (OB) in live mice was followed from week 1 post-partum, until adulthood. The diffusivity of this organ showed a systematic decrease in its overall isotropic value and increase in its fractional anisotropy with age; this maturation was observed for all regions used in the OB's segmentation but was most evident for the lobules' centers, in particular for the granular cell layer. The complexity of the OB neuronal connections also increased during maturation, as evidenced by the growth in directionalities arising in the mean diffusivity direction maps.
Diffusion-weighted MRI on rodents could be valuable to evaluate pregnancy-related dysfunctions, particularly in knockout models whose biological nature is well understood. Echo Planar Imaging\u2019s sensitivity to motions and to air/water/fat heterogeneities, complicates these studies in the challenging environs of mice abdomens. Recently developed MRI methodologies based on SPatiotemporal ENcoding (SPEN) can overcome these obstacles, and deliver diffusivity maps at ≈150 µm in-plane resolutions. The present study exploits these capabilities to compare the development in wildtype vs vascularly-altered mice. Attention focused on the various placental layers\u2014deciduae, labyrinth, trophoblast, fetal vessels\u2014that the diffusivity maps could resolve. Notable differences were then observed between the placental developments of wildtype vs diseased mice; these differences remained throughout the pregnancies, and were echoed by perfusion studies relying on gadolinium-based dynamic contrast-enhanced MRI. Longitudinal monitoring of diffusivity in the animals throughout the pregnancies also showed differences between the development of the fetal brains in the wildtype and vascularly-altered mice, even if these disparities became progressively smaller as the pregnancies progressed. These results are analyzed on the basis of the known physiology of normal and preeclamptic pregnancies, as well as in terms of the potential that they might open for the early detection of disorders in human pregnancies.
Multidimensional TOCSY and NOESY are central experiments in chemical and biophysical NMR. Limited efficiencies are an intrinsic downside of these methods, particularly when targeting labile sites. This study demonstrates that the decoherence imparted on these protons through solvent exchanges can, when suitably manipulated, lead to dramatic sensitivity gains per unit time in the acquisition of these experiments. To achieve this, a priori selected frequencies are encoded according to Hadamard recipes, while concurrently subject to looped selective inversion or selective saturation procedures. Suitable processing then leads to protein, oligosaccharide and nucleic acid cross-peak enhancements of ≈200\u20131000% per scan, in measurements that are ≈10-fold faster than conventional counterparts. The extent of these gains will depend on the solvent exchange and relaxation rates of the targeted sites; these gains also benefit considerably from the spectral resolution provided by ultrahigh fields, as corroborated by NMR experiments at 600 MHz and 1 GHz. The mechanisms underlying these experiments\u2019 enhanced efficiencies are analyzed on the basis of three-way polarization transfer interplays between the water, labile and non-labile protons, and the experimental results are rationalized using both analytical and numerical derivations. Limitations as well as further extensions of the proposed methods, are also discussed.
Purpose - Diffusion weighted imaging (DWI) is increasingly used in evaluating breast cancer, as complement to DCE measurements of superior spatial resolution. Extracting fine morphological features in DWI is complicated by limitations that sequences such as EPI face, when applied to heterogeneous organs. This study investigates the ability of spatiotemporal encoding (SPEN) MRI to screen breast cancers and define diffusivity features at mm and sub-mm resolutions on a 3T scanner. Methods - Twenty-one patients with biopsy-confirmed breast cancer lesions were examined by T2-weighted and DCE protocols, by EPI-based DWI, and by SPEN-based protocols optimized for SNR, robustness and spatial resolution, respectively. Results - Excellent agreement was found between the diffusivity parameters measured by all SPEN protocols and by EPI, with the lower ADCs characteristic of tumors being readily detected. SPEN provided systematically better SNR and improved qualitative results, particularly when dealing with small lesions surrounded by fatty tissue, or lesions close to tissue/air interfaces. SPEN-derived ADC maps collected at sub-mm in-plane resolutions recapitulated the high-resolution morphology shown by lesions using more sensitive DCE protocols. Conclusion - Measurements on a patient cohort validated SPEN's ability to quantify the diffusivity changes associated with the presence of breast cancers, while imaging the lesions with reduced distortions at sub-mm resolutions.
PurposeTo develop a pulse sequence for acquiring robust, quantitative T2 relaxation maps in real time.MethodsThe pulse scheme relies on fully refocused spatiotemporally encoded multi\u2010spin\u2010echo trains, which provide images that are significantly less distorted than spin\u2010echo echo planar imaging\u2010based counterparts. This enables single\u2010shot T2 mapping in inhomogeneity\u2010prone regions. Another advantage of these schemes stems from their ability to interleave multiple scans in a reference\u2010free manner, providing an option to increase sensitivity and spatial resolution with minimal motional artifacts.ResultsThe method was implemented in preclinical and clinical scanners, where single\u2010shot acquisitions delivered reliable T2 maps in ≤200 ms with ≈250 µm and ≈3 mm resolutions, respectively. Ca. 4 times higher spatial resolutions were achieved for the motion\u2010compensated interleaved versions of these acquisitions, delivering T2 maps in ca. 10 s per slice. These maps were nearly indistinguishable from multi\u2010scan relaxometric maps requiring orders\u2010of\u2010magnitude longer acquisitions; this was confirmed by mice head and real\u2010time mice abdomen 7T scans performed following contrast\u2010agent injections, as well as by 3T human brain and breast scans.ConclusionThis study introduced and demonstrated a new approach for acquiring rapid and quantitative T2 data, which is particularly reliable when operating at high fields and/or targeting heterogeneous organs or regions.
Purpose: To develop schemes that deliver faithful 2D slices near field heterogeneities of the kind arising from non-ferromagnetic metal implants, with reduced artifacts and shorter scan times. Methods: An excitation scheme relying on cross-term spatio-temporal encoding (xSPEN) was used as basis for developing the new inhomogeneity-insensitive, slice-selective pulse scheme. The resulting Fully refOCUSED cross-term SPatiotemporal ENcoding (FOCUSED-xSPEN) approach involved four adiabatic sweeps. The method was evaluated in silico, in vitro and in vivo using mice models, and compared against a number of existing and of novel alternatives based on both conventional and swept RF pulses, including an analogous method based on LASER's selectivity spatial selectivity. Results: Calculations and experiments confirmed that multi-sweep derivatives of xSPEN and LASER can deliver localized excitation profiles, centered at the intended positions and endowed with enhanced immunity to B
0 and B
1 distortions. This, however, is achieved at the expense of higher SAR than non-swept counterparts. Furthermore, single-shot FOCUSED-xSPEN and LASER profiles covered limited off-resonance ranges. This could be extended to bands covering arbitrary off-resonance values with uniform slice widths, by looping the experiments over a number of scans possessing suitable transmission and reception offsets. Conclusions: A series of novel approaches were introduced to select slices near metals, delivering robustness against B
o and B
1
+ field inhomogeneities.
Hyperpolarized water can be a valuable aid in protein NMR, leading to amide group H-1 polarizations that are orders of magnitude larger than their thermal counterparts. Suitable procedures can exploit this to deliver 2D H-1-N-15 correlations with good resolution and enhanced sensitivity. These enhancements depend on the exchange rates between the amides and the water, thereby yielding diagnostic information about solvent accessibility. This study applied this "HyperW" method to four proteins exhibiting a gamut of exchange behaviors: PhoA((330-471)), an unfolded 122-residue fragment; barstar, a fully folded ribonuclease inhibitor; R17, a 13.3 kDa system possessing folded and unfolded forms under slow interconversion; and drkN SH3, a protein domain whose folded and unfolded forms interchange rapidly and with temperature-dependent population ratios. For PhoA((330-471)) HyperW sensitivity enhancements were >= 300X, as expected for an unfolded protein sequence. Though fully folded, barstar also exhibited substantial enhancements; these, however, were not uniform and, according to CLEANEX experiments, reflected the solvent-exposed residues. R17 showed the expected superposition of >= 100-fold enhancements for its unfolded form, coexisting with more modest enhancements for their folded counterparts. Unexpected, however, was the behavior of drkN SH3, for which HyperW enhanced the unfolded but, surprisingly, enhanced even more certain folded protein sites. These preferential enhancements were repeatedly and reproducibly observed. A number of explanations-including three-site exchange magnetization transfers between water and the unfolded and folded states; cross-correlated relaxation processes from hyperpolarized "structural" waters and labile side-chain protons; and the possibility that faster solvent exchange rates characterize certain folded sites over their unfolded counterparts-are considered to account for them.
This study introduces an MRI approach to map diffusion of water in vivo with high resolution under challenging conditions; the approach's potential is then used in diffusivity characterizations of embryos and fetoplacental units in pregnant mice, as well as of newborn mice in their initial postnatal period. The method relies on performing self-referenced spatiotemporal encoded MRI acquisitions, which can achieve the motional and susceptibility immunities needed to target challenging regions such as a mouse's abdominal cavity in a single shot. When suitably combined with zooming-in and novel interleaving procedures, these scans can overcome the inhomogeneity and sensitivity challenges arising upon targeting approximate to 100 mu m in-plane resolutions, and thereby enable longitudinal development studies of abdominal organs that have hitherto eluded in vivo diffusion-weighted imaging. This is employed here to follow processes related to embryonic implantation and placentation, including the final stages of mouse gastrulation, the development of white matter in fetal brains, the maturation of fetal spines, and the evolution of the different layers making up mouse hemochorial placentas. The protocol's ability to extract diffusivity information in challenging regions as a function of embryonic mouse development is thus demonstrated, and its usefulness as a tool for visualizing pregnancy-related developmental changes in rodents is discussed.
Signal enhancements of up to two orders of magnitude in protein NMR can be achieved by employing HDO as a vector to introduce hyperpolarization into folded or intrinsically disordered proteins. In this approach, hyperpolarized HDO produced by dissolution-dynamic nuclear polarization (D-DNP) is mixed with a protein solution waiting in a high-field NMR spectrometer, whereupon amide proton exchange and nuclear Overhauser effects (NOE) transfer hyperpolarization to the protein and enable acquisition of a signal-enhanced high-resolution spectrum. To date, the use of this strategy has been limited to 1D and
1H-
15N 2D correlation experiments. Here we introduce 2D
13C-detected D-DNP, to reduce exchange-induced broadening and other relaxation penalties that can adversely affect proton-detected D-DNP experiments. We also introduce hyperpolarized 3D spectroscopy, opening the possibility of D-DNP studies of larger proteins and IDPs, where assignment and residue-specific investigation may be impeded by spectral crowding. The signal enhancements obtained depend in particular on the rates of chemical and magnetic exchange of the observed residues, thus resulting in non-uniform \u2018hyperpolarization-selective\u2019 signal enhancements. The resulting spectral sparsity, however, makes it possible to resolve and monitor individual amino acids in IDPs of over 200 residues at acquisition times of just over a minute. We apply the proposed experiments to two model systems: the compactly folded protein ubiquitin, and the intrinsically disordered protein (IDP) osteopontin (OPN).
An efficient mixing scheme is introduced for establishing two-dimensional (2D) homonuclear correlations based on dipolar couplings. This mixing scheme achieves broadband dipolar recoupling using remarkably low powers even under ultrafast magic-angle spinning (MAS) rates. This Adiabatic Linearly FREquency Swept reCOupling (AL FRESCO) method applies a series of weak frequency-chirped pluses on the
1H channel, for performing efficient
13C−
13C magnetization transfers leading to cross peaks between sites separated over small or large chemical shift differences. The mixing scheme is nearly free from dipolar truncation effects, and thanks to the low RF powers it involves it can act over long mixing times (≥1.5 sec). Key considerations required for optimizing this chirped pulse mixing scheme are discussed, and the new kind of correlations that can emerge from this method are demonstrated using uniformly
13C-labeled Barstar as test protein sample.
MRI leverages multiple modes of contrast to characterize stroke. High-magnetic-field systems enhance the performance of these MRI measurements. Previously, we have demonstrated that individually sodium and stem cell tracking metrics are enhanced at ultrahigh field in a rat model of stroke, and we have developed robust single-scan diffusion-weighted imaging approaches that utilize spatiotemporal encoding (SPEN) of the apparent diffusion coefficient (ADC) for these challenging field strengths. Here, we performed a multiparametric study of middle cerebral artery occlusion (MCAO) biomarker evolution focusing on comparison of these MRI biomarkers for stroke assessment during sub-acute recovery in rat MCAO models at 21.1 T. T
2-weighted MRI was used as the benchmark for identification of the ischemic lesion over the course of the study. The number of MPIO-induced voids measured by gradient-recalled echo, the SPEN measurement of ADC, and
23Na MRI values were determined in the ischemic area and contralateral hemisphere, and relative performances for stroke classification were compared by receiver operator characteristic analysis. These measurements were associated with unique time-dependent trajectories during stroke recovery that changed the sensitivity and specificity for stroke monitoring during its evolution. Advantages and limitations of these contrasts, and the use of ultrahigh field for multiparametric stroke assessment, are discussed.
NMR sensitivity-enhancement methods involving hyperpolarized water could be of importance for solution-state biophysical investigations. Hyperpolarized water (HyperW) can enhance the
1H NMR signals of exchangeable sites by orders of magnitude over their thermal counterparts, while providing insight into chemical exchange and solvent accessibility at a site-resolved level. As HyperW\u2019s enhancements are achieved by exploiting fast solvent exchanges associated with minimal interscan delays, possibilities for the rapid monitoring of chemical reactions and biomolecular (re)folding are opened. HyperW NMR can also accommodate heteronuclear transfers, facilitating the rapid acquisition of 2-dimensional (2D)
15N-
1H NMR correlations, and thereby combining an enhanced spectral resolution with speed and sensitivity. This work demonstrates how these qualities can come together for the study of nucleic acids. HyperW injections were used to target the guanine-sensing riboswitch aptamer domain (GSR
apt) of the xpt-pbuX operon in Bacillus subtilis. Unlike what had been observed in proteins, where residues benefited of HyperW NMR only if/when sufficiently exposed to water, these enhancements applied to every imino resonance throughout the RNA. The >300-fold enhancements observed in the resulting
1H NMR spectra allowed us to monitor in real time the changes that GSR
apt undergoes upon binding hypoxanthine, a high-affinity interaction leading to conformational refolding on a ∼1-s timescale at 36 °C. Structural responses could be identified for several nucleotides by 1-dimensional (1D) imino
1H NMR as well as by 2D HyperW NMR spectra acquired upon simultaneous injection of hyperpolarized water and hypoxanthine. The folding landscape revealed by this HyperW strategy for GSR
apt, is briefly discussed.
2019
Dynamic Nuclear Polarization (DNP) can increase the sensitivity of Nuclear Magnetic Resonance (NMR), but it is challenging in the liquid state at high magnetic fields. In this study we demonstrate significant enhancements of NMR signals (up to 70 on C-13) in the liquid state by scalar Overhauser DNP at 14.1 T, with high resolution (similar to 0.1 ppm) and relatively large sample volume (similar to 100 mu L).
Purpose: Diffusion MRI is of interest for clinical research and diagnosis. Whereas high-resolution DWI/DTI is hard to achieve by single-shot methods, interleaved acquisitions can deliver these if motion and/or folding artefacts are overcome. Thanks to its ability to provide zoomed, folding-free images, spatially encoded MRI can fulfill these requirements. This is here coupled with a regularized reconstruction and parallel receive methods, to deliver a robust scheme for human DWI/DTI at mm and sub-mm resolutions.Methods: Each shot along the spatially encoded dimension was reconstructed separately to retrieve per-shot phase maps. These shots, together with coil sensitivities, were combined with spatially encoded quadratic phase-encoding matrices associated to each shot, into single global operators. Their originating images were then iteratively computed aided by l(1) and l(2) regularization methods. When needed, motion-corrupted shots were discarded and replaced by redundant information arising from parallel imaging.Results: Full-brain DTI experiments at 1 mm and restricted brain DTIs with 0.75 mm nominal in-plane resolutions were acquired and reconstructed successfully by the new scheme. These 3 Tesla spetiotemporally encoded results compared favorably with EPI counterparts based on segmented and selective excitation schemes provided with the scanner.Conclusion: A new procedure for achieving high-definition diffusion-based MRI was developed and demonstrated.
Purpose: The purpose of the study was to develop an approach for improving the resolution and sensitivity of hyperpolarized C-13 MRSI based on a priori anatomical information derived from featured, water-based H-1 images.Methods: A reconstruction algorithm exploiting H-1 MRI for the redefinition of the C-13 MRSI anatomies was developed, based on a modification of the spectroscopy with linear algebraic modeling (SLAM) principle. To enhance C-13 spatial resolution and reduce spillover effects without compromising SNR, this model was extended by endowing it with a search allowing smooth variations in the C-13 MR intensity within the targeted regions of interest.Results: Experiments were performed in vitro on enzymatic solutions and in vivo on rodents, based on the administration of C-13-enriched hyperpolarized pyruvate and urea. The spectral images reconstructed for these substrates and from metabolic products based on predefined H-1 anatomical compartments using the new algorithm, compared favorably with those arising from conventional Fourier-based analyses of the same data. The new approach also delivered reliable kinetic C-13 results, for the kind of processes and timescales usually targeted by hyperpolarized MRSI.Conclusion: A simple, flexible strategy is introduced to boost the sensitivity and resolution provided by hyperpolarized C-13 MRSI, based on readily available H-1 MR information.
Blood oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI) indirectly measures brain activity based on neurovascular coupling, a reporter that limits both the spatial and temporal resolution of the technique as well as the cellular and metabolic specificity. Emerging methods using functional spectroscopy (fMRS) and diffusion-weighted fMRI suggest that metabolic and structural modifications are also taking place in the activated cells. This paper explores an alternative metabolic imaging approach based on Chemical Exchange Saturation Transfer (CEST) to assess potential metabolic changes induced by neuronal stimulation in rat brains at 17.2T. An optimized CEST-fMRI data acquisition and processing protocol was developed and used to experimentally assess the feasibility of glucoCEST-based fMRI. Images acquired under glucose-sensitizing conditions showed a substantial negative contrast that highlighted the same brain regions as those activated with BOLD-fMRI. We ascribe this novel fMRI contrast to CEST's ability to monitor changes in the local concentration of glucose, a metabolite closely coupled to neuronal activity. Our findings are in good agreement with literature employing other modalities. The use of CEST-based techniques for fMRI is not limited to glucose detection; other metabolic pathways involved in neuronal activation could be potentially probed. Moreover, being non invasive, it is conceivable that the same approach can be used for human studies.
While C-13-based Incredible Natural Abundance DoublE QUAntum Transfer Experiment (INADEQUATE) experiments offer an attractive alternative for establishing molecular structures, they suffer from low sensitivities arising from the scarcity of spin pairs present at natural abundance. Herein we demonstrate that dissolution dynamic nuclear polarization (dDNP) provides sufficient sensitivity to acquire 1D C-13 INADEQUATE spectra in a single scan and at natural abundance. Moreover, if steps are adopted to endow sub-Hertz precision to these measurements, they allow one to measure carbon carbon J couplings over both one and multiple bonds for each chemical site. As these Jcc-couplings are usually sufficiently distinct to enable univocal pairing of the nuclei involved, essentially the same information as in 2D INADEQUATE can be obtained. The feasibility of the method is demonstrated for a range of compounds, including natural products such as a-pinene, menthol and limonene. Features and extensions of this approach are briefly discussed.
Huntington's disease is a neurodegenerative disorder resulting from an expanded polyglutamine (polyQ) repeat of the Huntingtin (Htt) protein. Affected tissues often contain aggregates of the N-terminal Htt exon 1 (Htt-Ex1) fragment. The N-terminal N17 domain proximal to the polyQ tract is key to enhance aggregation and modulate Htt toxicity. Htt-Ex1 is intrinsically disordered, yet it has been postulated that under physiological conditions membranes induce the N17 to adopt an alpha-helical structure, which then plays a key role in regulating Htt protein aggregation. The present study leverages the recently available assignment of NMR peaks in an N17Q17 construct, in order to provide a look into the changes occurring in vitro upon exposing this fragment to various brain extract fragments as well as to synthetic bilayers. Residue-specific changes were observed by 3D HNCO NMR, whose nature was further clarified with ancillary CD and aggregation studies, as well as with molecular dynamic calculations. From this combination of measurements and computations, a unified picture emerges, whereby transient structures consisting of alpha-helices spanning a fraction of the N17 residues form during N17Q17-membrane interactions. These interactions are fairly dynamic, but they qualitatively mimic more rigid variants that have been discussed in the literature. The nature of these interactions and their potential influence on the aggregation process of these kinds of constructs under physiological conditions are briefly assessed.
2018
This study explores opportunities opened up by ultrahigh fields for in vivo saturation transfer brain magnetic resonance imaging experiments. Fast spin-echo images weighted by chemical exchange saturation transfer (CEST) effects were collected on Sprague-Dawley rats at 21.1T, focusing on two neurological models. One involved a middle cerebral artery occlusion emulating ischemic stroke; the other involved xenografted glioma cells that were followed over the course of several days as they developed into brain tumors. A remarkably strong saturation-derived contrast was observed for the growing tumors when calculating magnetization transfer ratios at c. 3.8ppm. This large contrast originated partially from an increase in the contribution of the amide CEST effect, but mostly from strong decreases in the Overhauser and magnetization transfer contributions to the upfield region, whose differential attenuations could be clearly discerned thanks to the ultrahigh field. The high spectral separation arising at 21.1T also revealed numerous CEST signals usually overlapping at lower fields. Ischemic lesions were also investigated but, remarkably, magnetization and saturation transfer contrasts were nearly absent when computing transfer asymmetries using either high or low saturation power schemes. These behaviors were consistently observed at 24hours post-occlusion, regardless of the data processing approach assayed. Considerations related to how various parameters defining these experiments depend on the magnetic field, primarily chemical shifts and T-1 values, are discussed.
Purpose: To develop a rapid, non-CPMG high-resolution volumetric imaging approach, exhibiting a speed and in-plane resilience to field inhomogeneities comparable to RARE/turbo-spin-echo (TSE) while endowed with unique downsampling characteristics.Methods: A multi-scan extension of cross-term spatiotemporal encoding (xSPEN) is introduced and analyzed. The method simultaneously yields k(y)/k(z) data containing low and high frequency components, as well as transposed, low-resolution z/y images. This dual k-/spatial-domain information is captured by a multi-scan procedure that phase-encodes k(y) while simultaneously slice-selecting z. A reconstruction scheme converting this information into high resolution 3D images with fully multiplexed volumetric coverage is introduced and exemplified.Results: Phase-encoded xSPEN was tested by human brain imaging at sub-mm resolutions. The method exceeded 2D TSE's sensitivity by factors of approximate to 3-4, while providing similar resolution and SNR as 3D TSE in approximate to 50% acquisition times. The method's contrast is dominated by T-2 and is free from "bright-fat" effects associated to spin-echo trains. Further acceleration is enabled by the method's downsampling abilities. Tradeoffs between encoding time, number of measurements, spatial resolution, SNR, and artifact levels are also laid out.Conclusion: A new MRI strategy is introduced delivering high in-and through-plane resolutions while enjoying full Fourier multiplexing, leading to fast acquisitions with high SNR.
We explore the use of cross-polarization magic-angle spinning (CPMAS) methods incorporating an adiabatic frequency sweep in a standard Hartman-Hahn CPMAS pulse scheme, to achieve signal enhancements in solid-state NMR spectra of rare spins under fast MAS spinning rates, including spin-1/2, integer spin, and half-integer spin nuclides. These experiments, dubbed Broadband Adiabatic INversion Cross-Polarization Magic-Angle Spinning (BRAIN-CPMAS) experiments, involve an adiabatic inversion pulse on the S-channel of a rare spin nuclide while simultaneously applying a conventional spin-locking pulse on the I-channel (1H). The signal enhancement imparted by this CP scheme on the S-spin is broadbanded, while employing low RF field strengths on both I- and S-channels. A feature demanded by these BRAIN-CPMAS methods is to impose a selective adiabatic frequency sweep over a single MAS spinning centerband or sideband, to avoid interference between the MAS modulation and sweeps over multiple sidebands. Upon implementing this swept-CP method, a number of MAS-driven processes happen, including broadband zero- and double-quantum CP transfers, and MAS-driven rotary-resonance phenomena. When this CP method is applied to integer and half-integer quadrupolar nuclei at very fast MAS spinning rates, a favorable double-quantum CP condition is found that can be easily achieved, and avoids the level-crossings among various ms energy levels that complicate quadrupolar CPMAS NMR experiments along lines first shown by Alex Vega. An additional CP mechanism was found in the 1H-2H case, involving static-like zero-quantum CP modes driven by a quadrupole-modulated RF-dipolar zero-order recoupling under MAS. All these phenomena were examined using average Hamiltonian theory, numerical simulations, and experiments on model compounds. Sensitivity-enhanced, distortion-free CP over wide bandwidths were predicted and observed for S = 1/2 and for S = 1 (2H) under fast MAS rates. BRAIN-CPMAS also delivered undistorted central transition NMR spectra of half-integer quadrupolar nuclei, while utilizing low RF field strengths that avoid complex level-crossing effects under high MAS rates.
Cross-relaxation and isotropic mixing phenomena leading to the Nuclear Overhauser Effect (NOE) and to the TOCSY experiment, lie at the center of structural determinations by NMR. 2D TOCSY and NOESY exploit these polarization transfer effects to determine inter-site connectivities and molecular geometries under physiologically-relevant conditions. Among these sequences\u2019 drawback, particularly for the case of NOEs, are a lack of sensitivity arising from small structurally-relevant cross peaks. The present study explores the application of multiple Zeno-like projective measurements, to enhance the cross-peaks between spectrally distinct groups in proteins \u2013in particular between amide and aliphatic protons. The enhancement is based on repeating the projection done by Ramsey or TOCSY blocks multiple times, in what we refer to as Looped, PROjected Spectroscopy (L-PROSY). This leads to a reset of the amide/aliphatic transfer processes; the initial slopes of the NOE- or J-transfer effects thus define the cross-peak growth, and a faster cross-peak buildup is achieved upon looping these transfers over the allotted time T1. These projections also help to better preserve the magnetization originating in the amides, resulting in an overall improvement in sensitivity. L-PROSY's usefulness is demonstrated by incorporating it into two widely used protein NMR experiments: 2D 15N-1H HMQC-NOESY and 15N-filtered 2D NOESY. Different parameters dictating the overall SNR improvement, particularly the protein correlation times and the amide-water chemical exchange rates, were examined, and L-PROSY's enhancements resulted for all tested proteins. The largest cross-peak enhancements were observed for unstructured proteins, where chemical exchanges with the solvent of the kind that tend to average out NOE cross-peaks in conventional NMR, boost L-PROSY's cross-peaks by replenishing the amide's magnetizations within each loop. Enhanced cross-peaks were also found in extensions involving TOCSY-based experiments when applied to proteins with unfolded segments.
Many mutations that cause familial hypercholesterolemia localize to ligand-binding domain 5 (LA5) of the low-density lipoprotein receptor, motivating investigation of the folding and misfolding of this small, disulfide-rich, calcium-binding domain. LA5 folding is known to involve non-native disulfide isomers, yet these folding intermediates have not been structurally characterized. To provide insight into these intermediates, we used nuclear magnetic resonance (NMR) to follow LA5 folding in real time. We demonstrate that misfolded or partially folded disulfide intermediates are indistinguishable from the unfolded state when focusing on the backbone NMR signals, which provide information on the formation of only the final, native state. However,
13C labeling of cysteine side chains differentiated transient intermediates from the unfolded and native states and reported on disulfide bond formation in real time. The cysteine pairings in a dominant intermediate were identified using
13C-edited three-dimensional NMR, and coarse-grained molecular dynamics simulations were used to investigate the preference of this disulfide set over other non-native arrangements. The transient population of LA5 species with particular non-native cysteine connectitivies during folding supports the conclusion that cysteine pairing is not random and that there is a bias toward certain structural ensembles during the folding process, even prior to the binding of calcium.
This study demonstrates the usefulness derived from relying on hyperpolarized water obtained by dissolution DNP, for site-resolved biophysical NMR studies of intrinsically disordered proteins. Thanks to the facile amide-solvent exchange experienced by protons in these proteins, 2D NMR experiments that like HMQC rely on the polarization of the amide protons, can be enhanced using hyperpolarized water by several orders of magnitude over their conventional counterparts. Optimizations of the DNP procedure and of the subsequent injection into the protein sample are necessary to achieve these gains while preserving state-of-the-art resolution; procedures enabling this transfer of the hyperpolarized water and the achievement of foamless hyperpolarized protein solutions are demonstrated. These protocols are employed to collect 2D 15N-1H HMQC NMR spectra of α-synuclein, showing residue-specific enhancements ≥100× over their thermal counterparts. These enhancements, however, vary considerably throughout the residues. The biophysics underlying this residue-specific behavior upon injection of hyperpolarized water is theoretically examined, the information that it carries is compared with results arising from alternative methods, and its overall potential is discussed.
Nuclear magnetic resonance (NMR) is an intrinsically insensitive technique, with Boltzmann distributions of nuclear spin states on the order of parts per million in conventional magnetic fields. To overcome this limitation, dynamic nuclear polarization (DNP) can be used to gain up to three orders of magnitude in signal enhancement, which can decrease experimental time by up to six orders of magnitude. In DNP experiments, nuclear spin polarization is enhanced by transferring the relatively larger electron polarization to NMR active nuclei via microwave irradiation. Here, we describe the design and performance of a quasi-optical system enabling the use of a single 395 GHz gyrotron microwave source to simultaneously perform DNP experiments on two different 14.1 T (1H 600 MHz) NMR spectrometers: one configured for magic angle spinning (MAS) solid state NMR; the other configured for solution state NMR experiments. In particular, we describe how the high power microwave beam is split, transmitted, and manipulated between the two spectrometers. A 13C enhancement of 128 is achieved via the cross effect for alanine, using the nitroxide biradical AMUPol, under MAS-DNP conditions at 110 K, while a 31P enhancement of 160 is achieved via the Overhauser effect for triphenylphosphine using the monoradical BDPA under solution NMR conditions at room temperature. The latter result is the first demonstration of Overhauser DNP in the solution state at a field of 14.1 T (1H 600 MHz). Moreover these results have been produced with large sample volumes (∼100 µL, i.e. 3 mm diameter NMR tubes).
Purpose: Cross-term spatiotemporal encoding (xSPEN) is a single-shot approach with exceptional immunity to field heterogeneities, the images of which faithfully deliver 2D spatial distributions without requiring a priori information or using postacquisition corrections. xSPEN, however, suffers from signal-to-noise ratio penalties due to its non-Fourier nature and due to diffusion losses\u2014especially when seeking high resolution. This study explores partial Fourier transform approaches that, acting along either the readout or the spatiotemporally encoded dimensions, reduce these penalties. Methods: xSPEN uses an orthogonal (e.g., z) gradient to read, in direct space, the low-bandwidth (e.g., y) dimension. This substantially changes the nature of partial Fourier acquisitions vis-à-vis conventional imaging counterparts. A suitable theoretical analysis is derived to implement these procedures, along either the spatiotemporally or readout axes. Results: Partial Fourier single-shot xSPEN images were recorded on preclinical and human scanners. Owing to their reduction in the experiments\u2019 acquisition times, this approach provided substantial sensitivity gains vis-à-vis previous implementations for a given targeted in-plane resolution. The physical origins of these gains are explained. Conclusion: Partial Fourier approaches, particularly when implemented along the low-bandwidth spatiotemporal dimension, provide several-fold sensitivity advantages at minimal costs to the execution and processing of the single-shot experiments. Magn Reson Med 79:1506\u20131514, 2018.
Placental functions, including transport and metabolism, play essential roles in pregnancy. This study assesses such processes in vivo, from a hyperpolarized MRI perspective. Hyperpolarized urea, bicarbonate, and pyruvate were administered to near-term pregnant rats, and all metabolites displayed distinctive behaviors. Little evidence of placental barrier crossing was observed for bicarbonate, at least within the timescales allowed by 13C relaxation. By contrast, urea was observed to cross the placental barrier, with signatures visible from certain fetal organs including the liver. This was further evidenced by the slower decay times observed for urea in placentas vis-à-vis other maternal compartments and validated by mass spectrometric analyses. A clear placental localization, as well as concurrent generation of hyperpolarized lactate, could also be detected for [1-13C]pyruvate. These metabolites also exhibited longer lifetimes in the placentas than in maternal arteries, consistent with a metabolic activity occurring past the trophoblastic interface. When extended to a model involving the administration of a preeclampsia-causing chemical, hyperpolarized MR revealed changes in urea\u2019s transport, as well as decreases in placental glycolysis vs. the naïve animals. These distinct behaviors highlight the potential of hyperpolarized MR for the early, minimally invasive detection of aberrant placental metabolism.
Purpose: Spatio-temporal encoding (SPEN) experiments can deliver single-scan MR images without folding complications and with robustness to chemical shift and susceptibility artifacts. Further resolution improvements are shown to arise by relying on multiple receivers, to interpolate the sampled data along the low-bandwidth dimension. The ensuing multiple-sensor interpolation is akin to recently introduced SPEN interleaving procedures, albeit without requiring multiple shots. Methods: By casting SPEN's spatial rasterization in k-space, it becomes evident that local k-data interpolations enabled by multiple receivers are akin to real-space interleaving of SPEN images. The practical implementation of such a resolution-enhancing procedure becomes similar to those normally used in simultaneous acquisition of spatial harmonics or sensitivity encoding, yet relaxing these methods\u2019 fold-over constraints. Results: Experiments validating the theoretical expectations were carried out on phantoms and human volunteers on a 3T scanner. The experiments showed the expected resolution enhancement, at no cost to the sequence's complexity. With the addition of multibanding and stimulated echo procedures, 48-slice full-brain coverage could be recorded free from distortions at submillimeter resolution, in 3 s. Conclusions: Super-resolved SPEN with SENSE (SUSPENSE) achieves the goals of multishot SPEN interleaving delivering single-shot submillimeter in-plane resolutions in scanners equipped with suitable multiple sensors. Magn Reson Med 79:796\u2013805, 2018.
Chemical exchange saturation transfer (CEST) experiments enhance the NMR signals of labile protons by continuously transferring these protons' saturation to an abundant solvent pool like water. The present study expands these principles by fusing into these experiments homonuclear isotropic mixing sequences, enabling the water-enhanced detection of non-exchangeable species. Further opportunities are opened by the addition of coupling-mediated heteronuclear polarization transfers, which then impose on the water resonance a saturation stemming from non-labile heteronuclear species like 13C. To multiplex the ensuing experiments, these relayed approaches are combined with time-domain schemes involving multiple Ramsey-labeling experiments imparting the frequencies of the non-labile sites on the water resonance, via chemical exchange. 13C and 1H NMR spectra were detected in this fashion with about two-fold SNR amplification vis-à-vis conventionally detected spectroscopies. When combined with non-uniform sampling principles, this methodology thus becomes a sensitive alternative to detect non-exchangeable species in biomolecules. Still, multiple parameters including the scalar couplings and solvent exchange rates, will affect the efficiency and consequently the practicality of the overall experiment.
2017
Nuclear magnetic resonance is a powerful tool for probing the structures of chemical and biological systems. Combined with field gradients it leads to NMR imaging (MRI), a widespread tool in non-invasive examinations. Sensitivity usually limits MRI's spatial resolution to tens of micrometers, but other sources of information like those delivered by constrained diffusion processes, enable one extract morphological information down to micron and sub-micron scales. We report here on a new method that also exploits diffusion-isotropic or anisotropic-to sense morphological parameters in the nm-mm range, based on distributions of susceptibility-induced magnetic field gradients. A theoretical framework is developed to define this source of information, leading to the proposition of internal gradient-distribution tensors. Gradient-based spin-echo sequences are designed to measure these new observables. These methods can be used to map orientations even when dealing with unconstrained diffusion, as is here demonstrated with studies of structured systems, including tissues.
Cross-term spatiotemporal encoding (xSPEN) is a recently introduced imaging approach delivering single-scan 2D NMR images with unprecedented resilience to field inhomogeneities. The method relies on performing a pre-acquisition encoding and a subsequent image read out while using the disturbing frequency inhomogeneities as part of the image formation processes, rather than as artifacts to be overwhelmed by the application of external gradients. This study introduces the use of this new single-shot MRI technique as a diffusion-monitoring tool, for accessing regions that have hitherto been unapproachable by diffusion-weighted imaging (DWI) methods. In order to achieve this, xSPEN MRI's intrinsic diffusion weighting effects are formulated using a customized, spatially-localized b-matrix analysis; with this, we devise a novel diffusion-weighting scheme that both exploits and overcomes xSPEN's strong intrinsic weighting effects. The ability to provide reliable and robust diffusion maps in challenging head and brain regions, including the eyes and the optic nerves, is thus demonstrated in humans at 3T. New avenues for imaging other body regions are also briefly discussed.
Measuring cellular microstructures non-invasively and achieving specificity towards a celltype population within an interrogated in vivo tissue, remains an outstanding challenge in brain research. Magnetic Resonance Spectroscopy (MRS) provides an opportunity to achieve cellular specificity via the spectral resolution of metabolites such as N-Acetylaspartate (NAA) and myo-Inositol (mI), which are considered neuronal and astrocytic markers, respectively. Yet the information typically obtained with MRS describes metabolic concentrations, diffusion coefficients or relaxation rates rather than microstructures. Understanding how these metabolites are compartmentalized is a challenging but important goal, which so far has been mainly addressed using diffusion models. Here, we present direct in vivo evidence for the confinement of NAA and mI within sub-cellular components, namely, the randomly oriented process of neurons and astrocytes, respectively. Our approach applied Relaxation Enhanced MRS at ultrahigh (21.1 T) field, and used its high H-1 sensitivity to measure restricted diffusion correlations for NAA and mI using a Double Diffusion Encoding (DDE) filter. While very low macroscopic anisotropy was revealed by spatially localized Diffusion Tensor Spectroscopy, DDE displayed characteristic amplitude modulations reporting on confinements in otherwise randomly oriented anisotropic microstructures for both metabolites. This implies that for the chosen set of parameters, the DDE measurements had a biased sensitivity towards NAA and mI sited in the more confined environments of neurites and astrocytic branches, than in the cell somata. These measurements thus provide intrinsic diffusivities and compartment diameters, and revealed subcellular neuronal and astrocytic morphologies in normal in vivo rat brains. The relevance of these measurements towards human applications- which could in turn help understand CNS plasticity as well as diagnose brain diseases- is discussed.
Nuclear magnetic resonance (NMR) spectroscopy has long served as an irreplaceable, versatile tool in physics, chemistry, biology, and materials sciences, owing to its ability to study molecular structure and dynamics in detail. In particular, the connectivity of chemical sites within molecules, and thereby molecular structure, becomes visible by multi-dimensional NMR. Homonuclear correlation experiments are a powerful tool for identifying coupled spins. Generally, diagonal peaks in these correlation spectra display the strongest intensities and do not offer any new information beyond the standard one-dimensional spectrum, whereas weaker, symmetrically placed cross peaks contain most of the coupling information. The cross peaks near the diagonal are often affected by the tails of strong diagonal peaks or even obscured entirely by the diagonal. In this paper, we demonstrate a homonuclear encoding approach based on imparting a discrete phase modulation of the targeted cross peaks and combine it with a site-selective sculpting scheme, capable of simplifying the patterns arising in these 2D correlation spectra. The theoretical principles of the new methods are laid out, and experimental observations are rationalized on the basis of theoretical analyses. The ensuing techniques provide a new way to retrieve 2D coupling information within homonuclear spin systems, with enhanced sensitivity, speed, and clarity.
Purpose: Spatiotemporal encoding (SPEN) can deliver single-scan MR images without folding complications and with increased robustness to chemical shift and susceptibility artifacts. Yet, it does so at the expense of relatively high specific absorption rates (SAR) owing to its reliance on frequency-swept pulses. This study describes SPEN implementations aimed at full three-dimensional (3D) multislice imaging, possessing reduced SAR thanks to an implementation based on new 2D radiofrequency (RF) pulses. Methods: Fully refocused spin- and stimulated-echo SPEN sequences incorporating 2D spatial/spatial swept RF pulses were implemented at 3 Tesla and compared to echo planar imaging. The use of effective 90-degree slice-selective excitation pulses enabled the scanning of 3D volumes with a low SAR. Results: Experiments validating the theoretical expectations were carried out on phantoms and on human volunteers, including zooming and diffusion measurements. The chosen sequences showed much smaller SARs than EPI, while delivering similar sensitivities when targeting human brain and fewer distortions when targeting human breast. Conclusion: Two-dimensional RF pulses can exploit SPEN's advantages while fulfilling the SAR and multislice coverage demands required for clinical imaging.
The use of frequency-swept radiofrequency (rf) pulses for enhancing signals in the magic-angle spinning (MAS) spectra of half-integer quadrupolar nuclides was explored. The broadband adiabatic inversion cross-polarization magic-angle spinning (BRAIN-CPMAS) method, involving an adiabatic inversion pulse on the S-channel and a simultaneous rectangular spin-lock pulse on the I-channel (1H), was applied to I(1/2) → S(3/2) systems. Optimal BRAIN-CPMAS matching conditions were found to involve low rf pulse strengths for both the I- and S-spin channels. At these low and easily attainable rf field strengths, level-crossing events among the energy levels |3/2〉,|1/2〉,|-1/2〉,|-3/2〉 that are known to complicate the CPMAS of quadrupolar nuclei, are mostly avoided. Zero- and double-quantum polarization transfer modes, akin to those we have observed for I(1/2) → S(1/2) polarization transfers, were evidenced by these analyses even in the presence of the quadrupolar interaction. 1H-23Na and 1H-11B BRAIN-CPMAS conditions were experimentally explored on model compounds by optimizing the width of the adiabatic sweep, as well as the rf pulse powers of the 1H and 23Na/11B channels, for different MAS rates. The experimental data obtained on model compounds containing spin-3/2 nuclides, matched well predictions from numerical simulations and from an average Hamiltonian theory model. Extensions to half-integer spin nuclides with higher spins and potential applications of this BRAIN-CPMAS approach are discussed.
Cross-polarization (CP) experiments employing frequency-swept radiofrequency (rf) pulses have been successfully used in static spin systems for obtaining broadband signal enhancements. These experiments have been recently extended to heteronuclear I, S = spin-1/2 nuclides under magic-angle spinning (MAS), by applying adiabatic inversion pulses along the S (low-gamma) channel while simultaneously applying a conventional spin-locking pulse on the I-channel (H-1). This study explores an extension of this adiabatic frequency sweep concept to quadrupolar nuclei, focusing on CP from H-1 (I = 1/2) to H-2 spins (S = 1) undergoing fast MAS (nu(r) = 60 kHz). A number of new features emerge, including zero- and double-quantum polarization transfer phenomena that depend on the frequency offsets of the swept pulses, the rf pulse powers, and the MAS spinning rate. An additional mechanism found operational in the H-1-H-2 CP case that was absent in the spin-1/2 counterpart, concerns the onset of a pseudo-static zero- quantum CP mode, driven by a quadrupole-modulated rf/dipolar recoupling term arising under the action of MAS. The best CP conditions found at these fast spinning rates correspond to double-quantum transfers, involving weak H-2 rf field strengths. At these easily attainable (ca. 10 kHz) rf field conditions, adiabatic level-crossings among the {vertical bar 1 ,vertical bar 0 ,broken vertical bar-1} m(S) energy levels, which are known to complicate the CP MAS of quadrupolar nuclei, are avoided. Moreover, the CP line shapes generated in this manner are very close to the ideal H-2 MAS spectral line shapes, facilitating the extraction of quadrupolar coupling parameters. All these features were corroborated with experiments on model compounds and justified using numerical simulations and average Hamiltonian theory models. Potential applications of these new phenomena, as well as extensions to higher spins S, are briefly discussed.
Purpose: Evaluate the usefulness of single-shot and of interleaved spatiotemporally encoded (SPEN) methods to perform diffusion tensor imaging (DTI) under various preclinical and clinical settings.Methods: A formalism for analyzing SPEN DTI data is presented, tailored to account for the spatially dependent bmatrix weightings introduced by the sequence's use of swept pulses acting while in the presence of field gradients. Using these b-matrix calculations, SPEN's ability to deliver DTI measurements was tested on phantoms as well as ex vivo and in vivo. In the latter case, DTI involved scans on mice brains and on human lactating breasts.Results: For both ex vivo and in vivo investigations, SPEN data proved less sensitive to distortions arising from Bo field inhomogeneities and from eddy currents, than conventional single-shot alternatives. Further resolution enhancement could be achieved using referenceless methods for interleaved SPEN data acquisitions.Conclusion: The robustness of SPEN-based sequences vis-similar to avis field instabilities and heterogeneities, enables the implementation of DTI experiments with good sensitivity and resolution even in challenging environments in both preclinical and clinical settings.
A method to detect NMR spectra from heteronuclei through the modulation that they impose on a water resonance is exemplified. The approach exploits chemical exchange saturation transfers, which can magnify the signal of labile protons through their influence on a water peak. To impose a heteronuclear modulation on water, an HMQC-type sequence was combined with the FLEX approach. 1D 15N NMR spectra of exchanging sites could thus be detected, with about tenfold amplifications over the 15N modulations afforded by conventionally detected HMQC NMR spectroscopy. Extensions of this approach enable 2D heteronuclear acquisitions on directly bonded 1H\u201315N spin pairs, also with significant signal amplification. Despite the interesting limits of detection that these signal enhancements could open in NMR spectroscopy, these gains are constrained by the rates of solvent exchange of the targeted heteronuclear pairs, as well as by spectrometer instabilities affecting the intense water resonances detected in these experiments.
Purpose: A relaxation-enhanced (RE) approach to acquire in vivo localized spectra with flat baselines and good sensitivity has been recently proposed. As RE MR spectroscopy (MRS) targets a subset of a priori known resonances, new possibilities arise to acquire spectroscopic imaging data in faster, more efficient manners. This is hereby illustrated by Spectroscopically Encoded Chemical Shift Imaging (SECSI).Methods: SECSI delivers spectral/spatial correlations by collecting gradient echo trains whose timings are defined by the shifts of the resonances to be disentangled. Condition number considerations allow one to unravel these image contributions for various sites by a simple matrix inversion. The efficiency of the ensuing method is high enough to enable a sampling of additional spatial axes by means of their phase encoding in spin-echo trains.Results: The one-dimensional (1D) spectral / 2D spatial SECSI acquisitions were implemented on phantom, ex vivo, and in vivo models. In all cases, quality site-resolved images were obtained. The experimentally observed enhancements were consistent with theoretical signal-to-noise ratio derivations.Conclusion: While still bound by MRSI's sensitivity limitations, a novel spectroscopic imaging protocol exploiting a priori information, selective excitations and multiple echo encodings, was proposed and demonstrated. The method is promising when dealing with high T-2/ T2* ratios, sparse data, or hyperpolarization studies. Magn Reson Med 77:511-519, 2017. (c) 2016 International Society for Magnetic Resonance in Medicine
Purpose: Single-scan two-dimensional MRI has been generally constrained to acquisitions in high quality magnets. This study introduces a methodology, cross-term spatiotemporal encoding (xSPEN), that delivers such images under much poorer external field conditions.Methods: xSPEN departs from conventional k-space scanning, by relying on spatiotemporally encoding the image being sought. Unlike hitherto proposed SPEN methods, however, xSPEN's image readout does not take place using a field gradient along the direction being probed, but rather with the aid of an ancillary source of inhomogeneous frequency broadening. This ancillary dimension was here imposed by an orthogonal field gradient; for example, images along the y axis were read out by application of a z gradient. The principles and characteristics of this new approach, compatible with existing scanners and free from the need to collect auxiliary information such as field maps, are presented and discussed.Results: Single- and multi-slice in vitro, ex vivo, and in vivo MRI experiments, confirmed the unusual resilience of this new single-shot MRI method to multiple chemical sites on phantoms, animals and humans.Conclusion: xSPEN can deliver single-scan MRI with good sensitivity and exceptional resilience to field inhomogeneities. This could enable investigations that have hitherto escaped from MRI's scope. Magn Reson Med 77:623-634, 2017. (c) 2016 International Society for Magnetic Resonance in Medicine
Purpose: This study seeks to evaluate in vivo T-2 relaxation times of selectively excited stroke-relevant metabolites via H-1 relaxation-enhanced magnetic resonance spectroscopy (RE-MRS) at 21.1T (900 MHz).Methods: A quadrature surface coil was designed and optimized for investigations of rodents at 21.1T. With voxel localization, a RE-MRS pulse sequence incorporating the excitation of selected metabolites was modified to include a variable echo delay for T-2 measurements. A middle cerebral artery occlusion (MCAO) animal model for stroke was examined with spectra taken 24h post occlusion. Fourteen echo times were acquired, with each measurement completed in less than 2min.Results: The RE-MRS approach produced high-quality spectra of the selectively excited metabolites in the stroked and contralateral regions. T-2 measurements reveal differential results between these regions, with significance achieved for lactic acid.Conclusion: Using the RE-MRS technique at ultra-high magnetic field and an optimized quadrature surface coil design, full metabolic T-2 quantifications in a localized voxel is now possible in less than 27min. Magn Reson Med 77:520-528, 2017. (c) 2016 International Society for Magnetic Resonance in Medicine
Efficient acquisition of high-quality ultra-wideline (UW) solid-state NMR powder patterns in short experimental time frames is challenging. UW NMR powder patterns often possess inherently low signal-to-noise (S/N) and usually overlap for samples containing two or more magnetically distinct nuclides, which obscures spectral features and drastically lowers the spectral resolution. Currently, there is no reliable method for resolving overlapping powder patterns originating from unreceptive nuclei affected by large anisotropic NMR interactions. Herein, we discuss new methods for resolving individual UW NMR spectra associated with magnetically distinct nuclei by exploiting their different relaxation characteristics using 2D relaxation-assisted separation (RAS) experiments. These experiments use a non-negative Tikhonov fitting (NNTF) routine to process high-quality T1 and T2eff relaxation data sets to produce high-resolution, 2D spin-relaxation correlation spectra for both spin-1/2 and quadrupolar nuclei in organic and organometallic solids under static (i.e., stationary) conditions. It is found that (i) T2eff RAS data sets can be acquired in a fraction of the time required for analogous T1 RAS data sets, because a time-incremented 2D data set is not required for the former, and (ii) Tikhonov regularization is superior to conventional non-negative least-squares fitting, as it more reliably and robustly results in cleaner separation of patterns based on relaxation time constants.
Many neurodegenerative diseases are characterized by misfolding and aggregation of an expanded polyglutamine tract (polyQ). Huntington's Disease, caused by expansion of the polyQ tract in exon 1 of the Huntingtin protein (Htt), is associated with aggregation and neuronal toxicity. Despite recent structural progress in understanding the structures of amyloid fibrils, little is known about the solution states of Htt in general, and about molecular details of their transition from soluble to aggregation-prone conformations in particular. This is an important question, given the increasing realization that toxicity may reside in soluble conformers. This study presents an approach that combines NMR with computational methods to elucidate the structural conformations of Htt Exon 1 in solution. Of particular focus was Htt's N17 domain sited N-terminal to the polyQ tract, which is key to enhancing aggregation and modulate Htt toxicity. Such in-depth structural study of Htt presents a number of unique challenges: the long homopolymeric polyQ tract contains nearly identical residues, exon 1 displays a high degree of conformational flexibility leading to a scaling, of the MAR chemical shift dispersion, and a large portion of the backbone amide groups are solvent-exposed leading to fast hydrogen exchange and causing extensive line broadening. To deal with these problems, NMR assignment was achieved on a minimal Htt exon 1, comprising the N17 domain, a polyQ tract of 17 glutamines, and a short hexameric polyProline region that does not contribute to the spectrum. A pH titration method enhanced this polypeptide's solubility and, with the aid of
Multidimensional Nuclear Magnetic Resonance (NMR) provides a unique window into structure and dynamics at an atomic level. Traditionally, given the scan-by-scan time modulation involved in these experiments, the duration of nD NMR increases exponentially with spectral dimensionality. In addition, acquisition times increase as the number of spectral elements being sought in each indirect domain \u2013 given by the ratio between the spectral bandwidth being targeted and the resolution desired. These long sampling times can be substantially reduced by exploiting information that is often available from lower-dimensionality acquisitions. This work presents a novel approach that exploits previous 2D information to speed up the acquisition of 3D spectra, based on what we denote as a Time-Optimized FouriEr Encoding (TOFEE) of pre-targeted peaks. Such 3D TOFEE experiments, which present points in common with Hadamard-encoded 3D acquisitions, do not necessarily require more scans than their 2D counterparts. This is here demonstrated based on extensions of 2D Heteronuclear Single-quantum Coherence (HSQC) experiments, to 3D HSQC-TOCSY or 3D HSQC-NOESY acquisitions. The theoretical basis of this new approach is given, and experimental demonstrations are presented on small molecule and protein-based model systems.
2016
Enhancing the specificity of the spins\u2019 excitation can improve the capabilities of magnetic resonance. Exciting voxels with tailored 3D shapes reduces partial volume effects and enhances contrast, particularly in cases where cubic voxels or other simple geometries do not provide an optimal localization. Spatial excitation profiles of arbitrary shapes can be implemented using so-called multidimensional RF pulses, which are often limited in practice to 2D implementations owing to their sensitivity to field inhomogeneities. Recent work has shown the potential of spatio-temporally encoded (SPEN) pulses towards alleviating these constraints. In particular, 2D pulses operating in a so-called hybrid scheme where the \u201clow-bandwidth\u201d spatial dimension is sculpted by a SPEN strategy while an orthogonal axis is shaped by regular k-space encoding, have been shown resilient to chemical shift and B0 field inhomogeneities. In this work we explore the use of pairs of 2D pulses, with one of these addressing geometries in the x-y plane and the other in the x-z dimension, to sculpt complex 3D volumes in phantoms and in vivo. To overcome limitations caused by the RF discretization demanded by these 2D pulses, a number of \u201cunfolding\u201d techniques yielding images from the centerband RF excitation while deleting sideband contributions \u2013 even in cases where center- and side-bands severely overlap \u2013 were developed. Thus it was possible to increase the gradient strengths applied along the low bandwidth dimensions, significantly improving the robustness of this kind of 3D sculpting pulses. Comparisons against conventional pulses designed on the basis of pure k-space trajectories, are presented.
Thanks to their special spatiotemporal encoding/decoding scheme, ultrafast (UF) NMR sequences can deliver arbitrary 2D spectra following a single excitation. Regardless of their nature, these sequences have in common their tracing of a path in the F1\u2013t2 plane, that will deliver the spectrum being sought after a 1D Fourier transformation versus t2. This need to simultaneously digitize two domains, tends to impose bandwidth limitations along all spectral axes. Along the t2/F2 dimension this problem is exacerbated by the fact that odd and even time points are not equispaced, and by additional artifacts such as time shifts between time points sampled while under the action of positive and negative decoding gradients. As a result, odd and even t2 points are typically Fourier transformed separately, halving the potential spectral width along this dimension. While this halving of the F2 span can be overcome by an interlaced Fourier transform, this post-processing is seldom used because of its sensitivity to hardware inaccuracies requiring even finer corrections of the even/odd t2 data points. These corrections have so far been done manually, but are challenging to implement when dealing with low signal-to-noise ratio signals like those associated with biomolecular NMR experiments. This study introduces an algorithm for an automatic correction of all even/odd ultrafast NMR inconsistencies, based on the acquisition of a reference scan on the solvent. This algorithm was verified experimentally using an 1H-13C UF-HSQC variant on ubiquitin at 600 MHz. Features of this method as well as of the interlaced Fourier transformation in general, are discussed.
The front cover artwork is provided by the group of Prof. Lucio Frydman from the Weizmann Institute, in collaboration with Dr. Fabien Aussenac and Profs. Amit Ukbey and Hartmut Oschkinat from Bruker Biospin, Aarhus University and the Leibniz Institute, respectively. The image shows aspects of diamond's dynamic nuclear polarization investigated in this study, in particular their use in dissolution MRI and in solid state magic-angle-spinning NMR experiments. Read the full text of the article at 10.1002/cphc.201600301.
Dissolution dynamic nuclear polarization (dDNP) is used to enhance the sensitivity of nuclear magnetic resonance (NMR), enabling monitoring of metabolism and specific enzymatic reactions in vivo. dDNP involves rapid sample dissolution and transfer to 4 spectrometer/scanner for subsequent signal detection. So far, most biologically oriented dDNP studies have relied on hyperpolarizing long-lived nuclear spin species such as C-13 in small molecules. While advantages could also arise from observing hyperpolarized H-1, short relaxation times limit the utility of prepolarizing this sensitive but fast relaxing nucleus. Recently, it has been reported that H-1 NMR peaks in solution-phase experiments could be hyperpolarized by spontaneous magnetization transfers from bound C-13 nuclei following dDNP. Thia work demonstrates the potential of this sensitivity-enhancing approach to probe the enzymatic process that could not be suitably resolved by C-13 dDNP MR Here we measured, in microorganism, the action of pyruvate decarboxylase (PDC) and pyruvate formate lyase (PFL)- enzymes that catalyze the decarboxylation of pyruvate to form acetaldehyde and formate, respectively. While C-13 NMR did not possess the resolution to distinguish the starting pyruvate precursor from the carbonyl resonances in the resulting products, these processes could be monitored by H-1 NMR. at 50 MHz. These observations were possible in both yeast and bacteria in minute-long measurements where the hyperpolarized C-13 enhanced, via C-13 -> H-1 cross-relaxation, the signals of protons binding to the C-13 over the course of enzymatic reactions. In addition to these spontaneous heteronuclear enhancement experiments, single-shot acquisitions based on J-driven C-13 -> H-1 polarization transfers were also carried out. These resulted in higher signal enhancements of the H-1 resonances but were not suitable for multishot kinetic studies. The Potential of these H-1-based approaches for measurements in vivo is brie
An initiative to design and build magnetic resonance imaging (MRI) and spectroscopy (MRS) instruments at 14 T and beyond to 20 T has been underway since 2012. This initiative has been supported by 22 interested participants from the USA and Europe, of which 15 are authors of this review. Advances in high temperature superconductor materials, advances in cryocooling engineering, prospects for non-persistent mode stable magnets, and experiences gained from large-bore, high-field magnet engineering for the nuclear fusion endeavors support the feasibility of a human brain MRI and MRS system with 1 ppm homogeneity over at least a 16-cm diameter volume and a bore size of 68 cm. Twelve neuroscience opportunities are presented as well as an analysis of the biophysical and physiological effects to be investigated before exposing human subjects to the high fields of 14 T and beyond.
Purpose: Evaluate the usefulness of diffusion-weighted spatiotemporally encoded (SPEN) methods to obtain apparent diffusion coefficient (ADC) maps of fibroglandular human breast tissue, in the presence of silicone implants.Methods: Seven healthy volunteers with breast augmentation were scanned at 3 Tesla (T) using customized SPEN sequences yielding separate silicone and water H-1 images in one scan, together with their corresponding diffusion-weightings.Results: SPEN's ability to deliver multiple spectrally resolved images in a single scan, coupled to the method's substantial robustness to magnetic field heterogeneities, served to acquire ADC maps that could be freed from contributions that did not belong to fibroglandular tissue.Conclusion: SPEN-based sequences incorporating spectral discrimination and diffusion-weighting enable the acquisition of reliable ADC maps despite the presence of dominant signals from silicone implants, thereby opening new screening possibilities for the identification of malignancies in breast augmented patients.
Purpose: Single-shot imaging by spatiotemporal encoding (SPEN) can provide higher immunity to artifacts than its echo planar imaging-based counterparts. Further improvements in resolution and signal-to-noise ratio could be made by rescinding the sequence's single-scan nature. To explore this option, an interleaved SPEN version was developed that was capable of delivering optimized images due to its use of a referenceless correction algorithm. Methods: A characteristic element of SPEN encoding is the absence of aliasing when its signals are undersampled along the low-bandwidth dimension. This feature was exploited in this study to segment a SPEN experiment into a number of interleaved shots whose inaccuracies were automatically compared and corrected as part of a navigator-free image reconstruction analysis. This could account for normal phase noises, as well as for object motions during the signal collection. Results: The ensuing interleaved SPEN method was applied to phantoms and human volunteers and delivered high-quality images even in inhomogeneous or mobile environments. Submillimeter functional MRI activation maps confined to gray matter regions as well as submillimeter diffusion coefficient maps of human brains were obtained. Conclusion: We have developed an interleaved SPEN approach for the acquisition of high-definition images that promises a wider range of functional and diffusion MRI applications even in challenging environments.
Two-dimensional (2D) correlations between bonded heteroatoms, lie at the cornerstone of many uses given to contemporary nuclear magnetic resonance (NMR). Improving the efficiency with which these correlations are established is an important topic in modern NMR, with potential applications in rapid chemical analysis and dynamic biophysical studies. Alternatives have been developed over the last decade to speed up these experiments, based among others on reducing the number of data points that need to be sampled, and/or shortening the inter-scan delays. Approaches have also been proposed to forfeit multi-scan schemes altogether, and complete full 2D correlations in a single shot. Here we explore and discuss a new alternative enabling the collection of such very fast - in principle, single-scan - acquisitions of 2D heteronuclear correlations among bonded species, which operates on the basis of a partial reintroduction of J couplings. Similar approaches had been proposed in the past based on collecting coupled spectra for arrays of off-resonance decoupling values; the proposal that is here introduced operates on the basis of suitably incorporating frequency-swept pulses, into spin-echo sequences. Thanks to the offset-dependent amplitude modulations of the in- and anti-phase components that such sequences impart, chemical shifts of coupled but otherwise unobserved nuclear species, can be extracted from the relative intensities and phases of J-coupled multiplets observed in one-dimensional acquisitions. A description of the steps needed to implement this rapid acquisition approach in a quantitative fashion, as well as applications of the ensuing sequences, are presented.
A recent study explored the use of hyperpolarized water, to enhance the sensitivity of nuclei in biomolecules thanks to rapid proton exchanges with labile amide backbone and sidechain groups. Further optimizations of this approach have now allowed us to achieve proton polarizations approaching 25% in the water transferred into the NMR spectrometer, effective water T1 times approaching 40 s, and a reduction in the dilution demanded for the cryogenic dissolution process. Further hardware developments have allowed us to perform these experiments, repeatedly and reliably, in 5 mm NMR tubes. All these ingredients - particularly the ≥3000× 1H polarization enhancements over 11.7 T thermal counterparts, long T1 times and a compatibility with high-resolution biomolecular NMR setups - augur well for hyperpolarized 2D NMR studies of peptides, unfolded proteins and intrinsically disordered systems undergoing fast exchanges of their protons with the solvent. This hypothesis is here explored by detailing the provisions that lead to these significant improvements over previous reports, and demonstrating 1D coherence transfer experiments and 2D biomolecular HMQC acquisitions delivering NMR spectral enhancements of 100-500× over their optimized, thermally-polarized, counterparts.
2015
Given their high sensitivity and ability to limit the field of view (FOV), surface coils are often used in magnetic resonance spectroscopy (MRS) and imaging (MRI). A major downside of surface coils is their inherent radiofrequency (RF) B1 heterogeneity across the FOV, decreasing with increasing distance from the coil and giving rise to image distortions due to non-uniform spatial responses. A robust way to compensate for B1 inhomogeneities is to employ adiabatic inversion pulses, yet these are not well adapted to all imaging sequences - including to single-shot approaches like echo planar imaging (EPI). Hybrid spatiotemporal encoding (SPEN) sequences relying on frequency-swept pulses provide another ultrafast MRI alternative, that could help solve this problem thanks to their built-in heterogeneous spatial manipulations. This study explores how this intrinsic SPEN-based spatial discrimination, could be used to compensate for the B1 inhomogeneities inherent to surface coils. Experiments carried out in both phantoms and in vivo rat brains demonstrate that, by suitably modulating the amplitude of a SPEN chirp pulse that progressively excites the spins in a direction normal to the coil, it is possible to compensate for the RF transmit inhomogeneities and thus improve sensitivity and image fidelity.
Natural abundance 13C NMR spectra of biological extracts are recorded in a single scan provided that the samples are hyperpolarized by dissolution dynamic nuclear polarization combined with cross polarization. Heteronuclear 2D correlation spectra of hyperpolarized breast cancer cell extracts can also be obtained in a single scan. Hyperpolarized NMR of extracts opens many perspectives for metabolomics.
Polarizing nuclear spins is of fundamental importance in biology, chemistry and physics. Methods for hyperpolarizing 13 C nuclei from free electrons in bulk usually demand operation at cryogenic temperatures. Room temperature approaches targeting diamonds with nitrogen-vacancy centres could alleviate this need; however, hitherto proposed strategies lack generality as they demand stringent conditions on the strength and/or alignment of the magnetic field. We report here an approach for achieving efficient electron- 13 C spin-alignment transfers, compatible with a broad range of magnetic field strengths and field orientations with respect to the diamond crystal. This versatility results from combining coherent microwave- and incoherent laser-induced transitions between selected energy states of the coupled electron-nuclear spin manifold. 13 C-detected nuclear magnetic resonance experiments demonstrate that this hyperpolarization can be transferred via first-shell or via distant 13 Cs throughout the nuclear bulk ensemble. This method opens new perspectives for applications of diamond nitrogen-vacancy centres in nuclear magnetic resonance, and in quantum information processing.
Single-sided nuclear magnetic resonance (NMR) scanners find increased use in applications where non-destructive measurements are needed. These single-sided scanners are characterized by a weak magnetic field and a large stray magnetic field gradient. These characteristics make these scanners suitable for determining a sample\u2019s proton density profile, or for mapping NMR properties such as T1, T2 or diffusivity as a function of distance. The strong stray-field gradient generated by these magnets dictates a need for relatively high transmission/reception bandwidths, even when thin slices are involved. Consequently, scanning a large volume demands multiple separate measurements, associated with long scan times, potential inaccuracies associated with mechanical misplacements and limitations in tackling certain in vivo or dynamic systems. This work explores the consequences of replacing the hard pulses in the usual multi-echo sequence used in this kind of scanner, with frequency-swept (chirped) pulses. It was found that, under identical echo times and number of echoes, peak power-limited cases like the ones usually involved in these setups endow chirped-pulse sequences with a higher sensitivity than their square-pulse counterparts. Furthermore, data can be extracted in this manner faster; it can also be measured from larger slabs following a single excitation, thereby avoiding the need for multiple mechanical motions of the scanner/sample. Still, at least with the system hereby assayed, hardware limitations prevented us from utilizing equally short echo times for square- as well as chirped-pulse implementations. Given the shorter echo delays that could be used in the square-pulse versions, optimal acquisitions ended up endowing the latter with the best overall sensitivity defined as signal intensity per unit acquisition time. Potential bypasses of this limitation are briefly discussed.
In the Spring of 2013, NMR spectroscopists convened at the Weizmann Institute in Israel to brainstorm on approaches to improve the sensitivity of NMR experiments, particularly when applied in biomolecular settings. This multi-author interdisciplinary Review presents a state-of-the-art description of the primary approaches that were considered. Topics discussed included the future of ultrahigh-field NMR systems, emerging NMR detection technologies, new approaches to nuclear hyperpolarization, and progress in sample preparation. All of these are orthogonal efforts, whose gains could multiply and thereby enhance the sensitivity of solid- and liquid-state experiments. While substantial advances have been made in all these areas, numerous challenges remain in the quest of endowing NMR spectroscopy with the sensitivity that has characterized forms of spectroscopies based on electrical or optical measurements. These challenges, and the ways by which scientists and engineers are striving to solve them, are also addressed. A new spin on bio-NMR: This Review presents a state-of-the-art description of the leading approaches being considered today to improve the sensitivity of NMR spectroscopy, particularly as applied in biomolecular settings. The focus is on the future of ultrahigh-field NMR systems, emerging NMR detection technologies, new approaches to nuclear hyperpolarization, and progress in sample preparation.
A novel method for the rapid acquisition of quality multi-slice 2D images targeting a small number of spectroscopic resonances, is introduced and illustrated. The method exploits the robustness derived from recently proposed spatiotemporal encoding (SPEN) methods, when operating in the so-called "fully refocused" mode. Fully-refocused SPEN provides high-fidelity single-shot images thanks to its refocusing of all offset-derived effects throughout the course of the acquisition. This refocusing, however, prevents exploiting such robustness for spectroscopic imaging. We propose here a solution to this limitation, based on the use of polychromatic refocusing pulses. It is shown that if used to address a series of a priori known resonance positions, these pulses can lead to quality spectroscopic images in a small number of scans - generally equal or slightly larger than the number of targeted peaks. Such strategy is explored in combination with both fully-refocused SPEN and echo-planar-imaging (EPI) acquisitions. The expected SPEN advantages were observed in both phantom-based models, and in in vivo results of fat and water separation in mice at 7 T.
Objects making up complex porous systems in Nature usually span a range of sizes. These size distributions play fundamental roles in defining the physicochemical, biophysical and physiological properties of a wide variety of systems - ranging from advanced catalytic materials to Central Nervous System diseases. Accurate and noninvasive measurements of size distributions in opaque, three-dimensional objects, have thus remained long-standing and important challenges. Herein we describe how a recently introduced diffusion-based magnetic resonance methodology, Non-Uniform-Oscillating-Gradient-Spin-Echo (NOGSE), can determine such distributions noninvasively. The method relies on its ability to probe confining lengths with a (length) 6 parametric sensitivity, in a constant-time, constant-number-of-gradients fashion; combined, these attributes provide sufficient sensitivity for characterizing the underlying distributions in mu m-scaled cellular systems. Theoretical derivations and simulations are presented to verify NOGSE's ability to faithfully reconstruct size distributions through suitable modeling of their distribution parameters. Experiments in yeast cell suspensions - where the ground truth can be determined from ancillary microscopy - corroborate these trends experimentally. Finally, by appending to the NOGSE protocol an imaging acquisition, novel MRI maps of cellular size distributions were collected from a mouse brain. The ensuing micro-architectural contrasts successfully delineated distinctive hallmark anatomical sub-structures, in both white matter and gray matter tissues, in a non-invasive manner. Such findings highlight NOGSE's potential for characterizing aberrations in cellular size distributions upon disease, or during normal processes such as development.
Purpose: Evaluating the usefulness of diffusion-weighted spatio-temporal encoding (SPEN) methods to provide quantitative apparent diffusion coefficient (ADC)-based characterizations of healthy and malignant human breast tissues, in comparison with results obtained using techniques based on spin-echo echo planar imaging (SE-EPI). Methods: Twelve healthy volunteers and six breast cancer patients were scanned at 3T using scanner-supplied diffusion-weighted imaging EPI sequences, as well as two fully refocused SPEN variants programmed in-house. Suitable codes were written to process the data, including calculations of the actual b-values and retrieval of the ADC maps. Results: Systematically better images were afforded by the SPEN scans, with negligible geometrical distortions and markedly weaker ghosting artifacts arising from either fat tissues or from strongly emitting areas such as cysts. SPEN-derived images provided improved characterizations of the fibroglandular tissues and of the lesions' contours. When translated into the calculation of the ADC maps, there were no significant differences between the mean ADCs derived from SPEN and SE-EPI: if reliable images were available, both techniques showed that ADCs decreased by nearly two-fold in the malignant lesion areas. Conclusion: SPEN-based sequences yielded diffusion-weighted breast images with minimal artifacts and distortions, enabling the calculation of improved ADC maps and the identification of decreased ADCs in malignant regions.
This manuscript examines the origins and nature of the function-derived activation detected by magnetic resonance imaging at ultrahigh fields using different encoding methods. A series of preclinical high field (7. T) and ultra-high field (17.2. T) fMRI experiments were performed using gradient echo EPI, spin echo EPI and spatio-temporally encoded (SPEN) strategies. The dependencies of the fMRI signal change on the strength of the magnetic field and on different acquisition and sequence parameters were investigated. Artifact-free rat brain images with good resolution in all areas, as well as significant localized activation maps upon forepaw stimulation, were obtained in a single scan using fully refocused SPEN sequences devoid of T2* effects. Our results showed that, besides the normal T2-weighted BOLD contribution that arises in spin-echo sequences, fMRI SPEN signals contain a strong component caused by apparent T1-related effects, demonstrating the potential of such technique for exploring functional activation in rodents and on humans at ultrahigh fields.
Purpose: This study quantifies in vivo ischemic stroke brain injuries in rats using ultrahigh-field single-scan MRI methods to assess variations in apparent diffusion coefficients (ADCs). Methods: Magnitude and diffusion-weighted spatiotemporally encoded imaging sequences were implemented on a 21.1 T imaging system, and compared with spin-echo and echo-planar imaging diffusion-weighted imaging strategies. ADC maps were calculated and used to evaluate the sequences according to the statistical comparisons of the ipsilateral and contralateral ADC measurements at 24, 48, and 72 h poststroke. Results: Susceptibility artifacts resulting from normative anatomy and pathological stroke conditions were particularly intense at 21.1 T. These artifacts strongly distorted single-shot diffusion-weighted echo-planar imaging experiments, but were reduced in four-segment interleaved echo-planar imaging acquisitions. By contrast, nonsegmented diffusion-weighted spatiotemporally encoded images were largely immune to field-dependent artifacts. Effects of stroke were apparent in both magnitude images and ADC maps of all sequences. When stroke recovery was followed by ADC variations, spatiotemporally encoded, echo-planar imaging, and spin-echo acquisitions revealed statistically significant increase in ADCs. Conclusions: Consideration of experiment duration, image quality, and mapped ADC values provided by spatiotemporally encoded demonstrates that this single-shot acquisition is a method of choice for high-throughput, ultrahigh-field in vivo stroke quantification.
Cross-polarization magic-angle spinning (CPMAS) experiments employing frequency-swept pulses are explored within the context of obtaining broadband signal enhancements for rare spin S = 1/2 nuclei at very high magnetic fields. These experiments employ adiabatic inversion pulses on the S-channel (C-13) to cover a wide frequency offset range, while simultaneously applying conventional spin-locking pulse on the I-channel (H-1). Conditions are explored where the adiabatic frequency sweep width, Delta v, is changed from selectively irradiating a single magic-angle-spinning (MAS) spinning centerband or sideband, to sweeping over multiple sidebands. A number of new physical features emerge upon assessing the swept-CP method under these conditions, including multiple zero-and double-quantum CP transfers happening in unison with MAS-driven rotary resonance phenomena. These were examined using an average Hamiltonian theory specifically designed to tackle these experiments, with extensive numerical simulations, and with experiments on model compounds. Ultrawide CP profiles spanning frequency ranges of nearly 6.gamma B-1(S) were predicted and observed utilizing this new approach. Potential extensions and applications of this extremely broadband transfer conditions are briefly discussed. (C) 2015 AIP Publishing LLC.
Samples prepared following dissolution dynamic nuclear polarization (DNP) enable the detection of NMR spectra from low-g nuclei with outstanding sensitivity, yet have limited use for the enhancement of abundant species like 1H nuclei. Small- and intermediate-sized molecules, however, show strong heteronuclear cross-relaxation effects: spontaneous processes with an inherent isotopic selectivity, whereby only the 13C-bonded protons receive a polarization enhancement. These effects are here combined with a recently developed method that delivers homonuclear-decoupled 1H spectra in natural abundance samples based on heteronuclear couplings to these same, 13C-bonded nuclei. This results in the HyperBIRD methodology; a single-shot combination of these two effects that can simultaneously simplify and resolve complex, congested 1H NMR spectra with many overlapping spin multiplets, while achieving 50-100 times sensitivity enhancements over conventional thermal counterparts.
2014
Purpose: Ultrafast sequences based on "Hybrid" spatiotemporal encoding (SPEN) replace echo-planar imaging's phase encoding "blips," while retaining a k-space readout acquisition. Hardware imperfections during acquisition may lead to ghosts and striped artifacts along the SPEN dimension; akin to echo-planar imaging's Nyquist ghosts, but weaker. A referenceless method to eliminate these artifacts in Hybrid SPEN is demonstrated.Theory and Methods: Owing to its encoding in direct space, rather than reciprocal space, undersampling in SPEN does not generate an echo-planar-imaging-like aliasing, but instead lowers the spatial resolution. Hybrid SPEN data can be split into two undersampled signals: a reference one comprised of the odd-echos, and an even-echo set that has to be "corrected" for consistency with the former. A simple way of implementing such a correction that enables a joint high-resolution reconstruction is proposed.Results: The referenceless algorithm is demonstrated with various examples, including oblique scans, large in vivo datasets from real-time dynamic contrast-enhanced perfusion experiments, and human brain imaging.Conclusions: The referenceless correction enables robust single-scan imaging under changing conditions-such as patient motion and changes in shimming over time-without the need of ancillary navigators. This opens new options for real-time MRI and interactive scanning.
Speeding up the acquisition of multidimensional nuclear magnetic resonance (NMR) spectra is an important topic in contemporary NMR, with central roles in high-throughput investigations and analyses of marginally stable samples. A variety of fast NMR techniques have been developed, including methods based on non-uniform sampling and Hadamard encoding, that overcome the long sampling times inherent to schemes based on fast-Fourier-transform (FFT) methods. Here, we explore the potential of an alternative fast acquisition method that leverages a priori knowledge, to tailor polychromatic pulses and customized time delays for an efficient Fourier encoding of the indirect domain of an NMR experiment. By porting the encoding of the indirect-domain to the excitation process, this strategy avoids potential artifacts associated with non-uniform sampling schemes and uses a minimum number of scans equal to the number of resonances present in the indirect dimension. An added convenience is afforded by the fact that a usual 2D FFT can be used to process the generated data. Acquisitions of 2D heteronuclear correlation NMR spectra on quinine and on the anti-inflammatory drug isobutyl propionic phenolic acid illustrate the new method's performance. This method can be readily automated to deal with complex samples such as those occurring in metabolomics, in in-cell as well as in in vivo NMR applications, where speed and temporal stability are often primary concerns.
Purpose Spatiotemporally Encoded (SPEN) MRI is based on progressive point-by-point refocusing of the image in the spatial rather than the k-space domain through the use of frequency-swept radiofrequency pulses and quadratic phase profiles. This technique provides high robustness against frequency-offsets including B0 inhomogeneities and chemical-shift (e.g., fat/water) distortions, and can consequently perform fMRI at challenging regions such as the orbitofrontal cortex and the olfactory bulb, as well as to improve imaging near metallic implants. This work aims to establish a comprehensive framework for the implementation and super-resolved reconstruction of SPEN-based imaging, and to accurately quantify this method's spatial-resolution and signal-to-noise ratio (SNR). Theory and Methods A stepwise formalism was laid-out for calculating the optimal experimental parameters for SPEN, followed by analytical analysis of the ensuing SNR and spatial-resolution versus conventional k-space encoding. Predictions were then confirmed using computer simulations and experimentally. Results Our findings show that SPEN is governed by the same fundamental signal-processing principles as k-space encoding, leading to similar averaging properties, and ultimately similar spatial-resolution and SNR levels as k-space encoding. Conclusion Presented analysis is applicable to general multidimensional SPEN designs and provides a unified framework for the analysis of future SPEN and similar approaches based on quadratic phase encoding. Magn Reson Med 72:418-429, 2014. © 2013 Wiley Periodicals, Inc.
Mammalian models, and mouse studies in particular, play a central role in our understanding of placental development. Magnetic resonance imaging (MRI) could be a valuable tool to further these studies, providing both structural and functional information. As fluid dynamics throughout the placenta are driven by a variety of flow and diffusion processes, diffusion-weighted MRI could enhance our understanding of the exchange properties of maternal and fetal blood pools - and thereby of placental function. These studies, however, have so far been hindered by the small sizes, the unavoidable motions, and the challenging air/water/fat heterogeneities, associated with mouse placental environments. The present study demonstrates that emerging methods based on the spatiotemporal encoding (SPEN) of the MRI information can robustly overcome these obstacles. Using SPEN MRI in combination with albumin-based contrast agents, we analyzed the diffusion behavior of developing placentas in a cohort of mice. These studies successfully discriminated the maternal from the fetal blood flows; the two orders of magnitude differences measured in these fluids' apparent diffusion coefficients suggest a nearly free diffusion behavior for the former and a strong flow-based component for the latter. An intermediate behavior was observed by these methods for a third compartment that, based on maternal albumin endocytosis, was associated with trophoblastic cells in the interphase labyrinth. Structural features associated with these dynamic measurements were consistent with independent intravital and ex vivo fluorescence microscopy studies and are discussed within the context of the anatomy of developing mouse placentas.
The special issue of the Journal of Magnetic Resonance addresses the issue of high magnetic field science and its application in the US. High-field cutting-edge magnets play central roles in chemical, biochemical and biological research, primarily through the techniques of nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR). Two distinct classes of NMR techniques are important in studies of chemical, biochemical, and biological systems. A major new trend in both solution NMR and solid state NMR is the exploitation of dynamic nuclear polarization (DNP) for sensitivity enhancements. DNP is a process in which the large polarizations of electron spins in a strong magnetic field are partially transferred to nuclear spins by irradiation of EPR transitions, resulting in large enhancements of nuclear spin polarizations and NMR signals.
In NMR well-logging, the measurement apparatus typically consists of a permanent magnet which is inserted into a bore, and the sample is the rock surrounding the borehole. When compared to the conditions of standard NMR experiments, this application is thus challenged by relatively weak and invariably inhomogeneous B0 and B1 fields. Chemical shift information is not generally obtained in these measurements. Instead, diffusivity, porosity and permeability information is collected from multi-echo decay measurements - most often using a Carr-Purcell Meiboom-Gill (CPMG) pulse sequence to enhance the experiment's limited sensitivity. In this work, we explore the consequences of replacing the hard square pulses used in a typical CPMG sequence with chirped pulses sweeping a range of frequencies. The greater bandwidths that for a maximum B1 level can be excited by chirped pulses translates into marked expansion of the detection volume, and thus significant signal-to-noise improvements when compared to standard CPMG acquisitions using hard pulses. This improvement, usually amounting to signal enhancements ≥3, can be used to reduce the experimental time of NMR well-logging measurements, for measuring T2 even when B0 and B1 inhomogenieties complicate the measurements, and opening new opportunities in the determination of diffusional properties.
Measuring metabolism's time- and space-dependent responses upon stimulation lies at the core of functional magnetic resonance imaging. While focusing on water's sole resonance, further insight could arise from monitoring the temporal responses arising from the metabolites themselves, in what is known as functional magnetic resonance spectroscopy. Performing these measurements in real time, however, is severely challenged by the short functional timescales and low concentrations of natural metabolites. Dissolution dynamic nuclear polarization is an emerging technique that can potentially alleviate this, as it provides a massive sensitivity enhancement allowing one to probe low-concentration tracers and products in a single-scan. Still, conventional implementations of this hyperpolarization approach are not immediately amenable to the repeated acquisitions needed in real-time functional settings. This work proposes a strategy for functional magnetic resonance of hyperpolarized metabolites that bypasses this limitation, and enables the observation of real-time metabolic changes through the synchronization of stimuli-triggered, multiple-bolus injections of the metabolic tracer 13C 1-pyruvate. This new approach is demonstrated with paradigms tailored to reveal in vivo thresholds of murine hind-limb skeletal muscle activation, involving the conversion of 13C1-pyruvate to 13C1-lactate and 13C1-alanine. These functional hindlimb studies revealed that graded skeletal muscle stimulation causes commensurate increases in glycolytic metabolism in a frequency- and amplitude-dependent fashion, that can be monitored on the seconds/minutes timescale using dissolution dynamic nuclear polarization. Spectroscopic imaging further allowed the in vivo visualization of uptake, transformation and distribution of the tracer and products, in fast-twitch glycolytic and in slow-twitch oxidative muscle fiber groups. While these studies open vistas in time and sensitivity for metabolic functional magnetic resonance studies in muscle, the simplicity of our approach makes this technique amenable to a wide range of functional metabolic tracer studies.
A main obstacle arising when using ex situ hyperpolarization to increase the sensitivity of biomolecular NMR is the fast relaxation that macromolecular spins undergo upon being transferred from the polarizer to the spectrometer, where their observation takes place. To cope with this limitation, the present study explores the use of hyperpolarized water as a means to enhance the sensitivity of nuclei in biomolecules. Methods to achieve proton polarizations in excess of 5% in water transferred into the NMR spectrometer were devised, as were methods enabling this polarization to last for up to 30 s. Upon dissolving amino acids and polypeptides sited at the spectrometer into such hyperpolarized water, a substantial enhancement of certain biomolecular amide and amine proton resonances was observed. This exchange-driven 1H enhancement was further passed on to side-chain and to backbone nitrogens, owing to spontaneous one-bond Overhauser processes. 15N signal enhancements >500 over 11.7 T thermal counterparts could thus be imparted in a kinetic process that enabled multiscan signal averaging. Besides potential bioanalytical uses, this approach opens interesting possibilities in the monitoring of dynamic biomolecular processes, including solvent accessibility and exchange process.
Hyperpolarized metabolic imaging is a growing field that has provided a new tool for analyzing metabolism, particularly in cancer. Given the short life times of the hyperpolarized signal, fast and effective spectroscopic imaging methods compatible with dynamic metabolic characterizations are necessary. Several approaches have been customized for hyperpolarized 13C MRI, including CSI with a center-out k-space encoding, EPSI, and spectrally selective pulses in combination with spiral EPI acquisitions. Recent studies have described the potential of single-shot alternatives based on spatiotemporal encoding (SPEN) principles, to derive chemical-shift images within a sub-second period. By contrast to EPSI, SPEN does not require oscillating acquisition gradients to deliver chemical-shift information: its signal encodes both spatial as well as chemical shift information, at no extra cost in experimental complexity. SPEN MRI sequences with slice-selection and arbitrary excitation pulses can also be devised, endowing SPEN with the potential to deliver single-shot multi-slice chemical shift images, with a temporal resolution required for hyperpolarized dynamic metabolic imaging. The present work demonstrates this with initial in vivo results obtained from SPEN-based imaging of pyruvate and its metabolic products, after injection of hyperpolarized [1-13C]pyruvate. Multi-slice chemical-shift images of healthy rats were obtained at 4.7 T in the region of the kidney, and 4D (2D spatial, 1D spectral, 1D temporal) data sets were obtained at 7 T from a murine lymphoma tumor model.
Dissolution dynamic nuclear polarization (DNP) enables high-sensitivity solution-phase NMR experiments on long-lived nuclear spin species such as 15N and 13C. This report explores certain features arising in solution-state 1H NMR upon polarizing low-γ nuclear species. Following solid-state hyperpolarization of both 13C and 1H, solution-phase 1H NMR experiments on dissolved samples revealed transient effects, whereby peaks arising from protons bonded to the naturally occurring 13C nuclei appeared larger than the typically dominant 12C-bonded 1H resonances. This enhancement of the satellite peaks was examined in detail with respect to a variety of mechanisms that could potentially explain this observation. Both two- and three-spin phenomena active in the solid state could lead to this kind of effect; still, experimental observations revealed that the enhancement originates from 13C→1H polarization-transfer processes active in the liquid state. Kinetic equations based on modified heteronuclear cross-relaxation models were examined, and found to well describe the distinct patterns of growth and decay shown by the 13C-bound 1H NMR satellite resonances. The dynamics of these novel cross-relaxation phenomena were determined, and their potential usefulness as tools for investigating hyperpolarized ensembles and for obtaining enhanced-sensitivity 1H NMR traces was explored.
Dynamical decoupling, a generalization of the original NMR spin-echo sequence, is becoming increasingly relevant as a tool for reducing decoherence in quantum systems. Such sequences apply non-equidistant refocusing pulses for optimizing the coupling between systems, and environmental fluctuations characterized by a given noise spectrum. One such sequence, dubbed Selective Dynamical Recoupling (SDR) [P. E. S. Smith, G. Bensky, G. A. Álvarez, G. Kurizki, and L. Frydman, Proc. Natl. Acad. Sci. 109, 5958 (2012)], allows one to coherently reintroduce diffusion decoherence effects driven by fluctuations arising from restricted molecular diffusion [G. A. Álvarez, N. Shemesh, and L. Frydman, Phys. Rev. Lett. 111, 080404 (2013)]. The fully-refocused, constant-time, and constant-number-of-pulses nature of SDR also allows one to filter out "intrinsic" T1 and T2 weightings, as well as pulse errors acting as additional sources of decoherence. This article explores such features when the fluctuations are now driven by unrestricted molecular diffusion. In particular, we show that diffusion-driven SDR can be exploited to investigate the decoherence arising from the frequency fluctuations imposed by internal gradients. As a result, SDR presents a unique way of probing and characterizing these internal magnetic fields, given an a priori known free diffusion coefficient. This has important implications in studies of structured systems, including porous media and live tissues, where the internal gradients may serve as fingerprints for the system's composition or structure. The principles of this method, along with full analytical solutions for the unrestricted diffusion-driven modulation of the SDR signal, are presented. The potential of this approach is demonstrated with the generation of a novel source of MRI contrast, based on the background gradients active in an ex vivo mouse brain. Additional features and limitations of this new method are discussed.
Purpose Single-scan multislice acquisition schemes play key roles in magnetic resonance imaging. Central among these "ultrafast" experiments stands echo-planar imaging, a technique that although of optimal sampling is challenged by T2* artifacts. Recent studies described alternatives based on spatiotemporal encoding (SPEN), which are particularly robust if implemented in a "full-refocusing" mode. This work extends this modality from the single-slice acquisitions in which it has hitherto been implemented, by introducing a variety of multislice schemes scanning 3D volumes. Methods Multislice SPEN employing either inversion or stimulated echo pulses and timed to fulfill the demands of full refocusing, are demonstrated. The performance of the ensuing methods was examined in "Hybrid" modalities encoding data in k- and direct-space, in low-specific absorption rate stimulated-echo approaches, and in direct-space SPEN approaches. Results When applied in phantoms and in in vivo systems, the ensuing single-shot sequences evidenced similar robustness, sensitivity, and resolution qualities as previously discussed 2D single-slice schemes, while enabling a rapid sampling of the third dimension via multislicing. Conclusion The unique benefits deriving from fully refocused, multislice, single-scan SPEN sequences were corroborated by phantom tests, as well as by in vivo scans at 3 and 7 T. Low specific absorption rate multislice SPEN variants compatible with human studies were demonstrated.
Purpose To introduce a method that provides simultaneous spatial and spectral selectivity, whose implementation is less demanding than - and quality comparable to - conventional 2D spectral-spatial counterparts. Theory Spatiotemporal encoding concepts lead to a spatially selective, chemical-shift-dependent echo, with simultaneous dephasing of all other off-resonant species. The approach only requires applying a pair of suitable radiofrequency-swept pulses, and allows arbitrary shaping of the spatial profiles. Methods Based on arguments derived for chirp pulses operating in the sequential-sweep approximation, quadratic-phase SLR excitation and refocusing waveforms were designed and used to collect 2D slice- and shift-selective images on a 7 T microimaging system (phantoms). The same strategy was used to obtain multi-slice echo-planar and spin-echo images of breast on human volunteers in a 3 T scanner. Results The method managed to deliver excellent shift-selective multi-slice images in phantoms and human volunteers. Simultaneous water and fat images were also collected in a single, interleaved acquisition mode on both platforms, using straightforward sequence and reconstruction modifications of the basic scheme. Conclusion A new way to achieve chemical shift selectivity with high quality spatial profiling is achieved, without the usual requirements for playing out fast oscillating gradients in conjunction with carefully timed radiofrequency pulses.
Line narrowing has been traditionally achieved in solid-state 1H NMR spectroscopy by applying pulse sequences that combine multiple-pulse operations with magicangle spinning (MAS), to effectively average out the dipole-dipole homonuclear Hamiltonian. The present study explores a new alternative that departs from the usual concept of directly acting on the strongly coupled spins with radiofrequency pulses; instead, we seek to achieve a net homonuclear dipolar decoupling in solids by exploring the reintroduction of MAS-averaged heteronuclear dipolar couplings between the 1H nuclei and directly bonded 13C or 15N nuclei. This recoupling-anti-recoupling (RaR) scheme thus relies on the recoupling of the dipolar interaction with heteronuclear spins, which, under fast MAS, will exceed the strength and will not commute with the homonuclear 1H- 1H coupling one is intending to average out. Subsequent removal ("antiRecoupling") of these heteronuclear interactions can lead to narrowed 1H resonances, without ever pulsing on the aforementioned channel. The line-narrowing properties of RaR are illustrated with numerical simulations and with experiments on model organic solids.
Recent studies described an "ultrafast" scanning method based on spatiotemporal (SPEN) principles. SPEN demonstrates numerous potential advantages over EPI-based alternatives, at no additional expense in experimental complexity. An important aspect that SPEN still needs to achieve for providing a competitive ultrafast MRI acquisition alternative, entails exploiting parallel imaging algorithms without compromising its proven capabilities. The present work introduces a combination of multi-band frequency-swept pulses simultaneously encoding multiple, partial fields-of-view, together with a new algorithm merging a Super-Resolved SPEN image reconstruction and SENSE multiple-receiving methods. This approach enables one to reduce both the excitation and acquisition times of sub-second SPEN acquisitions by the customary acceleration factor R, without compromises in either the method's spatial resolution, SAR deposition, or capability to operate in multi-slice mode. The performance of these new single-shot imaging sequences and their ancillary algorithms were explored and corroborated on phantoms and human volunteers at 3T. The gains of the parallelized approach were particularly evident when dealing with heterogeneous systems subject to major T2/T2* effects, as is the case upon single-scan imaging near tissue/air interfaces.
1 H magnetic resonance spectroscopy (MRS) yields site-specific signatures that directly report metabolic concentrations, biochemistry and kinetics-provided spectral sensitivity and quality are sufficient. Here, an enabling relaxation-enhanced (RE) MRS approach is demonstrated that by combining highly selective spectral excitations with operation at very high magnetic fields, delivers spectra exhibiting signal-to-noise ratios >50:1 in under 6s for ∼5 × 5 × 5 (mm) 3 voxels, with flat baselines and no interference from water. With this spectral quality, MRS was used to interrogate a number of metabolic properties in stroked rat models. Metabolic confinements imposed by randomly oriented micro-architectures were detected and found to change upon ischaemia; intensities of downfield resonances were found to be selectively altered in stroked hemispheres; and longitudinal relaxation time of lactic acid was found to increase by over 50% its control value as early as 3-h post ischaemia, paralleling the onset of cytotoxic oedema. These results demonstrate potential of 1 H MRS at ultrahigh fields.
Interruptions in cerebral blood flow may lead to devastating neural outcomes. Magnetic resonance has a central role in diagnosing and monitoring these insufficiencies, as well as in understanding their underlying metabolic consequences. Magnetic resonance spectroscopy (MRS) in particular can probe ischemia via the signatures of endogenous metabolites including lactic acid (Lac), N-acetylaspartate, creatine (Cre), and cholines. Typically, MRS reports on these metabolites' concentrations. This study focuses on establishing the potential occurrence of in vivo longitudinal relaxation enhancement (LRE) effects - a phenomenon involving a reduction of the apparent T 1 with selective bandwidth excitations -in a rat stroke model at 21.1 T. Statistically significant reductions in Cre's apparent T 1 s were observed at all the examined post-ischemia time points for both ipsi- and contralateral hemispheres, thereby establishing the existence of LREs for this metabolite in vivo. Ischemia-dependent LRE trends were also noted for Lac in the ipsilateral hemisphere only 24 hours after ischemia. Metabolic T 1 s were also found to vary significantly as a function of post-stroke recovery time, with the most remarkable and rapid changes observed for Lac T 1 s. The potential of such measurements to understand stroke at a molecular level and assist in its diagnosis, is discussed.
Two-dimensional nuclear magnetic resonance (2D NMR) spectroscopy is widely used in chemical and biochemical analyses. Multidimensional NMR is also witnessing increased use in quantitative and metabolic screening applications. Conventional 2D NMR experiments, however, are affected by inherently long acquisition durations, arising from their need to sample the frequencies involved along their indirect domains in an incremented, scan-by-scan nature. A decade ago, a so-called ultrafast (UF) approach was proposed, capable of delivering arbitrary 2D NMR spectra involving any kind of homo-or heteronuclear correlation, in a single scan. During the intervening years, the performance of this subsecond 2D NMR methodology has been greatly improved, and UF 2D NMR is rapidly becoming a powerful analytical tool experiencing an expanded scope of applications. This review summarizes the principles and main developments that have contributed to the success of this approach and focuses on applications that have been recently demonstrated in various areas of analytical chemistry-from the real-time monitoring of chemical and biochemical processes, to extensions in hyphenated techniques and in quantitative applications.
2013
The recent development of dissolution dynamic nuclear polarization (DNP) gives NMR the sensitivity to follow metabolic processes in living systems with high temporal resolution. In this article, we apply dissolution DNP to study the metabolism of hyperpolarized U-13C,2H7-glucose in living, perfused human breast cancer cells. Spectrally selective pulses were used to maximize the signal of the main product, lactate, whilst preserving the glucose polarization; in this way, both C1-lactate and C3-lactate could be observed with high temporal resolution. The production of lactate by T47D breast cancer cells can be characterized by Michaelis-Menten-like kinetics, with Km=3.5±1.5mm and Vmax=34±4 fmol/cell/min. The high sensitivity of this method also allowed us to observe and quantify the glycolytic intermediates dihydroxyacetone phosphate and 3-phosphoglycerate. Even with the enhanced DNP signal, many other glycolytic intermediates could not be detected directly. Nevertheless, by applying saturation transfer methods, the glycolytic intermediates glucose-6-phosphate, fructose-6-phosphate, fructose-1,6-bisphosphate, glyceraldehyde-3-phosphate, phosphoenolpyruvate and pyruvate could be observed indirectly. This method shows great promise for the elucidation of the distinctive metabolism and metabolic control of cancer cells, suggesting multiple ways whereby hyperpolarized U-13C,2H7-glucose NMR could aid in the diagnosis and characterization of cancer in vivo.
Nitrogen is an element of utmost importance in chemistry, biology and materials science. Of its two NMR-active isotopes, N-14 and N-15, solid-state NMR (SSNMR) experiments are rarely conducted upon the former, due to its low gyromagnetic ratio () and broad powder patterns arising from first-order quadrupolar interactions. In this work, we propose a methodology for the rapid acquisition of high quality N-14 SSNMR spectra that is easy to implement, and can be used for a variety of nitrogen-containing systems. We demonstrate that it is possible to dramatically enhance N-14 NMR signals in spectra of stationary, polycrystalline samples (i.e., amino acids and active pharmaceutical ingredients) by means of broadband cross polarization (CP) from abundant nuclei (e.g., H-1). The BRoadband Adiabatic INversion Cross-Polarization (BRAIN-CP) pulse sequence is combined with other elements for efficient acquisition of ultra-wideline SSNMR spectra, including Wideband Uniform-Rate Smooth-Truncation (WURST) pulses for broadband refocusing, Carr-Purcell Meiboom-Gill (CPMG) echo trains for T-2-driven S/N enhancement, and frequency-stepped acquisitions. The feasibility of utilizing the BRAIN-CP/WURST-CPMG sequence is tested for N-14, with special consideration given to (i) spin-locking integer spin nuclei and maintaining adiabatic polarization transfer, and (ii) the effects of broadband polarization transfer on the overlapping satellite transition patterns. The BRAIN-CP experiments are shown to provide increases in signal-to-noise ranging from four to ten times and reductions of experimental times from one to two orders of magnitude compared to analogous experiments where N-14 nuclei are directly excited. Furthermore, patterns acquired with this method are generally more uniform than those acquired with direct excitation methods. We also discuss the proposed method and its potential for probing a variety of chemically distinct nitrogen environments.
The metabolic status of muscle changes according to the energetic demands of the organism. Two key regulators of these changes include exercise and insulin, with exercise eliciting catabolic expenditure within seconds and insulin enabling anabolic energy investment over minutes to hours. This study explores the potential of time-resolved hyperpolarized dynamic 13C spectroscopy to characterize the in vivo metabolic phenotype of muscle during functional and biochemical insulin-induced stimulation of muscle. Using [13C1]pyruvic acid as a tracer, we find that despite the different time scales of these forms of stimulation, increases in pyruvate label transport and consumption and concomitant increases in initial rates of the tracer metabolism to lactate were observed for both stimuli. By contrast, rates of tracer metabolism to labeled alanine increased incrementally for insulin but remained unchanged following exercise-like muscle stimulation. Kinetic analysis revealed that branching of the hyperpolarized [13C]pyruvate tracer between lactate and alanine provides significant tissuespecific biomarkers that distinguish between anabolic and catabolic fates in vivo according to the routing of metabolites between glycolytic and amino acid pathways.
Objective: Recent years have seen an increased interest in combining MRI thermometry with devices capable of destroying malignancies by heat ablation. Expected from the MR protocols are accurate and fast thermal characterizations, providing real time feedback on restricted tissue volumes and/or rapidly moving organs like liver. This article explores the potential advantages of relying on spatiotemporally encoded (SPEN) sequences for retrieving real-time thermometric images based on the water's proton resonance frequency (PRF) shifts. Materials and methods: Hybrid spatiotemporal/k-space encoding single-scan MRI experiments were implemented on animal and human scanners, and their abilities to deliver single- and multi-slice real-time thermometric measurements based on PRF-derived phase maps in phantoms and in vivo, were compared against echo planar imaging (EPI) and gradient-echo counterparts. Results: Under comparable acquisition conditions, SPEN exhibited advantages vis-à-vis EPI in terms of dealing with inhomogeneous magnetic field distortions, with shifts arising due to changes in the central frequency offsets, with PRF distributions, and for zooming into restricted fields-of-view without special pulse sequence provisions. Conclusion: This work confirms the ability of SPEN sequences, particularly when implemented under fully-refocused conditions, to exploit their built-in robustness to shift- and field-derived inhomogeneities for monitoring thermal changes in real-time under in vitro and in vivo conditions.
A new scheme for the excitation of spins according to the joint values of their heteronuclear or homonuclear J couplings and of their chemical shifts, is proposed and demonstrated. The principles of the new pulses involved derive from those employed in NMR imaging for exciting arbitrary 2D spatial shapes, using so-called "multidimensional" RF pulses. It is shown that if recast in a suitable spectroscopic framework, the distinction that π-pulses enable to establish between linear and bilinear interactions, support the selective excitation of coherences possessing arbitrary combinations of chemical shift and J-coupling values - a flexibility akin to that provided by a 2D J-resolved NMR spectrum. Details on the execution of the resulting 2D "J-shift" RF pulses are given, and examples where excitation only addresses spins with particular chemical shift offsets fulfilling specific J-coupling displacements, are demonstrated. Additional instances where such pulses could be applied, as well as main limitations of this new approach, are briefly discussed.
The longitudinal relaxation properties of NMR active nuclei carry useful information about the site-specific chemical environments and about the mobility of molecular fragments. Molecular mobility is in turn a key parameter reporting both on stable properties, such as size, as well as on dynamic ones, such as transient interactions and irreversible aggregation. In order to fully investigate the latter, a fast sampling of the relaxation parameters of transiently formed molecular species may be needed. Nevertheless, the acquisition of longitudinal relaxation data is typically slow, being limited by the requirement that the time for which the nucleus relaxes be varied incrementally until a complete build-up curve is generated. Recently, a number of single-shot-inversion-recovery methods have been developed capable of alleviating this need; still, these may be challenged by either spectral resolution restrictions or when coping with very fast relaxing nuclei. Here, we present a new experiment to measure the T1s of multiple nuclear spins that experience fast longitudinal relaxation, while retaining full high-resolution chemical shift information. Good agreement is observed between T1s measured with conventional means and T1s measured using the new technique. The method is applied to the real-time investigation of the reaction between D-xylose and sodium borate, which is in turn elucidated with the aid of ancillary ultrafast and conventional 2D TOCSY measurements. Mobility observed: A new experiment is presented to measure the T1s of multiple nuclear spins that experience fast longitudinal relaxation, while retaining full high-resolution chemical shift information. Good agreement is observed between T1s measured with conventional means and T 1s measured using the new technique. The method is applied to the real-time investigation of the reaction between D-xylose and sodium borate.
Nuclear magnetic resonance spectroscopy is governed by longitudinal (T 1) relaxation. For protein and nucleic acid experiments in solutions, it is well established that apparent T1 values can be enhanced by selective excitation of targeted resonances. The present study explores such longitudinal relaxation enhancement (LRE) effects for molecules residing in biological tissues. The longitudinal relaxation recovery of tissue resonances positioned both down- and upfield of the water peak were measured by spectrally selective excitation/refocusing pulses, and compared with conventional water-suppressed, broadband-excited counterparts at 9.4T. Marked LRE effects with up to threefold reductions in apparent T1 values were observed as expected for resonances in the 6-9ppm region; remarkably, statistically significant LRE effects were also found for several non-exchanging metabolite resonances in the 1-4ppm region, encompassing 30-50 % decreases in apparent T1 values. These LRE effects suggest a novel means of increasing the sensitivity of tissue-oriented experiments, and open new vistas to investigate the nature of interactions among metabolites, water and macromolecules at a molecular level. Relax your mind: Longitudinal relaxation enhancement (LRE) is a phenomenon known in biomolecular NMR spectroscopy, which so far has not been observed for metabolites in tissues. In brain tissues, selective excitation shortens the apparent T1 of exchanging metabolic resonances by 30-300 %. The ensuing high-fidelity spectra are promising for studying the nature of metabolic interactions within tissues.
A novel method for acquiring and processing quality multislice spectroscopically resolved 2D images in a single shot is introduced and illustrated. By contrast to the majority of single-scan spectroscopic imaging sequences developed so far, the method here discussed is not based on the acquisition of echo planar data in the k/t-space, but rather on the use of recently proposed spatiotemporal encoding methods. These techniques provide a robust alternative to classical techniques, as they can scan two spatial plus one spectral dimension by oscillating a single imaging gradient. This work demonstrates that the use of extended spectral/spatial super-resolution algorithms coupled to new experimental spatiotemporal encoding formulations based on swept inversions rather than on chirped excitations can lead to novel spatiotemporal encoding-based tools for resolving complex multisliced 2D images according to the chemical shifts in subsecond experiments. A number of phantom-based models were explored to clarify the relative merits of this technique and estimate its sensitivity performance. In vivo results of fat and water separation on abdominal imaging of mice at 7 T and on human breast imaging at 3 T are presented.
During recent years, dynamical decoupling (DD) has gained relevance as a tool for manipulating and interrogating quantum systems. This is particularly relevant for spins involved in nuclear magnetic resonance (NMR), where DD sequences can be used to prolong quantum coherences, or to selectively couple or decouple the effects imposed by random environmental fluctuations. In this Letter, we show that these concepts can be exploited to selectively recouple diffusion processes in restricted spaces. The ensuing method provides a novel tool to measure restriction lengths in confined systems such as capillaries, pores or cells. The principles of this method for selectively recoupling diffusion-driven decoherence, its standing within the context of diffusion NMR, extensions to the characterization of other kinds of quantum fluctuations, and corroborating experiments, are presented.
Bulk C13 polarization can be strongly enhanced in diamond at room temperature based on the optical pumping of nitrogen-vacancy color centers. This effect was confirmed by irradiating single crystals at a ∼50 mT field promoting anticrossings between electronic excited-state levels, followed by shuttling of the sample into an NMR setup and by subsequent C13 detection. A nuclear polarization of ∼0.5% - equivalent to the C13 polarization achievable by thermal polarization at room temperature at fields of ∼2000 T - was measured, and its bulk nature determined based on line shape and relaxation measurements. Positive and negative enhanced polarizations were obtained, with a generally complex but predictable dependence on the magnetic field during optical pumping. Owing to its simplicity, this C13 room temperature polarizing strategy provides a promising new addition to existing nuclear hyperpolarization techniques.
Diffusion-weighted (DW) MRI is a powerful modality for studying microstructure in normal and pathological tissues. The accuracy derived from DW MRI depends on the acquisition of quality images, and on a precise assessment of the b-values involved. Conventional DW MRI tends to be of limited use in regions suffering from large magnetic field or chemical shift heterogeneities, which severely distort the MR images. In this study we propose novel sequences based on SPatio-temporal ENcoding (SPEN), which overcome such shortcomings owing to SPEN's inherent robustness to offsets. SPEN, however, relies on the simultaneous application of gradients and radiofrequency-swept pulses, which may impart different diffusion weightings along the spatial axes. These will be further complicated in DW measurements by the diffusion-sensitizing gradients, and will in general lead to complex, spatially-dependent b-values. This study presents a formalism for analyzing these diffusion-weighted SPEN (dSPEN) data, which takes into account the concomitant effects of adiabatic pulses, of the imaging as well as diffusion gradients, and of the cross-terms between them. These analytical b-values derivations are subject to experimental validations in phantom systems and ex vivo spinal cords. Excellent agreement is found between the theoretical predictions and these dSPEN experiments. The ensuing methodology is then demonstrated by in vivo mapping of diffusion in human breast - organs where conventional k-space DW acquisition methods are challenged by both field and chemical shift heterogeneities. These studies demonstrate the increased robustness of dSPEN vis-a-vis comparable DW echo planar imaging, and demonstrate the value of this new methodology for medium- or high-field diffusion measurements in heterogeneous systems. (C) 2013 Elsevier Inc. All rights reserved.
Faster than ultrafast: A new sequence combining "ultrafast" single-shot 2DNMR and parallel receiving technologies is presented. The potential of the resulting parallel ultrafast 2D spectroscopy (PUFSY) NMR experiments is shown by simultaneously collecting homo- and heteronuclear correlation information for 1H-19F systems (see picture) and a 1H-31P system.
Noninvasive measurements of microstructure in materials, cells, and in biological tissues, constitute a unique capability of gradient-assisted NMR. Diffusion-diffraction MR approaches pioneered by Callaghan demonstrated this ability; Oscillating-Gradient Spin-Echo (OGSE) methodologies tackle the demanding gradient amplitudes required for observing diffraction patterns by utilizing constant-frequency oscillating gradient pairs that probe the diffusion spectrum, D(ω). Here we present a new class of diffusion MR experiments, termed Non-uniform Oscillating-Gradient Spin-Echo (NOGSE), which dynamically probe multiple frequencies of the diffusion spectral density at once, thus affording direct microstructural information on the compartment's dimension. The NOGSE methodology applies N constant-amplitude gradient oscillations; N - 1 of these oscillations are spaced by a characteristic time x, followed by a single gradient oscillation characterized by a time y, such that the diffusion dynamics is probed while keeping (N - 1)x + y ≡ TNOGSE constant. These constant-time, fixed-gradient-amplitude, multi-frequency attributes render NOGSE particularly useful for probing small compartment dimensions with relatively weak gradients - alleviating difficulties associated with probing D(ω) frequency-by-frequency or with varying relaxation weightings, as in other diffusion-monitoring experiments. Analytical descriptions of the NOGSE signal are given, and the sequence's ability to extract small compartment sizes with a sensitivity towards length to the sixth power, is demonstrated using a microstructural phantom. Excellent agreement between theory and experiments was evidenced even upon applying weak gradient amplitudes. An MR imaging version of NOGSE was also implemented in ex vivo pig spinal cords and mouse brains, affording maps based on compartment sizes. The effects of size distributions on NOGSE are also briefly analyzed.
The understanding and control of spin dynamics play a fundamental role in modern NMR imaging, for devising new ways to monitor an object's density as well as for enabling the tailored excitation of spins in space. It has recently been shown that by relying on spatiotemporal encoding (SPEN), new forms of single-scan multidimensional NMR spectroscopy and imaging become feasible. The present study extends those imaging developments, by introducing a new class of multidimensional excitation pulses that relies on SPEN concepts. We focus in particular on a family of "hybrid" 2D radiofrequency (RF) pulses that operate in both direct and reciprocal excitation space, and which can spatially sculpt the spin magnetization in manners that are beyond the reach of sequential 1D pulse shaping. These SPEN-based 2D pulses are compatible with a majority of single- and multi-scan imaging techniques. Like the corresponding SPEN-based hybrid 2D acquisitions, these pulses can benefit from a high robustness against field inhomogeneities and/or offset effects that affect their k-space-based counterparts. These properties are analyzed, and illustrated with numerical simulations and model experiments.
2012
Object An approach has been recently introduced for acquiring arbitrary 2D NMR spectra or images in a single scan, based on the use of frequency-swept RF pulses for the sequential excitation and acquisition of the spins response. This spatiotemporal-encoding (SPEN) approach enables a unique, voxel-by-voxel refocusing of all frequency shifts in the sample, for all instants throughout the data acquisition. The present study investigates the use of this full-refocusing aspect of SPEN-based imaging in the multi-shot MRI of objects, subject to sizable field inhomogeneities that complicate conventional imaging approaches. Materials and methods 2D MRI experiments were performed at 7 T on phantoms and on mice in vivo, focusing on imaging in proximity to metallic objects. Fully refocused SPEN-based spin echo imaging sequences were implemented, using both Cartesian and back-projection trajectories, and compared with k-space encoded spin echo imaging schemes collected on identical samples under equal bandwidths and acquisition timing conditions. Results In all cases assayed, the fully refocused spatiotemporally encoded experiments evidenced a ca. 50 % reduction in signal dephasing in the proximity of the metal, as compared to analogous results stemming from the k-space encoded spin echo counterparts. Conclusion The results in this study suggest that SPENbased acquisition schemes carry the potential to overcome strong field inhomogeneities, of the kind that currently preclude high-field, high-resolution tissue characterizations in the neighborhood of metallic implants.
Recently, new ultrafast imaging sequences such as rapid acquisition by sequential excitation and refocusing (RASER) and hybrid spatiotemporal encoding (SPEN) magnetic resonance imaging (MRI) have been proposed, in which the phase encoding of conventional echo planar imaging (EPI) is replaced with a SPEN. In contrast to EPI, SPEN provides significantly higher immunity to frequency heterogeneities including those caused by B0 inhomogeneities and chemical shift offsets. Utilizing the inherent robustness of SPEN, it was previously shown that RASER can be used to successfully perform functional MRI (fMRI) experiments in the orbitofrontal cortex - a task which is challenging using EPI due to strong magnetic susceptibility variation near the air-filled sinuses. Despite this superior performance, systematic analyses have shown that, in its initial implementation, the use of SPEN was penalized by lower signal-to-noise ratio (SNR) and higher radiofrequency power deposition as compared to EPI-based methods. A recently developed reconstruction algorithm based on super-resolution principles is able to alleviate both of these shortcomings; the use of this algorithm is hereby explored within an fMRI context. Specifically, a series of fMRI measurements on the human visual cortex confirmed that the super-resolution algorithm retains the statistical significance of the blood oxygenation level dependent (BOLD) response, while significantly reducing the power deposition associated with SPEN and restoring the SNR to levels that are comparable with those of EPI.
Dissolution DNP experiments are limited to a single or at most a few scans, before the non-Boltzmann magnetization has been consumed. This makes it impractical to record 2D NMR data by conventional, t1-incremented schemes. Here a new approach termed HyperSPASM to establish 2D heteronuclear correlations in a single scan is reported, aimed at dealing with this kind of challenge. The HyperSPASM experiment relies on imposing an amplitude-modulation of the data by a single Δt1 indirect-domain evolution time, and subsequently monitoring the imparted encoding on separate echo and anti-echo pathway signals within a single continuous acquisition. This is implemented via the use of alternating, switching, coherence selection gradients. As a result of these manipulations the phase imparted by a heteronucleus over its indirect domain evolution can be accurately extracted, and 2D data unambiguously reconstructed with a single-shot excitation. The nature of this sequence makes the resulting experiment particularly well suited for collecting indirectly-detected HSQC data on hyperpolarized samples. The potential of the ensuing HyperSPASM method is exemplified with natural-abundance hyperpolarized correlations on model systems.
Efficient acquisition of ultra-wideline solid-state NMR powder patterns is a continuing challenge. In particular, when the breadth of the powder pattern is much larger than the cross-polarization (CP) excitation bandwidth, transfer efficiencies suffer and experimental times are greatly increased. Presented herein is a CP pulse sequence with an excitation bandwidth that is up to ten times greater than that available from a conventional spin-locked CP pulse sequence. The pulse sequence, broadband adiabatic inversion CP (BRAIN-CP), makes use of the broad, uniformly large frequency profiles of chirped inversion pulses, to provide these same characteristics to the polarization transfer process. A detailed theoretical analysis is given, providing insight into the polarization transfer process involved in BRAIN-CP. Experiments on spin-1/2 nuclei including 119Sn, 199Hg and 195Pt nuclei are presented, and the large bandwidth improvements possible with BRAIN-CP are demonstrated. Furthermore, it is shown that BRAIN-CP can be combined with broadband frequency-swept versions of the Carr-Purcell-Meiboom-Gill experiment (for instance with WURST-CPMG, or WCPMG for brevity); the combined BRAIN-CP/WCPMG experiment then provides multiplicative signal enhancements of both CP and multiple-echo acquisition over a broad frequency region.
Achieving homonuclear 1H decoupling remains one of the key challenges in liquid-state NMR. Such spectra would endow a variety of organic and analytical applications with an increased resolution, and would ideally do so even in a one-dimensional format. A number of parallel efforts aimed at achieving this goal using two-dimensional acquisitions have been proposed; approaches demonstrated over recent years include, among others, new modes for achieving purely-absorptive J spectroscopy, the use of spatially-selective manipulations, and exploiting the natural spin dilution afforded by heteronuclei. The present study relies on the latter approach, and explores the use of BIRD pulses distinguishing between protons bonded to 13C from those bonded to 12C, to achieve homonuclear decoupling in a continuous 1D scan. Studies on several representative compounds demonstrate that this goal can be implemented in a robust format, provided that suitable care is also taken to suppress unwanted coherences, of making all manipulations sufficiently broad-banded, and to provide adequate heteronuclear decoupling of the targeted protons. Dependable homonuclear decoupling performance can then be achieved, with minimal line width, fine-tuning, and sensitivity penalties.
We show that coupled-spin network manipulations can be made highly effective by repeated projections of the evolving quantum states onto diagonal density-matrix states (populations). As opposed to the intricately crafted pulse trains that are often used to fine-tune a complex network's evolution, the strategy hereby presented derives from the "quantum Zeno effect" and provides a highly robust route to guide the evolution by destroying all unwanted correlations (coherences). We exploit these effects by showing that a relaxationlike behavior is endowed to polarization transfers occurring within a N-spin coupled network. Experimental implementations yield coupling constant determinations for complex spin-coupling topologies, as demonstrated within the field of liquid-state nuclear magnetic resonance.
Since the pioneering works of Carr-Purcell and Meiboom-Gill [Carr HY, Purcell EM (1954) Phys Rev 94:630; Meiboom S, Gill D (1985) Rev Sci Instrum 29:688], trains of π-pulses have featured amongst the main tools of quantum control. Echo trains find widespread use in nuclear magnetic resonance spectroscopy (NMR) and imaging (MRI), thanks to their ability to free the evolution of a spin-1/2 from several sources of decoherence. Spin echoes have also been researched in dynamic decoupling scenarios, for prolonging the lifetimes of quantum states or coherences. Inspired by this search we introduce a family of spin-echo sequences, which can still detect site-specific interactions like the chemical shift. This is achieved thanks to the presence of weak environmental fluctuations of common occurrence in high-field NMR - such as homonuclear spin-spin couplings or chemical/biochemical exchanges. Both intuitive and rigorous derivations of the resulting "selective dynamical recoupling" sequences are provided. Applications of these novel experiments are given for a variety of NMR scenarios including determinations of shift effects under inhomogeneities overwhelming individual chemical identities, and model-free characterizations of chemically exchanging partners.
Recent years have witnessed unprecedented advances in the development of fast multidimensional NMR acquisition techniques. This progress could open valuable new opportunities for the elucidation of chemical and biochemical processes. This study demonstrates one such capability, with the first real-time Two-dimensional (2D) dynamic analysis of a complex organic reaction relying on unlabeled substrates. Implementing such measurements required the development of new ultrafast 2D methods, capable of monitoring multiple spectral regions of interest as the reaction progressed. The alternate application of these acquisitions in an interleaved, excitation-optimized fashion, allowed us to extract new structural and dynamic insight concerning the reaction between aliphatic ketones and triflic anhydride in the presence of nitriles to yield alkylpyrimidines. Up to 2500 2D NMR data sets were thus collected over the course of this nearly 100 min long reaction, in an approach resembling that used in functional magnetic resonance imaging. With the aid of these new frequency-selective low-gradient strength experiments, supplemented by chemical shift calculations of the spectral coordinates observed in the 2D heteronuclear correlations, previously postulated intermediates involved in the alkylpyrimidine formation process could be confirmed, and hitherto undetected ones were revealed. The potential and limitations of the resulting methods are discussed.
2011
Recent studies have described some of the new opportunities that have arisen within the context of ultrafast two-dimensional imaging with the advent of spatiotemporal encoding methods. This article explores the potential of integrating these non-Fourier, single-scan, two-dimensional MRI principles, with multi-slice and phase-encoding schemes acting along a third dimension. In unison, these combinations enable the acquisition of complete three-dimensional images from volumes of interest within a 1-s timescale. A number of alternatives are explored for carrying out these very rapid three-dimensional acquisitions, including the use of two-dimensional, slice-selective, spatiotemporal encoding radiofrequency pulses, driven-equilibrium slice-selective schemes, and phase-encoded volumetric approaches. When tested under in vivo conditions, the 'hybrid' schemes combining spatiotemporal encoding with k-encoding imaging principles, proved to be superior to traditional schemes based on echo planar imaging. The resulting images were found to be less affected by field inhomogeneities and by other potential offset-derived distortions owing to a combination of factors whose origin is discussed. Further features, extensions and applications of these principles are also addressed.
This work examines several polycrystalline diamond samples for their potential as polarizing agents for dynamic nuclear polarization (DNP) in NMR. Diamond samples of various origin and particle sizes ranging from a few nanometers to micrometers were examined by EPR, solid-state NMR and DNP techniques. A correlation was found between the size of the diamond particles and the electron spin-lattice relaxation time, the 13C nuclear spin-lattice relaxation times in room temperature magic-angle-spinning experiments, and the ability of the diamond carbons to be hyperpolarized by irradiating unpaired electrons of inherent defects by microwaves at cryogenic temperatures. As the size of the diamond particles approaches that of bulk diamond, both electron and nuclear relaxation times become longer. NMR signal enhancement through DNP was found to be very efficient only for these larger size diamond samples. The reasons and implications of these results are briefly discussed, in the light of these EPR, DNP, and NMR observations.
Recent years have witnessed efforts geared at increasing the sensitivity of NMR experiments, by relying on the suitable tailoring and exploitation of relaxation phenomena. These efforts have included the use of paramagnetic agents, enhanced 1H-1H incoherent and coherent transfers processes in 2D liquid state spectroscopy, and homonuclear 13C- 13C spin diffusion effects in labeled solids. The present study examines some of the opportunities that could open when exploiting spontaneous 1H-1H spin-diffusion processes, to enhance relaxation and to improve the sensitivity of dilute nuclei in solid state NMR measurements. It is shown that polarization transfer experiments executed under sufficiently fast magic-angle-spinning conditions, enable a selective polarization of the dilute low- spins by their immediate neighboring protons. Repolarization of the latter can then occur during the time involved in monitoring the signal emitted by the low- nuclei. The basic features involved in the resulting approach, and its potential to improve the effective sensitivity of solid state NMR measurements on dilute nuclei, are analyzed. Experimental tests witness the advantages that could reside from utilizing this kind of approach over conventional cross-polarization processes. These measurements also highlight a number of limitations that will have to be overcome for transforming selective polarization transfers of this kind into analytical methods of choice.
The relatively long times that may be involved in high-resolution two-dimensional nuclear magnetic resonance (2D NMR) have stimulated the search for alternative schemes to collect these data. Particularly onerous situations arise when both high-resolution and large spectral widths are sought along the indirect domain. Strategies proposed for dealing with such cases include folding-over procedures, Hadamard encoding, and nonlinear data sampling. This communication discusses an alternative strategy, which exploits a partial prior knowledge regarding the position of the NMR resonances along the indirect domain together with customized excitations for every particular t1 increment, to achieve an optimal sampling in terms of resolution and bandwidth. On the basis of such optimized encoding of the indirect-domain evolution, which can easily be coped with by modern spectrometers, it becomes possible to maximize the resolution of fine structures without compromising on the spectral bandwidths. The processing of the resulting data along the indirect domain is based on the use of two serially applied discrete Fourier transforms; one to distinguish the main bands in the spectrum and the other to resolve the latter's fine features. A number of simple heteronuclear correlation experiments illustrating the significant acquisition time savings and simultaneous improvements in resolution that can be achieved with the resulting double-Fourier encoding procedure are illustrated.
Dynamic nuclear polarization (DNP) followed by sudden sample dissolution, is a topic of active investigation owing to the method's unique prospects for the delivery of NMR spectra and images with unprecedented sensitivity. This experiment achieves hyperpolarization by the combined effects of electron-nuclear irradiation and cryogenic operation; the exploitation of these states occurs following a sudden melting and flushing of the resulting pellet from its original environment into a conventional, liquid-state setting. This melting and flushing usually demands using the equivalent of a few milliliters of hot solvent, a procedure which although well suited for in vivo studies leads to an excessive sample volume when considering typical analytical settings. The present study explores a way of reducing the ensuing dilution of the hyperpolarized analytes, by employing a combination of immiscible liquids for performing the melting and flushing. It is shown that suitable combinations of immiscible solvents - both in terms of their heat capacities and densities - allow one to melt the targeted cryogenic pellet and dissolve the hyperpolarized analytes in a fraction of the solvent hitherto required. By tailoring the resulting volume to the needs of a conventional 5 mm NMR probe, a substantial sensitivity enhancement can be added to the hyperpolarization process. An extra benefit may arise from using radicals that preferentially dissolve in the immiscible organic phase, by way of a lengthening of the relaxation time of the investigated analytes. Examples of these principles are given, and further potential extensions of this approach are discussed.
A topic of active investigation in 2D NMR relates to the minimum number of scans required for acquiring this kind of spectra, particularly when these are dictated by sampling rather than by sensitivity considerations. Reductions in this minimum number of scans have been achieved by departing from the regular sampling used to monitor the indirect domain, and relying instead on non-uniform sampling and iterative reconstruction algorithms. Alternatively, so-called "ultrafast" methods can compress the minimum number of scans involved in 2D NMR all the way to a minimum number of one, by spatially encoding the indirect domain information and subsequently recovering it via oscillating field gradients. Given ultrafast NMR's simultaneous recording of the indirect- and direct-domain data, this experiment couples the spectral constraints of these orthogonal domains - often calling for the use of strong acquisition gradients and large filter widths to fulfill the desired bandwidth and resolution demands along all spectral dimensions. This study discusses a way to alleviate these demands, and thereby enhance the method's performance and applicability, by combining spatial encoding with iterative reconstruction approaches. Examples of these new principles are given based on the compressed-sensed reconstruction of biomolecular 2D HSQC ultrafast NMR data, an approach that we show enables a decrease of the gradient strengths demanded in this type of experiments by up to 80%.
An important recent development in NMR spectroscopy is the advent of ex situ dynamic nuclear polarization (DNP) approaches, which are capable of yielding liquid-state sensitivities that exceed considerably those afforded by the highest-field spectrometers. This increase in sensitivity has triggered new research avenues, particularly concerning the in vivo monitoring of metabolism and disease by NMR spectroscopy. So far such gains have mainly materialized for experiments that focus on nonprotonated, low-γ nuclei; targets favored by relatively long relaxation times T1, which enable them to withstand the transfer from the cryogenic hyperpolarizer to the reacting centers of interest. Recent studies have also shown that transferring this hyperpolarization to protons by indirectly detected methods could successfully give rise to 1H NMR spectra of hyperpolarized compounds with a high sensitivity. The present study demonstrates that, when merged with spatially encoded methods, indirectly detected 1H NMR spectroscopy can also be exploited as time-resolved hyperpolarized spectroscopy. A methodology is thus introduced that can successfully deliver a series of hyperpolarized 1H NMR spectra over a minutes-long timescale. The principles and opportunities presented by this approach are exemplified by following the in vitro phosphorylation of choline by choline kinase, a potential metabolic marker of cancer; and by tracking acetylcholine's hydrolysis by acetylcholine esterase, an important enzyme partaking in synaptic transmission and neuronal degradation.
Typing these lines makes me feel deeply honored, and perhaps somewhat nervous as well. The two preceding Editors of the Journal of Magnetic Resonance were true giants, and their skills were instrumental in guiding the Journal to its current status. It suffices to open an issue of JMR published during the 1970s or 1980s, to appreciate what an outstanding vision Wallace S. Brey had as founder and steward of the Journal over its initial decades. Every issue published in JMR during Brey\u2019s 27 years as Editor contains at least one \u2013 and often several \u2013 ground-breaking papers setting the foundations of EPR, NQR, NMR or MRI. Something similar can be said about the leadership that Stan Opella brought upon becoming the Journal\u2019s Editor in 1997: despite the increasing complexity that over the intervening years characterized the field of magnetic resonance, Stan managed to endow the Journal with manuscripts of the highest scientific standards; and he succeeded in doing so, while continuously improving the quality and speed of the manuscripts\u2019 publication process. For all these achievements I believe we all remain deeply grateful to Stan \u2013 as well as delighted to hear that he has agreed to remain involved with JMR, as member of its Editorial Board.
2010
A simple design for performing rapid temperature jumps within a high-resolution nuclear magnetic resonance (NMR) setting is presented and exemplified. The design is based on mounting, around a conventional NMR glass tube, an inductive radiofrequency (RF) irradiation coil that is suitably tuned by a resonant circuit and is driven by one of the NMR's console high-power RF amplifiers. The electric fields generated by this coil's thin metal strips can lead to a fast and efficient heating of the sample, amounting to temperature jumps of ≈ 20 °C in well within a second-particularly in the presence of lossy dielectric media like those provided by physiological buffers. Moreover, when wound around a 4-mm NMR tube, the resulting device fits a conventional 5-mm inverse probe and is wholly compatible with the field homogeneities and sensitivities expected for high-resolution biomolecular NMR conditions. The performance characteristics of this new system were tested using saline solutions, as well as on a lyotropic liquid crystal capable of undergoing nematic → isotropic transitions in the neighborhood of ambient temperature. These settings were then incorporated into the performance of a new kind of single-scan 2D NMR spectroscopy acquisition, correlating the anisotropic and isotropic patterns elicited by solutes dissolved in such liquid-crystalline systems, before and after a sudden temperature jump occurring during an intervening mixing period.
We experimentally and theoretically demonstrate the purity (polarization) control of qubits entangled with multiple spins, using induced dephasing in nuclear magnetic resonance setups to simulate repeated quantum measurements. We show that one may steer the qubit ensemble towards a quasiequilibrium state of a certain purity by choosing suitable time intervals between dephasing operations. These results demonstrate that repeated dephasing at intervals associated with the anti-Zeno regime leads to ensemble purification, whereas those associated with the Zeno regime lead to ensemble mixing.
Spatial encoding, as encompassing the monitoring of spin evolutions on the basis of selective frequency-swept pulses and of magnetic field gradients, provides a new way for measuring NMR spectra or MRI images. In contrast to time-domain schemes or to continuous-wave approaches, these new RF/gradient combinations can act together to create interaction-dependent spatial patterns of spin magnetizations or coherences extending throughout a sample. These patterns can then be read-out with the aid of a second set of gradients while digitizing the data, to endow NMR/MRI acquisitions with hitherto unavailable capabilities. The present Review described various facets of these new approaches to monitor NMR spectra and MRI images. We began with a thorough introduction on how to visualize the effects of swept RF pulses - be them of an excitation or refocusing nature - applied in the presence of linear field gradients. It was then discussed how, in a spectroscopic setting, the idea of spatial encoding can be exploited to compress an nD spectroscopic NMR experiment into a single-scan. Numerous acquisition schemes capable of retrieving this kind of results for a variety of 2D experiments were presented, and their relative merits and limitations were surveyed. Similar ideas were shown to have applications in other spectroscopic aradigms involving multi-scan experiments, such as Hadamard spectroscopy. It was once again shown that by partitioning the sample and exciting different patterns for each site, one could produce a single-scan, sub-second version of a complex experiment. Similar versions of multi-scan phase cycling have also been demonstrated [71]. The final part extended these spatially-selective encoding concepts in what we believe are novel imaging sequences, though related to decades-old developments in this field. By suitable excitation protocols, the spins in the sample can, in these MRI settings, be made to interfere destructively - except within a particular voxel which can be chosen at will. This voxel can be shifted along a predefined trajectory, set by shaping the acquisition gradients, yielding a signal proportional to the spin density along that path. Therefore, spatially encoded imaging differs from conventional Fourier imaging by acquiring images in real rather than in k-space. The point-by-point nature of the ensuing approach can then address a number of challenging measurements, including the single-scan acquisition of images arising from different chemical sites, or in the presence of field inhomogeneities. Overall, it is hoped that as the technical details underlying these new methods become clearer and as their user-base expands, further improvements will materialize and new, unforeseen applications of spatial-encoding will emerge - both in the spectroscopy and imaging realms. (Figure presented).
Single-scan MRI underlies a wide variety of clinical and research activities, including functional and diffusion studies. Most common among these "ultrafast" MRI approaches is echo-planar imaging. Notwithstanding its proven success, echo-planar imaging still faces a number of limitations, particularly as a result of susceptibility heterogeneities and of chemical shift effects that can become acute at high fields. The present study explores a new approach for acquiring multidimensional MR images in a single scan, which possesses a higher built-in immunity to this kind of heterogeneity while retaining echo-planar imaging's temporal and spatial performances. This new protocol combines a novel approach to multidimensional spectroscopy, based on the spatial encoding of the spin interactions, with image reconstruction algorithms based on super-resolution principles. Single-scan two-dimensional MRI examples of the performance improvements provided by the resulting imaging protocol are illustrated using phantom-based and in vivo experiments.
We present a method that implements directional, perfect state transfers within a branched spin network by exploiting quantum interferences in the time domain. This method provides a tool for isolating subsystems from a large and complex one. Directionality is achieved by interrupting the spin-spin coupled evolution with periods of free Zeeman evolutions, whose timing is tuned to be commensurate with the relative phases accrued by specific spin pairs. This leads to a resonant transfer between the chosen qubits and to a detuning of all remaining pathways in the network, using only global manipulations. Since the transfer is perfect when the selected pathway is mediated by two or three spins, distant state transfers over complex networks can be achieved by successive recouplings among specific pairs or triads of spins. These effects are illustrated with a quantum simulator involving C13 NMR on leucine's backbone; a six-spin network.
Conformational transitions and structural rearrangements are central to the function of many RNAs yet remain poorly understood. We have used ultrafast multidimensional NMR techniques to monitor the adenine-induced folding of an adenine-sensing riboswitch in real time, with nucleotide-resolved resolution. By following changes in 2D spectra at rates of approximately 0.5 Hz, we identify distinct steps associated with the ligand-induced folding of the riboswitch. Following recognition of the ligand, long range looploop interactions form and are then progressively stabilized before the formation of a fully stable complex over approximately 2-3 minutes. The application of these ultrafast multidimensional NMR methods provides the opportunity to determine the structure of RNA folding intermediates and conformational trajectories.
Noise measurements of nuclear spin systems using a tuned circuit can reveal the signatures of two different phenomena: Thermal circuit noise absorbed by the spin system, and nuclear spin-noise leading to tiny fluctuating magnetization components. Polarization enhancement can increase the observed noise amplitudes due to an enlarged coupling with the reception circuit. In this work we explore the detection of noise in 1H NMR of liquid water samples whose spin alignment is enhanced via ex situ dynamic nuclear polarization. A number of ancillary phenomena related to this kind of experiments are also documented.
A new scheme for the acquisition of heteronuclear 2D correlations in NMR spectroscopy within a single scan, is proposed and demonstrated. The principles of this new scheme resemble those of Mansfield's "k-space walk" proposal, in the sense that they rely on repetitively transferring spin coherences back-and-forth between the two spin systems to be correlated. It is shown that if properly executed, these transfers enable the equivalent of a continuous sampling of the time-domain space supporting a 2D heteronuclear single-quantum correlation NMR spectrum. Details on how to execute the resulting "time-domain walk" experiments are given, and examples comparing it against conventional and other single-scan 2D acquisition alternatives are shown. Advantages, opportunities, and main drawbacks of this new ultrafast approach to 2D NMR, are briefly discussed.
β2-microglobulin (β2m), the light chain of class I major histocompatibility complex, is responsible for the dialysis-related amyloidosis and, in patients undergoing long term dialysis, the full-length and chemically unmodified β2m converts into amyloid fibrils. The protein, belonging to the immunoglobulin superfamily, in common to other members of this family, experiences during its folding a long-lived intermediate associated to the trans-to-cis isomerization of Pro-32 that has been addressed as the precursor of the amyloid fibril formation. In this respect, previous studies on the W60G β2m mutant, showing that the lack of Trp-60 prevents fibril formation in mild aggregating condition, prompted us to reinvestigate the refolding kinetics of wild type and W60G β2m at atomic resolution by real-time NMR. The analysis, conducted at ambient temperature by the band selective flip angle short transient real-time two-dimensional NMR techniques and probing the β2m states every 15 s, revealed a more complex folding energy landscape than previously reported for wild type β2m, involving more than a single intermediate species, and shedding new light into the fibrillogenic pathway. Moreover, a significant difference in the kinetic scheme previously characterized by optical spectroscopic methods was discovered for the W60G β2m mutant.
An approach has been recently introduced for acquiring two-dimensional (2D) nuclear magnetic resonance images in a single scan, based on the spatial encoding of the spin interactions. This article explores the potential of integrating this spatial encoding together with conventional temporal encoding principles, to produce 2D single-shot images with moderate field of views. The resulting "hybrid" imaging scheme is shown to be superior to traditional schemes in non-homogeneous magnetic field environments. An enhancement of previously discussed pulse sequences is also proposed, whereby distortions affecting the image along the spatially encoded axis are eliminated. This new variant is also characterized by a refocusing of T2* effects, leading to a restoration of high-definition images for regions which would otherwise be highly dephased and thus not visible. These single-scan 2D images are characterized by improved signal-to-noise ratios and a genuine T2 contrast, albeit not free from inhomogeneity distortions. Simple postprocessing algorithms relying on inhomogeneity phase maps of the imaged object can successfully remove most of these residual distortions. Initial results suggest that this acquisition scheme has the potential to overcome strong field inhomogeneities acting over extended acquisition durations, exceeding 100 ms for a single-shot image.
2009
(Graph Presented) The combination of ex situ dynamic nuclear polarization (DNP) with nuclear magnetic resonance (NMR) leads to signal-to-noise enhancements of 103-104 compared to conventional NMR. Ex situ DNP, however, is ill-suited for collecting the array of transients needed in 2D NMR spectroscopy. Spatially encoded single-scan 2D NMR methods can circumvent this drawback, yet these "ultrafast" experiments can cover spectral ranges of only ≈20 ppm using conventional hardware. To deal with this limitation, we discuss here new spatial/spectral encoding strategies capable of folding 13C resonances into the desired spectral windows. This new approach allows one to obtain -following a single hyperpolarization process- multiple 2D heteronuclear correlations arising from different 13C regions. In combination with ex situ DNP, these principles enable the acquisition of HMBC and HSQC 2D NMR spectra on ≈ 1 mM mixtures of natural products, characterizing with a high resolution sites spread over nearly 100 ppm bandwidths.
Intermolecular Multiple-Quantum Coherences (iMQCs) can yield interesting NMR information of high potential usefulness in spectroscopy and imaging - provided their associated sensitivity limitations can be overcome. A recent study demonstrated that ex situ dynamic nuclear polarization (DNP) could assist in overcoming sensitivity problems for iMQC-based experiments on C-13 nuclei. In the present work we show that a similar approach is possible when targeting the protons of a hyperpolarized solvent. It was found that although the DNP procedure enhances single-quantum H-1 signals by about 600, which is significantly less than in optimized low-gamma liquid-state counterparts, the non-linear dependence of iMQC-derived signals on polarization can yield very large enhancements approaching 10(6), Cleary no practical amount of data averaging can match this kind of sensitivity gains. The fact that DNP endows iMQC-based H-1 NMR spectra with a sensitivity that amply exceeds that of their thermally polarized single-quantum counterpart, is confirmed in a number of simple single-scan 2D imaging experiments. (C) 2009 Elsevier Inc. All rights reserved.
NMR experiments devised to aid in analyses Of tissues include magnetization transfer (MT), which can highlight the signals of biological macromolecules through cross-relaxation and/or chemical exchange processes with the bulk (1)H water resonance, and high-resolution magic-angle-spinning (HRMAS) methods, akin to those used in solid-state NMR to introduce additional spectral resolution via the averaging of spin anisotropies. This paper explores the result of combining these methodologies, and reports on MT "z-spectroscopy" between water and cell components in excised tissues under a variety of HRMAS conditions. Main features arising from the resulting (1)H "MTMAS" experiments include strong spinning sideband manifolds centered at the liquid water shift, high-resolution isotropic features coinciding with aliphatic and amide proton resonances, and a second sideband manifold arising as spinning speeds are increased. Interpretations are given for the origin of these various features, including simulations shedding further light onto the nature of MT NMR signals observed for tissue samples. Concurrently, histological examinations are reported validating the limits of HRMAS NMR procedures to the analysis of tissue samples preserved in a number of different ways. (C) 2009 Elsevier Inc. All rights reserved.
Single-scan 2D NMR relies on a spatial axis for encoding the indirect-domain internal spin interactions. Various strategies have been demonstrated for fulfilling the needs underlying this procedure. All such schemes use gradient-echoed sequences that leave at their conclusion solely the effects of the internal interactions along the indirect domain; they also include a real-time scheme that though simple, yields in general mixed-phase line shapes. The present paper introduces two new proposals geared up for easing the spatial encoding underlying single-scan 2D NMR methodologies. One of these is capable of delivering dispersive-free peaks along the indirect domain, and thereby purely-absorptive 2D line shapes, in amplitude- encoded experiments. The other demonstrates for the first time, the possibility to obtain single-scan 2D spectra without echoing the effects of the encoding gradient-simply by applying a single-pulse frequency sweep to encode the interactions. Both of these modes are compatible with homo- and heteronuclear correlations, and exhibit a number of complementary features vis-à-vis encoding alternatives that have so far been presented. The overall principles underlying these new spatially encoding protocols are derived, and their performance demonstrated with single-scan 2D NMR TOCSY and HSQC experiments on model compounds.
Scan and deliver: By combining imaging-based spectral/spatial 2D radiofrequency manipulations (see scheme, left) with Hadamard-weighting principles, 2D NMR spectra can be retrieved within a single scan (right). This approach can give homo- or heteronuclear correlations with an enhanced sensitivity over conventional ultrafast 2D NMR spectroscopy.
Multidimensional NMR spectroscopy is a well-established technique for the characterization of structure and fast-time-scale dynamics of highly populated ground states of biological macromolecules. The investigation of short-lived excited states that are important for molecular folding, misfolding and function, however, remains a challenge for modern biomolecular NMR techniques. Off-equilibrium real-time kinetic NMR methods allow direct observation of conformational or chemical changes by following peak positions and intensities in a series of spectra recorded during a kinetic event. Because standard multidimensional NMR methods required to yield sufficient atom-resolution are intrinsically time-consuming, many interesting phenomena are excluded from real-time NMR analysis. Recently, spatially encoded ultrafast 2D NMR techniques have been proposed that allow one to acquire a 2D NMR experiment within a single transient. In addition, when combined with the SOFAST technique, such ultrafast experiments can be repeated at high rates. One of the problems detected for such ultrafast protein NMR experiments is related to the heteronuclear decoupling during detection with interferences between the pulses and the oscillatory magnetic field gradients arising in this scheme. Here we present a method for improved ultrafast data acquisition yielding higher signal to noise and sharper lines in single-scan 2D NMR spectra. In combination with a fast-mixing device, the recording of 1H-15N correlation spectra with repetition rates of up to a few Hertz becomes feasible, enabling real-time studies of protein kinetics occurring on time scales down to a few seconds.
Multidimensional acquisitions play a central role in the progress and applications of nuclear magnetic resonance (NMR) spectroscopy. Such experiments have been collected traditionally as an array of one-dimensional scans, with suitably incremented delay parameters that encode along independent temporal domains the nD spectral distribution being sought. During the past few years, an ultrafast approach to nD NMR has been introduced that is capable of delivering any type of multidimensional spectrum in a single transient. This method operates by departing from the canonical nD NMR scheme and by replacing its temporal encoding with a series of spatial manipulations derived from magnetic resonance imaging. The present survey introduces the main principles of this subsecond approach to spectroscopy, focusing on the applications that have hitherto been demonstrated for single-scan two-dimensional NMR in different areas of chemistry.
Metabolic fluxes can serve as specific biomarkers for detecting malignant transformations, tumor progression, and response to microenvironmental changes and treatment procedures. We present noninvasive hyperpolarized 13C NMR investigations on the metabolic flux of pyruvate to lactate, in a well-controlled injection/perfusion system using T47D human breast cancer cells. Initial rates of pyruvate-to-lactate conversion were obtained by fitting the hyperpolarized 13C and ancillary 31P NMR data to a model, yielding both kinetic parameters and mechanistic insight into this conversion. Transport was found to be the rate-limiting process for the conversion of extracellular pyruvate to lactate with Km = 2.14 ± 0.03 mM, typical of the monocarboxylate transporter 1 (MCT1), and a Vmax = 27.6 ± 1.1 fmol·min-1·cell-1, in agreement with the high expression level of this transporter. Modulation of the environment to hypoxic conditions as well as suppression of cells' perfusion enhanced the rate of pyruvate-to-lactate conversion, presumably by up-regulation of the MCT1. Conversely, the addition of quercetin, a flavonoidal MCT1 inhibitor, markedly reduces the apparent rate of pyruvate-to-lactate conversion. These results suggest that hyperpolarized 13C1-pyruvate may be a useful magnetic resonance biomarker of MCT regulation and malignant transformations in breast cancer.
Two-dimensional nuclear magnetic resonance (2D NMR) spectroscopy provides the means to extract diverse physical, chemical, and biological information at an atomic level. Conventional sampling schemes, however, may result in relatively long 2D experiments; this has stimulated the search for alternative, rapid acquisition schemes. Among the strategies that have been recently proposed for achieving this counts an "ultrafast" approach, relying on the spatial encoding of the indirect domain evolution to provide arbitrary spectra within a single scan. A common feature of all spatial encoding schemes hitherto described is their uniform encoding of a continuous bandwidth of indirect-domain frequencies, regardless of the chemical sites' spectral distribution within it. These very general conditions, however, are often associated with a number of tradeoffs and compromises in the spectral widths and resolutions that can be achieved for both the direct and indirect domains. This paper proposes a different strategy for single-scan acquisition of 2D spectra, which performs an optimal encoding by employing a priori information regarding the positions of NMR resonances along the indirect domain. We denote this as "spatial/ spectral encoding"; the underlying principles of this new approach, together with experimental results based on uni- and multidimensional rf pulse schemes, are presented.
2008
Spatial encoding is a particular kind of spin manipulation that enables the acquisition of multidimensional NMR spectra within a single scan. This encoding has been shown to possess a general applicability and to enable the completion of arbitrary nD NMR acquisitions within a single transient. The present study explores its potential towards the acquisition of 2D DOSY spectra, where the indirect dimension is meant to encode molecular displacements rather than a coherent spin evolution. We find that in its simplest form this extension shows similarities with methods that have been recently discussed for the single-scan acquisition of this kind of traces; still, a number of advantageous features are also evidenced by the "ultrafast" modality hereby introduced. The principles underlying the operation of this new single-scan 2D DOSY approach are discussed, its use is illustrated with a variety of sequences and of samples, the limitations of this new experiment are noted, and potential extensions of the methodology are mentioned.
An important development in the field of NMR spectroscopy has been the advent of hyperpolarization approaches, capable of yielding nuclear spin states whose value exceeds by orders-of-magnitude what even the highest-field spectrometers can afford under Boltzmann equilibrium. Included among these methods is an ex situ dynamic nuclear polarization (DNP) approach, which yields liquid-phase samples possessing spin polarizations of up to 50 %. Although capable of providing an NMR sensitivity equivalent to the averaging of about 1 000 000 scans, this methodology is constrained to extract its "superspectrum" within a single - or at most a few - transients. This makes it a poor starting point for conventional 2D NMR acquisition experiments, which require a large number of scans that are identical to one another except for the increment of a certain t1 delay. It has been recently suggested that by merging this ex situ DNP approach with spatially encoded "ultrafast" methods, a suitable starting point could arise for the acquisition of 2D spectra on hyperpolarized liquids. Herein, we describe the experimental principles, potential features, and current limitations of such integration between the two methodologies. For a variety of small molecules, these new hyperpolarized ultrafast experiments can, for equivalent overall durations, provide heteronuclear correlation spectra at significantly lower concentrations than those currently achievable by conventional 2D NMR acquisitions. A variety of challenges still remain to be solved before bringing the full potential of this new integrated 2D NMR approach to fruition; these outstanding issues are discussed.
Few analytical techniques rival the capabilities of two-dimensional nuclear magnetic resonance. A scheme enabling 2D NMR acquisitions within a single-scan has been recently demonstrated, based on combined field gradient and radiofrequency manipulations. Distortions were observed upon implementing such 'ultrafast' experiments on solids undergoing magic-angle-spinning, presumably due to interferences arising between the periodic time-dependencies involved in the mechanical and in the spin manipulations. Experimental and numerical setups were designed to investigate these effects, and to find conditions that minimize them. When devoid of these non-idealities, quality 2D NMR spectra could be retrieved from spinning polymers within a single-scan.
Multidimensional spectroscopy plays a central role in contemporary magnetic resonance. A general feature of multidimensional NMR is its inherent multiscan nature, stemming from the methodology's reliance on a series of independent acquisitions to sample the spins' evolutions throughout the indirect time domains. Contrasting this traditional feature, an acquisition scheme has recently been reported that enables the collection of complete of multidimensional NMR data sets within one single scan. Provided that the signals to be observed are sufficiently strong, this new "ultrafast" protocol can thus shorten the acquisition times of multidimensional NMR experiments by several orders of magnitude. This new methodology operates by departing from temporal encoding principles used since the advent of Fourier-transform NMR, replacing them with a spatial encoding of the spin interactions. Spatial encoding operates in turn on the basis of novel radiofrequency irradiation and magnetic field gradient waveform manipulations, designed so as to impart on the sample a coherent spin magnetization pattern that reflects the internal interactions to be measured. Given the central role played by this new kind of spectroscopic-oriented manipulations in ultrafast NMR, we devote this review to surveying different variants that have hitherto been proposed for their implementation. These include both discrete and continuous versions, real- and constant-time implementations, as well as amplitude- and phase-modulated alternatives. The principles underlying these various spatial encoding approaches are treated, their operation is graphically illustrated as well as formally derived within suitable theoretical frameworks, and an in-depth comparison of their line shape characteristics is discussed. (c) 2008 American Institute of Physics.
The so-called "ultrafast" nuclear magnetic resonance (NMR) methods enable the collection of multidimensional spectra within a single scan. These experiments operate by replacing traditional t1 time increments, with a series of combined radiofrequency-irradiation/magnetic-field-gradient manipulations that spatially encode the effects of the indirect-domain spin interactions. Barring the presence of sizable displacements, the spatial patterns thus imparted can be read out following a mixing period with the aid of oscillating acquisition gradients, leading to a train of t2 -modulated echoes carrying in their positions and phases the indirect- and the direct-domain spin interactions. Both the initial spatial encoding as well as the subsequent spatial decoding procedures underlying ultrafast NMR were designed under the assumption that spins remain static within the sample during their execution. Most often this is not the case, and motion-related effects can be expected to affect the outcome of these experiments. The present paper focuses on analyzing the effects of diffusion in ultrafast two-dimensional (2D) NMR. Toward this end both analytical and numerical formalisms are derived, capable of dealing with the nonuniform spin manipulations, macroscopic sample sizes, and microscopic displacements involved in this kind of sequences. After experimentally validating the correctness of these formalisms these were used to analyze the effects of diffusion for a variety of cases, including ultrafast experiments on both rapidly and slowly diffusing molecules. A series of prototypical schemes were considered including discrete and continuous encoding modes, constant- and real-time manipulations, homo- and heteronuclear acquisitions, and single versus multiple quantum modalities. The effects of molecular diffusion were also compared against typical relaxation-driven losses as they happen in these various prototypical situations; from all these situations, general guidelines for choosing the optimal ultrafast 2D NMR scheme for a particular sample and condition could be deduced.
2007
Three-dimensional nuclear magnetic resonance (3D NMR) provides one of the foremost analytical tools available for the elucidation of biomolecular structure, function and dynamics. Executing a 3D NMR experiment generally involves scanning a series of time-domain signals S(t3), as a function of two time variables (t1, t2) which need to undergo parametric incrementations throughout independent experiments. Recent years have witnessed extensive efforts towards the acceleration of this kind of experiments. Among the different approaches that have been proposed counts an "ultrafast" scheme, which distinguishes itself from other propositions by enabling - at least in principle - the acquisition of the complete multidimensional NMR data set within a single transient. 2D protein NMR implementations of this single-scan method have been demonstrated, yet its potential for 3D acquisitions has only been exemplified on model organic compounds. This publication discusses a number of strategies that could make these spatial encoding protocols compatible with 3D biomolecular NMR applications. These include a merging of 2D ultrafast NMR principles with temporal 2D encoding schemes, which can yield 3D HNCO spectra from peptides and proteins within ≈100 s timescales. New processing issues that facilitate the collection of 3D NMR spectra by relying fully on spatial encoding principles are also assessed, and shown capable of delivering HNCO spectra within 1 s timescales. Limitations and prospects of these various schemes are briefly addressed.
We have recently proposed a protocol for retrieving multidimensional magnetic resonance images within a single scan, based on a spatial encoding of the spin interactions. This methodology relies on progressively dephasing spin coherences throughout a sample; for instance, by sweeping a radiofrequency pulse in the presence of a magnetic field gradient. When spins are suitably refocused by a second (acquisition) field gradient, this yields a time-domain signal reflecting in its magnitude the spatial distribution of spins throughout the sample. It is hereby shown that whereas the absolute value of the resulting signals conveys such imaging information, the hitherto unutilized phase modulation of the signal encodes the chemical shift offsets of the present speciae. Spectroscopically-resolved multidimensional images can thereby be retrieved in this fashion at no additional expense in either experimental complexity, sensitivity or acquisition time-simply by performing an additional analysis of the collected data. The resulting approach to single-scan spectroscopic imaging can also incorporate "RF shimming" compensating abilities, capable of providing high-resolution spectral and high-definition imaging data even under the presence of substantial magnetic field inhomogeneities. The principles of these methodologies as applied to spectroscopic imaging are briefly reviewed and compared against the background of traditional Fourier-based single-scan spectroscopic imaging protocols. Demonstrations of these new multidimensional spectroscopic MRI experiments on simple phantoms are also given.
2D NMR relies on monitoring systematic changes in the phases incurred by spin coherences as a function of an encoding time t1, whose value changes over the course of independent experiments. The intrinsic multi-scan nature of such protocols implies that resistive and/or hybrid magnets, capable of delivering the highest magnetic field strengths but possessing poor temporal stabilities, become unsuitable for 2D NMR acquisitions. It is here shown with a series of homo- and hetero-nuclear examples that such limitations can be bypassed using recently proposed 2D 'ultrafast' acquisition schemes, which correlate interactions along all spectral dimensions within a single-scan.
Two-dimensional (2D) NMR is an important tool for elucidating molecular structure and dynamics. However, the method is limited by the low sensitivity inherent to NMR techniques, resulting in typical acquisition times for 2D NMR spectra ranging from minutes to hours. A number of hyperpolarization techniques have been explored to boost NMR's sensitivity, including an ex situ dynamic nuclear polarization method capable of yieldingfor an array of molecules and under conventional observation conditions for liquid samples signals that exceed those currently afforded by the highest-field spectrometers by several orders of magnitude. Whereas this methodology is able to provide the sensitivity equivalent of 10 6 scans, it is constrained to extract its super-spectrum within a single transient, making it a poor starting point for conventional 2D NMR acquisitions. Here, we show that if the ex situ dynamic nuclear polarization approach is suitably merged with spatially encoded ultrafast NMR spectroscopy, 2D NMR spectra of liquid samples at submicromolar concentrations can be acquired within 0.1 s.
Following unidirectional biophysical events such as the folding of proteins or the equilibration of binding interactions, requires experimental methods that yield information at both atomic-level resolution and at high repetition rates. Toward this end a number of different approaches enabling the rapid acquisition of 2D NMR spectra have been recently introduced, including spatially encoded "ultrafast" 2D NMR spectroscopy and SOFAST HMQC NMR. Whereas the former accelerates acquisitions by reducing the number of scans that are necessary for completing arbitrary 2D NMR experiments, the latter operates by reducing the delay between consecutive scans while preserving sensitivity. Given the complementarities between these two approaches it seems natural to combine them into a single tool, enabling the acquisition of full 2D protein NMR spectra at high repetition rates. We demonstrate here this capability with the introduction of "ultraSOFAST" HMQC NMR, a spatially encoded and relaxation-optimized approach that can provide 2D protein correlation spectra at ∼1 s repetition rates for samples in the ∼2 mM concentration range. The principles, relative advantages, and current limitations of this new approach are discussed, and its application is exemplified with a study of the fast hydrogen-deuterium exchange characterizing amide sites in Ubiquitin.
Recent years have witnessed increased efforts toward the accelerated acquisition of multidimensional nuclear magnetic resonance (nD NMR) spectra. Among the methods proposed to speed up these NMR experiments is "projection reconstruction," a scheme based on the acquisition of a reduced number of two-dimensional (2D) NMR data sets constituting cross sections of the nD time domain being sought. Another proposition involves "ultrafast" spectroscopy, capable of completing nD NMR acquisitions within a single scan. Potential limitations of these approaches include the need for a relatively slow 2D-type serial data collection procedure in the former case, and a need for at least n high-performance, linearly independent gradients and a sufficiently high sensitivity in the latter. The present study introduces a new scheme that comes to address these limitations, by combining the basic features of the projection reconstruction and the ultrafast approaches into a single, unified nD NMR experiment. In the resulting method each member within the series of 2D cross sections required by projection reconstruction to deliver the nD NMR spectrum being sought, is acquired within a single scan with the aid of the 2D ultrafast protocol. Full nD NMR spectra can thus become available by backprojecting a small number of 2D sets, collected using a minimum number of scans. Principles, opportunities, and limitations of the resulting approach, together with demonstrations of its practical advantages, are here discussed and illustrated with a series of three-dimensional homo- and heteronuclear NMR correlation experiments.
The acquisition of ideal powder line shapes remains a recurring challenge in solid-state wideline nuclear magnetic resonance (NMR). Certain species, particularly quadrupolar spins in sites associated with large electric field gradients, are difficult to excite uniformly and with good efficiencies. This paper discusses some of the opportunities that arise upon departing from standard spin-echo excitation approaches and switching to echo sequences that use low-power, frequency-swept radio frequency (rf) pulses instead. The reduced powers demanded by such swept rf fields allow one to excite spins in different crystallites efficiently and with orientation-independent pulse angles, while the large bandwidths of interest that are needed by the measurement can be covered, thanks to the use of broadband frequency sweeps. The fact that the spins' evolution and ensuing dephasing starts at the beginning of such rf manipulation calls for the use of spin-echo sequences; a number of alternatives capable of providing the desired line shapes both in the frequency and in the time domains are introduced and experimentally demonstrated. Sensitivity- and lineshape-wise these experiments are competitive vis-̀-vis current implementations of wideline quadrupolar NMR based on hard rf pulses; additional opportunities that may derive from these ideas are also briefly discussed.
2006
Among the methods proposed in recent years toward the acceleration of multidimensional NMR acquisitions is an "ultrafast" approach, capable of delivering arbitrary 2D correlations within a single scan. This scheme operates by parallelizing the indirect-domain temporal incrementation involved in 2D acquisitions, using as aid an ancillary inhomogeneous frequency broadening acting in combination with a train of frequency-shifted RF pulses. So far, all implementations of this frequency broadening have relied on magnetic field gradients; yet the practical performance of gradient-based approaches is sometimes inadequatefor instance when applied on solid samples subject to magic-angle spinning. In order to deal with these cases, an alternative encoding protocol is here introduced and experimentally exemplified, based on exploiting the intrinsic anisotropy that spin interactions exhibit in the solid state as the ancillary broadening in charge of encoding the interactions to be measured. Principles and preliminary examples of the new orientationally encoded ultrafast 2D NMR principle thus resulting are presented and discussed.
We have recently proposed a protocol for retrieving multidimensional magnetic resonance spectra and images within a single scan, based on a spatial encoding of the spin interactions. The spatial selectivity of this encoding process also opens up new possibilities for compensating magnetic field inhomogeneities; not by demanding extreme uniformities from the B0 fields, but by compensating for their effects at an excitation and/or refocusing level. This potential is hereby discussed and demonstrated in connection with the single-scan acquisition of high-definition multidimensional images. It is shown that in combination with time-dependent gradient and radiofrequency manipulations, the new compensation approach can be used to counteract substantial field inhomogenities at either global or local levels over relatively long periods of time. The new compensation scheme could find uses in areas where heterogeneities in magnetic fields present serious obstacles, including rapid studies in regions near tissue/air interfaces. The principles of the B0 compensation method are reviewed for one- and higher-dimensional cases, and experimentally demonstrated on a series of 1D and 2D single-scan MRI experiments on simple phantoms.
We have recently proposed a protocol for retrieving nuclear magnetic resonance (NMR) spectra based on a spatially-dependent encoding of the MR interactions. It has also been shown that the spatial selectivity with which spins are manipulated during such encoding opens up new avenues towards the removal of magnetic field inhomogeneities; not by demanding extreme Bo field uniformities, but rather by compensating for the dephasing effects introduced by the field distribution at a radiofrequency excitation and/or refocusing level. The present study discusses in further detail a number of strategies deriving from this principle, geared at acquiring both uni- as well as multi-dimensional spectroscopic data at high resolution conditions. Different variants are presented, tailored according to the relative sensitivity and chemical nature of the spin system being explored. In particular a simple multi-scan experiment is discussed capable of affording substantial improvements in the spectral resolution, at nearly no sensitivity or scaling penalties. This new compensation scheme is therefore well-suited for the collection of high-resolution data in low-field systems possessing limited signal-to-noise ratios, where magnetic field heterogeneities might present a serious obstacle. Potential areas of applications of these techniques include high-field in vivo NMR studies in regions near tissue/air interfaces, clinical low field MR spectroscopy on relatively large off-center volumes difficult to shim, and ex situ NMR. The principles of the different compensation methods are reviewed and experimentally demonstrated for one-dimensional inhomogeneities; further improvements and extensions are briefly discussed.
Solid-state NMR has been used to analyze the chemical environments of sodium sites in powdered crystalline samples of sodium nucleotide complexes. Three of the studied complexes have been previously characterized structurally by crystallography (disodium deoxycytidine-5\u2032-monophosphate heptahydrate, disodium deoxyuridine-5\u2032-monophosphate pentahydrate and disodium adenosine-5\u2032-triphosphate trihydrate). For these salts, the nuclear quadrupole coupling parameters measured by 23Na multiple-quantum magic-angle-spinning NMR could be readily correlated with sodium ion coordination environments. Furthermore, two complexes that had not been previously characterized structurally, disodium uridine-3\u2032-monophosphate and a disodium uridine-3\u2032-monophosphate/disodium uridine-2\u2032- monophosphate mix, were identified by solid-state NMR. A spectroscopic assignment of the four sites of an additional salt, disodium adenosine-5\u2032-triphosphate trihydrate, is also presented and discussed within the context of creating a general approach for the spectroscopic assignment of multiple sites in sodium nucleotide complexes.
The local dynamics of aromatic cores was analyzed for a homologous series of polyamides in the solid phase incorporating phenyl, biphenyl and naphthyl groups. Preliminary wide-line and spin-relaxation variable-temperature 1H NMR measurements revealed the presence of thermally activated molecular motions for each polymer studied. A number of 13C NMR experiments were then implemented to further clarify the nature and extent of such motions. These included 1H-13C 2D separate-local-field measurements, whose line shapes revealed that motions involved for all cases a superposition of states. These could in principle be associated with rigid and mobile populations in these semi-crystalline aramides, a model that yielded a proper description of the spectra at all temperatures. To further probe this model the relaxation behavior of the aramides' 13C spins was monitored in the rotating frame as a function of temperature, in both the presence and absence of homonuclear 1H- 1H decoupling. The variations observed in these measurements evidenced a thermally activated, relatively broad distribution of motional rates in the polymers. Editing the 2D local-field data according to the 13C relaxation also supported this heterogeneous dynamic model. The mechanism underlying this behavior and implications towards the 13C analysis of motions in aramides in particular and complex polymers in general, is briefly discussed.
Multidimensional NMR spectroscopy plays an important role in the characterization of molecular structure and dynamics. A new methodology for acquiring this kind of spectra has been recently demonstrated, endowed with the potential to compress arbitrary multidimensional NMR acquisitions into a single scan. This "ultrafast" nD acquisition protocol is based on a spatiotemporal encoding of the indirect-domain spin evolution, followed by a repetitive decoding and reencoding of the information thus stored employing a train of alternating-sign gradients. Such train of switching gradients extending throughout the course of the data acquisition may pose extreme demands on a magnetic resonance system, particularly when dealing with nonshielded gradients, strong eddy currents, or rapidly relaxing spin systems. Limits to the in vivo applicability of such fast-switching scheme may also arise due to gradient-induced perineural stimulation. The present study describes a new approach to ultrafast nD NMR that reduces the number of gradient switchings during the acquisition period to zero, leading in essence to a constant-gradient acquisition scheme. This approach operates on the basis of a novel spatiotemporal encoding including discrete, temporally overlapping, frequency-shifted pulses. Principles and examples of this new approach are given; sensitivity limitations and signal-enhancing prospects of such constant-gradient acquisitions are also discussed and exemplified.
Single-scan multidimensional spectroscopy utilizes spatial dimensions for encoding the indirect-domain internal spin interactions. Various strategies have been hitherto demonstrated for fulfilling the encoding needs underlying this methodology; in analogy with their time-domain counterparts all of them have in common the fact that they proceed monotonically-starting at one end of the sample and concluding at the other. The present manuscript discusses another possibility that arises for the case of amplitude-modulated ultrafast nD NMR, whereby the spatial encoding progresses from both ends of the sample simultaneously towards the center. Such symmetric encoding is compatible with continuous or discrete excitations as well as with homonuclear or heteronuclear correlations, and exhibits a number of advantages vis-à-vis the unidirectional encodings that have been used so far: it originates echoes that are free from large first-order phase distortions, and yields nD peaks possessing a purely-absorptive character. It has the added advantage that for a given indirect-domain spectral resolution it can complete its task in half the time required by a conventional monotonic spatial encoding, leading to potentially important gains in sensitivity. The main features underlying this new spatially symmetric encoding protocol are derived, and its advantages are demonstrated with a series of amplitude-modulated homo- and hetero-nuclear 2D ultrafast NMR examples.
An approach enabling the acquisition of 2D nuclear magnetic resonance (NMR) spectra within a single scan has been recently proposed. A promising application opened up by this "ultrafast" data acquisition format concerns the monitoring of chemical transformations as they happen, in real time. The present paper illustrates some of this potential with two examples: (i) following an H/D exchange process that occurs upon dissolving a protonated protein in D2O, and (ii) real-time in situ tracking of a transient Meisenheimer complex that forms upon rapidly mixing two organic reactants inside the NMR observation tube. The first of these measurements involved acquiring a train of 2D 1H-15N HSQC NMR spectra separated by ca. 4 s; following an initial dead time, this allowed us to monitor the kinetics of hydrogen exchange in ubiquitin at a site-resolved level. The second approach enabled us to observe, within ca. 2 s after the triggering of the reaction, a competition between thermodynamic and kinetic controls via changes in a series of 2D TOCSY patterns. The real-time dynamic experiments hereby introduced thus add to an increasing family of fast characterization techniques based on 2D NMR; their potential and limitations are briefly discussed.
Multidimensional spectroscopy plays a number of essential roles in contemporary magnetic resonance. It brings a resolution enhancement without which numerous NMR applications in organic and inorganic chemistry would be unattainable, it serves as a basic tool in the assignment and structural elucidation of complex biological structures, and it is an integral part of the image formation protocol in MRI. The present review describes a recent scheme which we have developed, enabling the acquisition of complete 2D NMR data sets within a single continuous acquisition. Provided that an analyte's signal is sufficiently strong, the acquisition time of multidimensional NMR experiments can thus be shortened by several orders of magnitude. The new methodology is compatible with existing multidimensional pulse sequences (COSY, TOCSY, HSQC, MRI) and can be implemented using conventional hardware. The spatial encoding of the NMR interactions - which is the new principle underlying this ultrafast NMR protocol - is discussed, and the protocol's performance is exemplified with a variety of homonuclear and heteronuclear 2D NMR and MRI acquisitions.
2005
Dynamic processes such as chemical exchange or rotations between inequivalent orientations can affect the magic-angle spinning (MAS) and the multiple-quantum (MQ) MAS NMR spectra of half-integer quadrupolar nuclei. The present paper discusses such dynamic multisite MAS and MQMAS effects and applies them to study the dynamic processes that occur in the double perovskite cryolite, Na3AlF6. Dynamic line shape simulations invoking a second-order broadening of the central transition and relying on the semiclassical Bloch-McConnell formalism for chemical exchange were performed for a variety of exchange models possessing different symmetries. Fitting experimental variable-temperature cryolite 23Na NMR data with this formalism revealed that the two inequivalent sodium sites in this mineral undergo an exchange characterized by a broad distribution of rates. To further assess this dynamic process a variety of 27Al and 19F MAS NMR studies were also undertaken; quantitative 27Al-19F dipolar coupling measurements then revealed a dynamic motion of the AlF 6 octahedra that were qualitatively consistent with predictions stemming from molecular dynamic simulations on this double perovskite.
Ultrafast 2D NMR replaces the time-domain parametrization usually employed to monitor the indirect-domain spin evolution, with an equivalent encoding along a spatial geometry. When coupled to a gradient-assisted decoding during the acquisition, this enables the collection of complete 2D spectra within a single transient. We have presented elsewhere two strategies for carrying out the spatial encoding underlying ultrafast NMR: a discrete excitation protocol capable of imparting a phase-modulated encoding of the interactions, and a continuous protocol yielding amplitude-modulated signals. The former is general but has associated with it a number of practical complications; the latter is easier to implement but unsuitable for certain 2D NMR acquisitions. The present communication discusses a new protocol that incorporates attractive attributes from both alternatives, imparting a continuous spatial encoding of the interactions yet yielding a phase modulation of the signal. This in turn enables a number of basic experiments that have shown particularly useful in the context of in vivo 2D NMR, including 2D J-resolved and 2D H,H-COSY spectroscopies. It also provides a route to achieving sensitivity-enhanced acquisitions for other homonuclear correlation experiments, such as ultrafast 2D TOCSY. The main features underlying this new spatial encoding protocol are derived, and its potential demonstrated with a series of phase-modulated homonuclear single-scan 2D NMR examples.
A new protocol for processing the data arising in ultrafast 2D NMR is discussed and exemplified, based on the interlaced Fourier transformation. This approach is capable of dealing in a single, combined fashion, with the two mirror-imaged interferograms arising in this kind of experiment as a result of the acquisition of a train of magnetic field gradient echoes. By combining all the acquired data points into a common Fourier processing procedure the spectral width along the direct-acquisition domain becomes effectively doubled, giving the opportunity of employing acquisition gradients that are approximately half as strong as hitherto required. This in turn should lead to an overall enhancement in the signal-to-noise ratio of the experiment of ca. 2, as well as to improvements in the achievable digital resolution. These expectations were tested by carrying out a series of homo- and heteronuclear ultrafast 2D NMR acquisitions, and found systematically fulfilled. The robustness and conditions that allow the interlaced numerical procedure to be implemented in routine analytical applications were explored and are briefly discussed.
An approach that enables the acquisition of multidimensional NMR spectra within a single scan has been recently proposed and demonstrated. The present paper explores the applicability of such ultrafast acquisition schemes toward the collection of two-dimensional magnetic resonance imaging (2D MRI) data. It is shown that ideas enabling the application of these spatially encoded schemes within a spectroscopic setting, can be extended in a straightforward manner to pure imaging. Furthermore, the reliance of the original scheme on a spatial encoding and subsequent decoding of the evolution frequencies endows imaging applications with a greater simplicity and flexibility than their spectroscopic counterparts. The new methodology also offers the possibility of implementing the single-scan acquisition of 2D MRI images using sinusoidal gradients, without having to resort to subsequent interpolation procedures or non-linear sampling of the data. Theoretical derivations on the operational principles and imaging characteristics of a number of sequences based on these ideas are derived, and experimentally validated with a series of 2D MRI results collected on a variety of model phantom samples.
2004
A new protocol for acquiring multidimensional NMR spectra within a single scan is introduced and illustrated. The approach relies on applying a pair of frequency-chirped excitation and storage pulses in combination with echoing magnetic field gradients, in order to impart the kind of linear spatial encoding of the NMR interactions that is required by ultrafast 2D NMR spectroscopy. It is found that when dealing with 2D NMR experiments involving a t1 amplitude-modulation of the spin evolution, such continuous encoding scheme presents a number of advantages over alternatives employing discrete excitation pulses. From an experimental standpoint this is mainly reflected by the use of a single pair of bipolar gradients during the course of the indirect-domain encoding, as opposed to the numerous (and more intense) gradient echoes required so far. In terms of the spectral outcome, main advantages of the continuous spatial encoding scheme are the avoidance of "ghost peaks" and of "enveloping effects" associated to the discrete excitation mode. The principles underlying this new spatial encoding protocol are derived, and its applicability is demonstrated with homo- and heteronuclear 2D ultrafast NMR applications on small molecule and on protein samples.
A new methodology capable of delivering complete 2D NMR spectra within a single scan was recently introduced. The resulting potential gain in time resolution could open new opportunities for in vivo spectroscopy, provided that the technical demands of the methodology are satisfied by the corresponding hardware. Foremost among these demands are the relatively short switching times expected from the applied gradient-echo trains. These rapid transitions may be particularly difficult to accomplish on imaging systems. As a step toward solving this problem, we assessed the possibility of replacing the square-wave gradient train currently used during the course of the acquisition by a shaped sinusoidal gradient. Examples of the implementation of this protocol are given, and successful ultrafast acquisitions of 2D NMR spectra with suitable spectral widths on a microimaging probe (for both phantom solutions and ex vivo mouse brains) are demonstrated.
A recently proposed protocol enables the acquisition of two-dimensional nuclear magnetic resonance (2D NMR) spectra within a single scan. A promising application opened up by this new data acquisition mode concerns its combination with active nuclear polarization methods, whereby spectroscopy is carried out on analytes whose spin magnetizations have been significantly enhanced over their Boltzmann thermal values. The present paper explores the potential of such combination, with the acquisition of peptide and protein 2D NMR 1H correlation spectra recorded after the samples had been subject to laser-driven chemically induced dynamic nuclear polarization (CIDNP). It is demonstrated that the speed and sensitivity enhancement afforded by these combined processes enables the acquisition of quality 2D NMR data sets within a fraction of a second, at analyte concentrations that are under 1 mM.
A scheme enabling the acquisition of high-resolution nuclear magnetic resonance (NMR) spectra within inhomogeneous magnetic fields is introduced and exemplified. The scheme is based on the spatial encoding protocol recently introduced for collecting multidimensional NMR data within a single scan, which retrieves spectral information via interference phenomena between spin packets located at distinct positions within the sample. This in turn enables compensating for field inhomogeneities over the sample as a whole by shifting the phases of the radio-frequency pulses involved in the spatial encoding, rather than by demanding an extreme uniformity in the employed magnetic field. The upper tolerable field inhomogeneity limit thus becomes orders of magnitude higher than that in conventional time-domain acquisitions. No particular spatial dependencies are demanded by the new scheme, which can yield its high-resolution results on a single-scan basis.
Measuring the nuclear magnetic resonance spectra of low-gamma heteronuclei such as N-15 constitutes an important analytical tool for the characterization of molecular structure and dynamics. The reduced resonance frequencies and magnetic moments of these heteronuclei, however, make the sensitivity of this kind of spectroscopy inherently lower than that of comparable H-1 NMR observations. A well-known solution to this sensitivity problem is indirect detection: a 2D NMR technique capable of enhancing the sensitivity of heteronuclear NMR by porting the actual data acquisition from the low-gamma nucleus to neighboring protons. This has become the standard method of observation in biomolecular NMR, where the resolution introduced by 2D spectroscopy is always a sought-after commodity. Indirect detection, however, has not gained a wide appeal in organic chemistry or in in vivo investigations, where one-dimensional heteronuclear NMR information usually suffices. The present study explores the possibility of retaining certain advantages derived from indirect detection while not giving up on the simple one-dimensional nature of heteronuclear NMR, by relying on the spatial-encoding scheme we have recently demonstrated for implementing single-scan multi-dimensional NMR spectroscopy. Preliminary results based on a 1D N-15 NMR can be enhanced significantly in this manner; the relevance of this experiment given the advent of dedicated H-1-observing cryogenic probeheads with very high sensitivities is briefly discussed.
We have recently demonstrated that the spatial encoding of internal nuclear magnetic resonance (NMR) spin interactions can be exploited to collect multidimensional NMR spectra within a single scan. Such experiments rely on an inhomogeneous spatial excitation of the spins throughout the sample, and lead to indirect-domain peaks via a constructive interference among the spatially resolved spin-packets that are thus created. The shape of the resulting indirect-domain echo peaks approaches a Sinc function when the chemical's distribution is uniform, but will depart from this function otherwise. It is hereby shown that a Fourier analysis of either the diagonal- or the cross-peaks resolved in these single-scan two-dimensional (2D) NMR experiments can in fact provide a weighted spatial distribution of the analyte originating such peak, thus opening up the possibility of completing spatially resolved multidimensional NMR measurements within a fraction of a second. Principles of this new mode of analysis are discussed, and examples where the potential of spatially resolved ultrafast 2D NMR spectroscopy is brought to bear are presented. Potential extensions of this approach to higher dimensions are also briefly addressed.
We have recently proposed and demonstrated an approach that enables the acquisition of multidimensional nuclear magnetic resonance (NMR) spectra within a single scan. A promising application opened up by this new accelerated form of data acquisition concerns the possibility of monitoring in real time the chemical nature of analytes subject to a continuous flow. The present paper illustrates such potential, with the real-time acquisition of a series of 2D 1H NMR spectra arising from a mixture of compounds subject to a continuous liquid chromatography (LC) separation. This real-time 2D NMR identification of chemicals eluted minutes apart under usual LC-NMR conditions differs from the way in which LC-2D NMR has hitherto been carried out, which relies on stopped-flow modes of operations whereby fractions are first collected and then subject to individual, aliquot-by-aliquot analyses. The real-time LC-2D NMR experiment hereby introduced can be implemented in a straightforward manner using modern commercial LC-NMR hardware, thus opening up immediate possibilities in high-throughput characterizations of complex molecules.
We have recently proposed and demonstrated an approach that enables the acquisition of 2D nuclear magnetic resonance (NMR) spectra within a single scan. The approach is based on spatially encoding the spins' evolution along the indirect domain with the aid of a magnetic field gradient, and subsequently decoding this information numerous times over the course of the signal acquisition while spins are subject to a train of gradient echoes. The present paper discusses further considerations pertaining the 2D line shapes arising from this new way of collecting NMR data. Specific issues that are hereby addressed include (i) the effects introduced by fast relaxation onto the spatial encoding process, particularly the line widths and line shapes that will then arise in the frequency domain; (ii) approaches capable of correcting for the mixed-phase kernels resulting in these fast-relaxation cases, corresponding in essence to spatially encoded analogs of the TPPI and hypercomplex time-domain acquisition procedures; (iii) the enveloping characteristics imposed by the use of discrete excitation pulses on the attainable spectral widths along the indirect domain; and (iv) an analysis of the signal-to-noise characteristics of the methodology, with experimental corroborations of theoretical predictions and an illustration of the method's capabilities to analyze protein solutions in the mM-range concentration.
2003
We have recently demonstrated that magnetic field gradients in combination with frequency selective pulses, can be employed to collect a complete multi-dimensional NMR spectrum within a single scan. Following similar guidelines, field gradients could also be exploited to parallelize other types of NMR experiments where the final results arise from the collection and analysis of a series of time-incremented spectra. The present Communication exemplifies this concept by showing how a combination of gradients can be employed to monitor within a single continuous acquisition, a slow dynamic process which is in turn followed by systematic increments in the duration of a magnetization transfer time. Further, since 2D exchange NMR spectra can nowadays be themselves collected within one scan, the acquisition of a complete set of mixing-incremented 2D exchange patterns could be achieved within a single experiment entailing a total time of ≈1s.
This study presents a theoretical, numerical, and experimental survey on the nature of homonuclear dipolar couplings in systems of half-integer quadrupolar nuclei undergoing magic-angle-spinning (MAS). Various spin interactions that do not commute with homonuclear dipolar couplings (chemical shift effects, heteronuclear dipolar couplings, quadrupolar interactions) may lead to recoupling effects under MAS, yielding a variety of pathways for transferring magnetization between proximate quadrupole nuclei in 2D correlation experiments. The Hamiltonians underlying this anisotropy-driven recoupling of the dipolar interactions are theoretically derived and their characteristics revealed from theoretical and numerical arguments. To explore when and how these various recoupling mechanisms become relevant, a variety of 23Na and 11B 2D exchange NMR experiments were performed at different external magnetic fields and MAS frequencies on several compounds: Na2HPO4·2H2O, Na2SO 3, disodium deoxycytidine heptahydrate, B2O3 and B10H14. The structural information content afforded by these experiments as well as their potential limitations are discussed.
Two-dimensional (2D) spectroscopy is central to many contemporary applications of NMR. Recently, we have introduced a new approach whereby 2D NMR spectra can be collected within a single scan. This methodology employs a magnetic field gradient in order to spatially encode the time evolution occurring along the indirect dimension. The discrete nature of the t 1 incrementation and its one-to-one correspondence with the spatial encoding, may lead to a number of artifacts. Most notable among these is a periodicity of the spectral peaks that are observed along the indirect axes. The appearance of such 'ghost-peaks', which may sometime coincide with genuine cross-peaks, could hamper a proper interpretation of the spectra. This contribution reviews the origin of such multiple resonances, and proposes a procedure for their elimination based on the acquisition of a small number of complementary scans. Such complementary scans can be simultaneously employed for the sake of phase-cycling out other unwanted signals, and improve the overall indirect-domain spectral resolution. Brief mathematical descriptions of the ghost-peak generation and ghost-peak suppression mechanisms are described, followed by experimental tests on a number of samples using various pulse sequences.
Multidimensional nuclear magnetic resonance (NMR) provides one of the foremost analytical tools available to elucidate the structure and dynamics of complex molecules in their native states. Executing this kind of experiment generally requires collecting an n-dimensional time-domain signal S, from which the spectrum arises via an appropriate Fourier analysis of its various time variables. This time-domain signal is actually measured directly only along one of the time axes, while the effects introduced by the remaining time variables are monitored via a parametric incrementation of their values throughout independent experiments. Two-dimensional (2D) NMR experiments thus usually require longer acquisition times than unidimensional experiments, 3D NMR is orders-of-magnitude more time consuming than 2D spectroscopy, etc. Very recently, we proposed and demonstrated an approach whereby data acquisition in 2D NMR can be parallelized, enabling the collection of complete 2D spectral sets within a single transient. The present paper discusses the extension of this 2D NMR methodology to an arbitrary number of dimensions. The principles of the ensuing ultrafast n-dimensional NMR approach are described, and a variety of homo- and heteronuclear 3D and 4D NMR spectra collected within a fraction of a second are presented.
Two-dimensional nuclear magnetic resonance (2D NMR) provides one of the foremost contemporary tools available for the elucidation of molecular structure, function, and dynamics. Execution of a 2D NMR experiment generally involves scanning a series of time-domain signals S(t2), as a function of a t1 time variable which undergoes parametric incrementation throughout independent experiments. Very recently, we proposed and demonstrated a general approach whereby this serial mode of data acquisition is parallelized, enabling the acquisition of complete bidimensional NMR data sets via the recording of a single transient. The present paper discusses in more detail various conceptual and experimental aspects of this novel 2D NMR methodology. The basic principles of the approach are reviewed, various homo- and heteronuclear NMR applications are illustrated, and the main features and artifacts affecting the method are derived. Extensions to higher-dimensional experiments are also briefly noted.
New multidimensional NMR methods correlating the quadrupolar and heteronuclear dipolar interactions affecting a half-integer quadrupolar spin in the solid state are introduced and exemplified. The methods extend separated-local-field magic-angle spinning (SLF MAS) NMR techniques that have been used successfully in spin-1/2 spectroscopy to the study of S ≥ 3/2 nuclei. In our implementation, these techniques avoid homonuclear proton decoupling requirements by relying on moderately fast MAS rates (6-15 kHz) and use rotor-synchronized constant-time pulse sequences to achieve nearly arbitrary amplifications of the apparent dipolar coupling strengths. The result is a suite of simple 2D NMR experiments, whose line shapes carry valuable information about the structure and dynamics of solids containing quadrupolar and proton nuclei. The potential of these sequences was exploited to gather new insight into the structure and dynamics of a variety of boron-containing samples. These experimental SLF schemes were also extended to 3D NMR experiments that incorporate multiple-quantum MAS, thus enabling the resolution needed to study multiple chemical sites in a solid and providing a useful tool for the assignment of inequivalent sites.
We discuss the potential use of relaxation times toward the resolution of inequivalent chemical sites in the NMR spectroscopy of powdered or disordered samples. This proposal is motivated by the significant differences that can often be detected in the relaxation behavior of sites in solids, particularly when focusing on NMR observations of quadrupolar nuclei possessing different coordination and/or dynamic environments. It is shown that in these cases the implementation of a non-negative least-squares analysis on relaxation data sets enables the bidimensional resolution of overlapping powder line shapes, even when dealing with static samples. In combination with signal-enhancement methodologies such as the quadrupolar Carr-Purcell Meiboom-Gill train, such relaxation-assisted separations open up valuable routes toward the high-resolution characterization of systems involving insensitive (e.g., low-γ) nuclei. The principles and limitations of the 2D NMR approach resulting from these considerations are discussed, and their potential is exemplified with a variety of static and spinning investigations. Their extension to other nuclear systems where spectral resolution is problematic, such as protons in organic solids, is also briefly considered.
The nature of higher-order effects in solid-state nuclear magnetic resonance (NMR), when quadrupolar nuclei were subjected to chemical shift anisotropies, was discussed. The quadrupole-shielding effects as field-independent broadening enabled their distinction from other broadening mechanisms arising from shielding dispersion, was also elaborated. It was shown that the quadrupole interaction gave rise to shielding-derived terms, not entirely averaged away by conventional magic-angle spinning (MAS).
2002
A scheme enabling the complete sampling of multidimensional NMR domains within a single continuous acquisition is introduced and exemplified. Provided that an analyte's signal is sufficiently strong, the acquisition time of multidimensional NMR experiments can thus be shortened by orders of magnitude. This could enable the characterization of transient events such as proteins folding, 2D NMR experiments on samples being chromatographed, bring the duration of higher dimensional experiments (e.g., 4D NMR) into the lifetime of most proteins under physiological conditions, and facilitate the incorporation of spectroscopic 2D sequences into in vivo imaging investigations. The protocol is compatible with existing multidimensional pulse sequences and can be implemented by using conventional hardware; its performance is exemplified here with a variety of homonuclear 2D NMR acquisitions.
New approaches to the characterization of resonances in the solid-state NMR spectroscopy of half-integer quadrupolar nuclei are explored, on the basis of the acquisition of heteronuclear separate-local-field spectra on rotating solids. In their two-dimensional version, these experiments correlate for each chemical site a second-order quadrupolar MAS powder pattern with the dipolar MAS sideband pattern to nearby heteronuclei. As 3D NMR sequences, such 2D anisotropic correlation spectra become separated for inequivalent chemical sites along a third, isotropic dimension. Extending in such manner separate-local-field NMR approaches to quadrupoles facilitates the assignment of inequivalent resonances to specific structural environments, and provides new tools for the investigation of dynamics in solids. Details about these 2D and 3D NMR experiments are given, and their application is illustrated with 1H-23Na recoupling experiments on mononucleotides possessing multiple bound cations.
A novel approach to the determination of structure and potential dynamics in the solid-state NMR spectroscopy of half-integer quadrupolar nuclei is proposed and demonstrated. The new experiment combines into a single three-dimensional sequence, 2D multiple-quantum magic-angle-spinning NMR and 2D exchange NMR protocols. The result separates for each inequivalent chemical site its spin-diffusion powder line shape to proximate homonuclei. A peculiar feature of the experiment is the asymmetry it displays in the individual 2D powder patterns, resulting from its encoding of isotropic shifts before the mixing period. The resulting spectra facilitate the interpretation of the structural and dynamic features for the individual sites; experimental applications of this new method to relative geometry determinations in 23Na-23Na spin pairs are presented, and the quantitative evaluation of the resulting data is briefly discussed.
Although magnesium fulfills several essential biochemical roles, direct studies on this ion are complicated by its unfavorable spectroscopic characteristics. This contribution explores the possibility of monitoring magnesium-nucleic acid binding via a combination of [Co(NH3)6]3+ as surrogate for [Mg(H2O)6]2+, and of high-resolution solid-state 59Co NMR as a spectroscopic probe. Such strategy quenches fast cationic exchanges between bound and free states, while exploiting the superior NMR properties of the 59Co spin. Experiments on relatively small amounts of tRNA can then discern resonances corresponding to different metal binding environments. These characterizations were assisted by studies on model compounds and by multinuclear 31P-59Co recoupling experiments.
The local ordering, morphology, and dynamics of aromatic cores and flexible alkyl spacers were analyzed for a homologous series of main-chain polymeric liquid crystals. 13C NMR experiments showed that the nematic ordering achieved by these synthetic polymers was retained into the solid state if their quenchings occur while remaining within the strong NMR magnetic field. The degree of orientation in the resulting glasses was investigated by variable-angle NMR experiments and found to differ between polymers with an even number of methylene units in the flexible spacer vs those with an odd number. To further discern at a molecular level the nature of these differences, the structures of these polyesters were examined by high-resolution solid-state 13C NMR. It was found that while the odd-chained series displayed a conformational annealing upon aligning, even-chained polymers were generally in all-trans conformations both for as-synthesized and for aligned samples. Variable-temperature 1D and 2D NMR experiments also illustrated substantial differences in the degree of motional dynamics between the odd and even polymer series: whereas considerable rigidity was exhibited by the even-numbered series all the way up to 150 °C, a relatively high flexibility displayed by the odd-methylene polymers. In unison, these measurements provide insight into the significant changes that can be imparted into the structure and dynamics of main-chain thermotropic polymers by subtle manipulations of their monomeric structures.
The nature of higher order quadrupolar-shielding effects in solid state nuclear magnetic resonance (NMR) was addressed. These effects were exploited to directly measure the antisymmetric components of the shielding tensor via single-crystal NMR investigations of quadrupolar nuclei. Nonsecular quadrupole-shielding contributions revealed several features, including, the emergence of field-independent terms, that could be directly traced to nonsecular contributions of either the CSA or the antisymmetric chemical shift. A numerical fitting algorithm was derived and used to extract such parameters from single-crystal rotation plots.
Multinuclear solid-state nuclear magnetic resonance studies (185/187Re, 55Mn, 75As, and 1H NMR) were undertaken on a series of polycrystalline inorganic salts incorporating diamagnetic XO4- groups, X being a half-integer quadrupolar nucleus. Exploiting data acquisition protocols that were recently developed for observing undistorted half-integer quadrupole central transitions, some of the largest quadrupole coupling constants reported to date by high field NMR were characterized (e2qQ/h ≈ 300 MHz). On repeating such measurements as a function of temperature, certain samples displayed reversible changes that could not be rationalized in terms of the usual temperature dependencies of the nuclear quadrupolar couplings. Instead, dynamic exchange processes between chemically or magnetically inequivalent sites had to be invoked. To quantitatively analyze these processes, the semiclassical Bloch-McConnell formalism for chemical exchange was extended to account for second-order quadrupole effects. Insight into the potential nature of the chemical dynamics was also obtained from quantum chemical calculations of the coupling parameters on model systems.
2001
A heteronuclear dipolar recoupling scheme applicable to I-S spin pairs undergoing magic-angle-spinning (MAS) is introduced, based on the overtone irradiation of one of the coupled nuclei. It is shown that when I is a quadrupole, for instance 14N, irradiating this spin at a multiple of its Larmor frequency prevents the formation of MAS dipolar echoes. The ensuing S-spin signal dephasing is significant and dependent on a number of parameters, including the I-S dipolar coupling, the magnitude of I's quadrupolar coupling, and the relative orientations between these two coupling tensors. When applied to a spin-1 nucleus, this overtone recoupling method differs from hitherto proposed recoupling strategies in that it involves only the 1±1〉 Iz eigenstates. Its dephasing efficiency becomes independent of first-order quadrupolar effects yet shows a high sensitivity to second-order offsets. A constant -time/variable-offset recoupling sequence thus provides a simple route to acquire, in an indirect fashion, 14N overtone spectra from rotating powders. The principles underlying this kind of S-14N experiments and different applications involving S = 13C, 59Co sites are presented.
A general treatment of the residual 1-S dipolar couplings that arise when heteronuclear quadrupolar spin pairs are subjected to MAS is presented. The resulting model yields analytical expressions for the multiplet structure of 1D S-spin spectra.
The basic features of homonuclear interactions between quadrupolar nuclei undergoing magic-angle spinning (MAS) were studied. The effects of homonuclear spin-pair dipolar interactions at high spinning frequencies on nuclear magnetic resonance (NMR) spectroscopy were analyzed. The quadrupolar driven recouplings were investigated by numerical simulations on half-integer quadrupolar nuclei. A theoretical model of the dipolar recoupling was proposed based on average Hamiltonian theory.
The order and dynamics of two lyotropic aromatic polyamides were studied by variable-director nuclear magnetic resonance (NMR). The spectra showed peaks shifting as well as broadening as a function of the director's orientation which are accounted on the basis of an exchange model involving molecular reorientations of the polymer chains that are happening in the intermediate NMR time scale. The description of the macromolecular order and dynamics in these fluids was extracted from the experimental line shapes.
A novel nuclear magnetic resonance (NMR) experiment for facilitating the resolution and assignment of liquid crystalline 13 C NMR spectra is described. The method involves the motor-driven reorientation of the liquid crystalline director, in synchrony with the acquisition of a 2D chemical shift correlation spectrum. By monitoring in this fashion the 13 C NMR evolution of spins in the liquid crystal at two different director orientations with respect to the magnetic field, the method distinguishes anisotropic from isotropic displacements and can be utilized for assigning the resonances and estimating local degrees of order. Of various potential pairs of angles suitable for such a correlation, the (0°, 90°) choice was found to be most convenient, as it avoids line broadening complications that may otherwise originate from heterogeneities of the oriented phase. The technique thus derived was employed in the analysis of a series of monomeric and polymeric liquid crystal systems.
Novel applications of solid state nuclear magnetic resonance (NMR) to the study of small molecules, synthetic polymers, biological systems, and inorganic materials continue at an accelerated rate. Instrumental to this uninterrupted expansion has been an improved understanding of the chemical physics underlying NMR. Such deeper understanding has led to novel forms of controlling the various components that make up the spin interactions, which have in turn redefined the analytical capabilities of solid state NMR measurements. This review presents a perspective on the basic phenomena and manipulations that have made this progress possible and describes the new opportunities and challenges that are being opened in the realms of spin-1/2 and quadrupole nuclei spectroscopies.
Novel procedures for the spectral assignment of peaks in high-resolution solid-state 13C NMR are discussed and demonstrated. These methods are based on the observation that at moderate and already widely available rates of magic-angle spinning (10-14 kHz MAS), CH and CH2 moieties behave to a large extent as if they were effectively isolated from the surrounding proton reservoir. Dipolar-based analogs of editing techniques that are commonly used in liquid-state NMR such as APT and INEPT can then be derived, while avoiding the need for periods of homonuclear 1H-1H multipulse decoupling. The resulting experiments end up being very simple, essentially tuning-free, and capable of establishing unambiguous distinctions among CH, CH2, and -C-/-CH3 carbon sites. The zprinciples underlying such sequences were explored using both numerical calculations and experimental measurements, and once validated their editing applications were illustrated on a number of compounds.
2000
A series of uni- and multidimensional variants of the dipolar exchange-assisted recoupling (DEAR) NMR experiment is described and applied to determinations of 13C-14N dipolar local field spectra in amino acids and dipeptides. The DEAR protocol recouples nearby nuclei by relying on differences in their relative rates of longitudinal relaxation, and has the potential to give quantitative geometric results without requiring radiofrequency pulsing on both members of a coupled spin pair. One- and two-dimensional variants of this recoupling strategy on generic I-S pairs are discussed, and measurements of 13C-14N distances and 2D local field experiments sensitive to the relative orientation of CN vectors with respect to the 13C shielding tensor are presented. Since these measurements did not involve pulsing on the broad nitrogen resonance, their results were independent of the quadrupolar parameters of this nucleus. High-resolution 3D NMR versions of the 2D experiments were also implemented in order to separate their resulting local field patterns according to the isotropic shifts of inequivalent 13C sites. These high-resolution 3D acquisitions involved collecting a series of 2D DEAR NMR data sets on rotating samples as a function of spinning angle, and then subjecting the resulting data to a processing akin to that involved in variable-angle correlation NMR. Once successfully tested on L-alanine this experiment was applied to the analysis of a series of dipeptides, allowing us to extract separate local field 13C-14N spectra from this type of multisite systems.
The acquisition of bidimensional heteronuclear nuclear magnetic resonance local field spectra under moderately fast magic-angle spinning (MAS) conditions is discussed. It is shown both experimentally and with the aid of numerical simulations on multispin systems that when sufficiently fast MAS rates are employed, quantitative dipolar sideband patterns from directly bonded spin pairs can be acquired in the absence of 1H-1H multiple-pulse homonuclear decoupling even for "real" organic solids. The MAS speeds involved are well within the range of commercially available systems (10-14 kHz) and provide sidebands with sufficient intensity to enable a reliable quantification of heteronuclear dipolar couplings from methine groups. Simulations and experiments show that useful information can be extracted in this manner even from more tightly coupled -CH2- moieties, although the agreement with the patterns simulated solely on the basis of heteronuclear interactions is not in this case as satisfactory as for methines. Preliminary applications of this simple approach to the analysis of molecular motions in solids are presented; characteristics and potential extensions of the method are also discussed.
Multiple-quantum magic-angle-spinning (MQMAS NMR) spectroscopy has become a routine method to obtain high-resolution spectra of quadrupolar nuclei. One of the main problems in the performance of this experiment has been the poor efficiency of the radio-frequency pulses used in converting multiple-quantum coherences to the observable single-quantum signals. As the MQMAS experiment is basically an echo experiment this problem can be related to the efficiency with which continuous wave pulses can normally achieve the multiple- to single-quantum conversion for different crystallites in a spinning powdered sample. In this paper we investigate various aspects involved in this multiple-to-single quantum conversion, in the hope to facilitate the devise of new experimental schemes that can lead to significant MQMAS signal enhancements. We examine in particular a recently suggested experiment for MQMAS spectroscopy which employs amplitude-modulated radio-frequency pulses, and which can yield substantial signal and even resolution enhancements over the commonly used pulse schemes in MQMAS experiments. The mechanisms of operation of continuous-wave and of amplitude-modulated pulses as applied to the selective manipulation of spin-3/2 coherence elements are examined in detail, with the aid of the fictitious spin-1/2 formalism in combination with quadrupolar adiabaticity arguments. New insight into the nature of the MQMAS experiment is thus revealed, and the superior performance of suitable amplitude modulations toward the formation of MQMAS powder echoes is justified. Experimental results highlighting the utility of this scheme in samples possessing multiple quadrupolar sites with varying quadrupolar anisotropies and chemical shift offsets are demonstrated, as is the relative insensitivity of the new signal-enhancement technique to the actual level of rf irradiation. Further implications and uses of this new irradiation scheme are also briefly discussed.
Multinuclear solid-state nuclear magnetic resonance methods (59Co, 13C, 15N, and 31P NMR) were applied at natural abundance to the structural and dynamic analysis of cyanocobalamin (vitamin B12) polymorphs. These studies involved recrystallizing a series of samples under different conditions and from various solvents, and subsequently recording their powder NMR spectra at different temperature. Two polymorphs could be identified in these studies, in correspondence with the two structures described by Hodgkin and co-workers in their seminal vitamin B12 crystallographic analyses. Most informative about the molecular differences characterizing these two forms were the 13C NMR data, which showed sharp and well-resolved resonances indicative of high sample crystallinity. Diagnostic differences between these two forms could be observed in the chemical shifts of particular resonances, many of which could be assigned to their molecular sites on the basis of solution-state literature and of solid-state spectral editing procedures. These shifts indicated a conformational variability that involved a few specific sites in the corrinoid ring and which was not entirely evident from differences among the X-ray structures previously reported for the forms. Further evidence about the conformational flexibility of these sites in the solid is furnished by 13C spectral shifts observed upon changing temperatures. The relevance of these observations within the context of the extensive structure/activity relation studies that have been carried out on this class of systems is briefly addressed.
Nonsecular dipolar couplings between spin-1/2 nuclei that are in close proximity to quadrupolar spins have been extensively documented in solid state nuclear magnetic resonance (NMR), particularly when involving directly bonded S = 13C, I = 14N spin pairs. These couplings arise due to the quadrupole-induced tilting of I's nuclear spin quantization axes, and their most notable characteristic is that they cannot be entirely averaged away by conventional magic-angle-spinning (MAS). Nonsecular dipolar couplings can also be expected to arise when both I and 5 are quadrupolar nuclei, even if these have hitherto not been analyzed in detail due to the interfering effects brought about by first- and second-order quadrupolar anisotropies. Yet, the advent of new high resolution techniques for studying half-integer quadrupole nuclei in solids such as multiple-quantum MAS or dynamic-angle-spinning can change this state of affairs. The present study presents a theoretical and numerical analysis on the results that can be expected from these techniques when applied to the observation of homonuclear or heteronuclear quadrupolar spin pairs in the high field limit. Variable field multiple-quantum MAS NMR results are then presented for a variety of compounds possessing 11B-14N, 11B-11B and 55Mn-55Mn spin pairs, that validate these theoretical predictions and illustrate the valuable information that can be extracted from analyzing these residual MAS couplings. The research potential as well as resolution limitations that according to theoretical calculations these effects will impart on MQMAS spectra recorded at low or moderate magnetic fields are thus evidenced.
1999
Natural abundance NMR methods were employed to analyze the liquid crystalline behavior of poly(p-phenylene-2,6-naphthylamide) and poly(p-phenylene-4,4\u2032-biphenylamide), two members of the aramide polymer family. These macromolecules were dissolved in absolute sulfuric acid and the extent of order in their liquid crystal phases was evaluated with the aid of solid phase 13C tensor data and by total simulations of their lyotropic NMR line shapes as a function of temperature and concentration. These measurements revealed that as reported recently for other phenyl-based aramides, the nematic order of polymers in these lyotropic phases is essentially independent of temperature while slightly dependent on concentration. When considered in unison with these previous 13C NMR analyzes this study also suggests that nematic order in aramides can be controlled by the choice of the monomeric chemical structures, increasing along the series naphthyl ≲ phenyl
We report here an improved way of doing the multiple-quantum magic-angle spinning (MQMAS) NMR experiment that relies on the use of amplitude modulated pulses. These pulses were found to yield MQMAS NMR signals that are considerably stronger (≈200-300%) than the ones arising from the usual continuous wave pulse schemes by virtue of a superior efficiency of the triple- to single-quantum conversion process. Numerical simulations and experimental results taking 23Na and 87Rb nuclei as examples are presented that corroborate the usefulness of this approach.
The present work discusses a new 2D NMR method for characterizing the principal values and relative orientations of the electric field gradient and the chemical shift tensors of half-integer quadrupolar sites. The technique exploits the different contributions that quadrupolar and shielding interactions impart on the evolution of multiple-quantum and of single-quantum coherences, in order to obtain 2D powder lineshapes that are highly sensitive to these nuclear spin coupling parameters. Different spinning variants of this experiment were assayed, but it was concluded that a static version can yield the highest sensitivity to the values of the principal components and to the relative geometries of the local coupfing tensors. It was found that correlating the central transition evolution with the highest available order of the spin coherence was also helpful for maximizing this spectral information. Good agreement between data obtained on 87Rb (S = 3/2) and 59Co (S = 7/2) samples and ideal theoretical lineshape predictions of this experiment was obtained, provided that heterogeneities in the multiple-quantum excitation and conversion processes were suitably accounted by procedures similar to those described in the spin-j multiple-quantum NMR literature,
The acquisition of distortion-free solid-state nuclear magnetic resonance (NMR) powder line shapes from half-integer spin systems possessing large quadrupole couplings is exemplified on cobaltophthalocyanine complexes. The acquisition of ideal-like static line shapes even for megahertz-wide central transition patterns is discussed, with the aid of spin−echo sequences incorporating short and very weak radio frequency (rf) pulses. Under these conditions most of the crystallites within the bandwidth of interest are excited with essentially orientation-independent pulse angles, while the acquisition of several experiments with varying carrier frequency offsets alleviates the limited bandwidth of the excitation given by the rf pulse lengths. After this approach was tuned with the aid of quantum mechanical calculations and model compounds, it was applied to the study of diamagnetic metal centers in hexacoordinated Co(III)phthalocyanines. Solid-state 59Co NMR spectra were acquired as a function of the external magnetic field on complexes with general structure [(L)2CoPc]Br, where Pc denotes the phthalocyanine macrocycle and the axial ligands L were pyridine, methylimidazole, methylpiperidine, and ammonia. Iterative numerical fittings of these data revealed anisotropic coupling parameters that were larger than those observed in cobaltoporphyrin analogues but, which like the latter, deviated from trends traditionally observed for nonaromatic octahedral cobalt complexes. These systematic differences observed for the various 59Co coupling parameters are discussed.
Overtone NMR is an experiment introduced by LeGros, Bloom, Tycko, and Opella, capable of providing 14N powder spectra devoid of first-order quadrupole broadenings by irradiation and observation of the nuclear spins at twice their Larmor frequency. This technique constitutes one of the most promising alternatives for the acquisition of high resolution solid 14N NMR spectra from random powders, particularly if it can be combined with strategies capable of removing the substantial second-order quadrupole broadenings remaining in the overtone line shapes. In order to facilitate the search for these averaging manipulations, we present here a theoretical description of the overtone experiment based on the time-domain propagation of density matrices. It is shown that by combining perturbation methods with appropriate rotating-frame transformations and diagonalizations, overtone spin-1 phenomena can be described using a single set of fictitious spin-1/2 operators. By contrast to conventional spin-1/2 irradiation and detection processes, however, overtone manipulations involve an unusual angular dependence on the azimuthal angle defining rotations about the main Zeeman magnetic field. This behavior introduces unexpected complications toward the narrowing of overtone resonances by conventional sample spinning techniques. Nevertheless, it can still be shown that the removal of all spin-1 anisotropies by certain forms of dynamic-angle spinning overtone NMR remains feasible.
We have recently described a new technique capable of recording high resolution NMR spectra of half - integer quadrupolar nuclei in solid samples, based on the combined use of magic - angle -spinning (MAS) and multiple - quantum (MQ) spectroscopy1. This review summarizes the basic theoretical aspects underlying this high resolution MQMAS NMR experiment, emphasizing as well practical aspects involved in the optimization of its signal - to - noise. We also describe the features of MQMAS spectral lineshapes, and exemplify these with a number of applications on various quadrupolar nuclei. Also discussed is the occurrence of unusual spinning sideband patterns along the multiple - quantum domain; additional references to ongoing progress in the area that has appeared in the recent literature are also presented.
1998
It has been recently shown that 2D multiple-quantum (MQ) spectroscopy in combination with conventional magic-angle spinning can provide high resolution NMR spectra from half-integer quadrupolar nuclei in powdered samples. In an effort to optimize signal-to-noise in this type of experiments, a systematic investigation on the relative efficiencies that single- and two-pulse excitation schemes exhibit toward the generation of MQ coherences was carried out. Numerical simulations on spin-3/2 powders revealed that x-y composite pulse excitations with nutation angles θy ≈ 2 θx maximize the excitation of triple-quantum coherences, yielding about 30% larger signals than those available from single-pulse experiments. This behavior was corroborated experimentally, and its origin elucidated with the aid of analytical derivations. Composite pulse schemes also yielded a superior excitation of MQ coherences in the presence of large shielding offsets, although a simple recipe for optimizing such experiments was not apparent.
1997
We describe the application of 59Co NMR to the study of naturally occurring cobalamins. Targets of these investigations included vitamin B12, the B12 coenzyme, methylcobalamin, and dicyanocobyrinic acid heptamethylester. These measurements were carried out on solutions and powders of different origins, and repeated at a variety of magnetic field strengths. Particularly informative were the solid-state central transition NMR spectra, which when combined with numerical line shape analyses provided a clear description of the cobalt coupling parameters. These parameters showed a high sensitivity to the type of ligands attached to the metal and to the crystallization history of the sample. 59Co NMR determinations also were carried out on synthetic cobaloximes possessing alkyl, cyanide, aquo, and nitrogenated axial groups, substituents that paralleled the coordination of the natural compounds. These analogs displayed coupling anisotropies comparable to those of the cobalamins, as well as systematic up-field shifts that can be rationalized in terms of their stronger binding affinity to the cobalt atom. Cobaloximes also displayed a higher regularity in the relative orientations of their quadrupole and shielding coupling tensors, reflecting a higher symmetry in their in-plane coordination. For the cobalamines, poor correlations were observed between the values measured for the quadrupole couplings in the solid and the line widths observed in the corresponding solution 59Co NMR resonances.
Solid state 59Co nuclear magnetic resonance (NMR) spectra were recorded on diamagnetic complexes with general structure Co(Por)L2, where For = tetraphenylporphyrin, tetramethoxyphenylporphyrin, and octaethylporphyrin; and L = imidazole, methylimidazole, pyridine, and isoquinoline. Measurements were carried out at different magnetic field strengths (4.7, 7.1, and 11.7 T) on both static and spinning samples. Iterative fitting of these data yielded the shielding and quadrupolar parameters that characterize the various cobalt(III) sites in the complexes. These results are only in partial agreement with data inferred from previous solution NMR measurements. The values measured for the anisotropic components of the 59Co NMR tensors also deviate from traditional correlations observed for simpler nonaromatic solid cobalt complexes. Possible sources for the discrepancies observed between the solution and the solid phase parameters as well as for the anomalous behavior observed with the anisotropic 59Co coupling constants are discussed.
Natural abundance NMR methods were employed to analyze static and dynamic properties of poly(p-benzamide), the parent compound of the aramide family of polymers, dissolved in absolute sulfuric acid. Quantitative determinations of order in the liquid crystal phases arising in these systems were carried out with the aid of bidimensional 13C NMR data collected in the solid phase and of total line shape simulations, and the parameters thus obtained were monitored as a function of temperature, concentration, and polymer molecular weight. These measurements revealed that by contrast to what had been inferred from previous macroscopic order determinations, the alignment of polymer molecules in their nematic domains is essentially independent of temperature. Existing measurements can still be explained in terms of a temperature-dependent isotropic ⇆ nematic equilibrium, whose presence and thermodynamics were unambiguously characterized by NMR. Dynamic aspects of this interphase equilibrium as well as of the intraphase molecular diffusion in the nematic region were explored by bidimensional and pulsed-gradient NMR methods. Spectroscopic results were analyzed in terms of thermal and athermal theories predicting the appearance of nematic phases in rigid anisometric polymers and compared with recent NMR observation on other lyotropic aramide solutions.
The use of two-dimensional isotropic-anisotropic correlation spectroscopy for the analysis of orientational alignment in solids is presented. The theoretical background and advantages of this natural-abundance 13C NMR method of measurement are discussed, and demonstrated with a series of powder and single-crystal variable-angle correlation spectroscopy (VACSY) experiments on model systems. The technique is subsequently employed to analyze the orientational distributions of three polymer fibers: Kevlar® 29, Kevlar® 49 and Kevlar® 149. Using complementary two-dimensional NMR data recorded on synthetic samples of poly(p-phenyleneterephthalamide), the precursor of Kevlar*, it was found that these commercial fibers possess molecules distributed over a very narrow orientational range with respect to the macroscopic director. The widths measured for these director distribution arrangements were (12 ± 1.5)° for Kevlar® 29, (15 ± 1.5)° for Kevlar® 49, and (8 ± 1.5)° for Kevlar* 149. These figures compare well with previous results obtained for non-commercial fiber samples derived from the same polymer.
1996
Solutions prepared by dissolving synthetic poly(p-phenyleneterephthalamide) (PPTA) in 99.8% H2SO4 were analyzed using natural abundance NMR methods as a function of the polymer concentration, molecular weight, and temperature. Concentration and molecular weight-driven transitions between isotropic, nematic, and solid-like phases could be clearly distinguished from the 13C NMR spectra of the solute and from 1H NMR spectra of the solvent. The 13C solute NMR spectra point toward a distribution in the order parameter of the liquid crystalline director and could be quantitatively reproduced using 13C shielding tensor elements measured by solid NMR in polycrystalline PPTA. Thermodynamic parameters for the nematic ⇆ isotropic equilibrium were obtained from the temperature dependence of the liquid crystalline 13C NMR spectra, and 2D NMR methods were employed to retrieve information about the kinetics of PPTA and H2SO4 migration between isotropic and nematic domains. The results obtained from these spectroscopic studies compare well with previous observations obtained using non-NMR methods; the significance of the new NMR measurements is briefly discussed.
The present work introduces a new three-dimensional nuclear magnetic resonance (3D NMR) experiment for the analysis of half-integer quadrupolar nuclei in solids. The method is based on the multi-rank expansion of the high-field NMR Hamiltonian governing the central transition of these spins in terms of irreducible spherical tensor elements. This approach leads to a temporal spin evolution given by an isotropic term characteristic of each chemical site, as well as by second- and fourth-rank anisotropies depending on the principal values and relative orientations of the shielding and quadrupolar interactions. A method for extracting the 3D spectral distribution correlating these three frequency components is presented, based on the acquisition of dynamic-angle spinning NMR signals collected as a function of different initial and final spinning axes. Computational and instrumental details involved in the acquisition of these 3D dynamic-angle correlation spectroscopy (DACSY) data are discussed, and applications of the DACSY methodology to the analysis of different rubidium salts are illustrated. The new type of chemical information that this experiment can provide and its relation to other NMR techniques that have been recently developed for the analysis of quadrupolar nuclei in solids are also discussed.
1995
A new approach for monitoring diffusion in anisotropic phases is proposed and demonstrated. The method relies on the observation of dilute spins (e.g., 13C) in the presence of heteronuclear high-power dipolar decoupling, a procedure which can yield time-domain nuclear magnetic resonance (NMR) signals lasting over three orders of magnitude longer than their 1H counterparts. This allows one to apply conventional 90-180 ° pulsed-gradient spin-echo (PGSE) schemes on organic systems without having to employ complex and highly sensitive multiple-pulse 1H irradiation schemes. Instrumental aspects of this 13C method are discussed, and an application to the variable-temperature determination of anisotropic self-diffusion in a thermotropic liquid crystal is illustrated.
Whereas solid state isotropic spectra can be obtained from spin-1/2 nuclei by fast magic-angle spinning (MAS), this methodology fails when applied on half-integer quadrupoles due to the presence of non-negligible second-order anisotropic effects. Very recently, however, we have shown that the combined use of MAS and bidimensional multiple-quantum (MQ) spectroscopy can refocus these anisotropies; the present paper discusses theoretical and experimental aspects of this novel MQMAS methodology and illustrates its application on a series of sodium salts. It is shown that even under fixed magnetic field operation, a simple model-free inspection of the peaks in a bidimensional MQMAS NMR spectrum can separate the contributions of isotropic chemical and isotropic quadrupolar shifts for different chemical sites. Moreover the anisotropic line shapes that can be resolved from these spectra are almost unaffected by excitation distortions and can thus be used to discern the values of a site's quadrupolar coupling constant and asymmetry parameter. The conditions that maximize the MQMAS signal-to-noise ratio for a spin-3/2 are then explored with the aid of a simple analytical model, which can also be used to explain the absence of distortions in the anisotropic line shapes. The MQMAS method thus optimized was applied to the high-resolution 23Na NMR analysis of the multi-site ionic compounds Na2TeO3, Na2SO3, Na3P5O10, and Na2HPO4; extensions of the MQMAS NMR methodology to the quantitative analysis of inequivalent sites are also discussed and demonstrated.
1994
Continuous non-Cartesian sampling schemes, widely used in modern NMR imaging, can yield complete 2D NMR spectra within a single-scan signal digitization. The present work illustrates a purely spectroscopic application of this strategy to the extraction of 2D NMR spectra from heteronuclear pairs of coupled spins. The experiment allows one to digitize a unidimensional data set which after proper rearrangement and processing, affords a complete chemical shift-heteronuclear coupling 2D correlation NMR spectrum. Theoretical and computational aspects involved in these single-scan experiments are discussed, and a series of solution NMR examples are presented.
Slow, large-amplitude chain motions play an important role in determining the macroscopic mechanical properties of polymers. Although such motions have been studied quantitatively by two-dimensional (2D) nuclear magnetic resonance (NMR) exchange experiments, overlapping anisotropic patterns hamper spectral analysis, and limit applications. Variable angle correlation spectroscopy (VACSY) has proven useful in resolving such problems for rapidly spinning samples by separating anisotropic spectral patterns according to isotropic chemical shifts. In a previous study [J. Am. Chem. Soc. 115, 4825 (1993)], we described a three-dimensional (3D) NMR experiment that incorporates the VACSY method and a hop of the rotor axis to correlate the isotropic chemical shifts to 2D anisotropic exchange patterns. The hop of the rotor axis, however, presents experimental difficulties and limits the range of motional rates that may be studied. We present in this paper a new 3D VACSY exchange experiment that obtains the same correlations without the need for the rotor axis hop. A series of 2D exchange spectra are recorded with the sample spinning at different rotation axis angles. Then using the scaling of the anisotropic frequency at the different angles, we construct the data onto a 3D matrix so that a Fourier transformation directly yields the desired correlations. The technique is applied to 13C exchange NMR to study the slow molecular motion of ordered isotactic polypropylene.
We describe the application of a recently developed two-dimensional nuclear magnetic resonance (2D NMR) technique, variable-angle correlation spectroscopy, to the analysis of molecular motions in complex unlabeled solids. This technique separates the broad anisotropic chemical shift line shapes of nuclei in a sample according to the isotropic shift of each site. It can therefore be used to characterize molecular reorientations by monitoring the changes that these processes introduce in the resolved powder patterns as a function of temperature. Using the 13C NMR anisotropies of dimethylsulfone as a test case, we explored the potential applications of following such an approach. It was found that in contrast to what happens in nonexchanging systems, the anisotropic line shapes resolved by the variable-angle technique on an exchanging solid are different from line shapes that at similar temperatures can be recorded from a nonrotating sample. An explanation for these differences is presented, and the complete theory required to extract kinetic and geometric information from the experimental 2D line shapes is introduced and illustrated with computer simulations. The capability of this approach to analyze motions in complex systems is further demonstrated with a natural-abundance 13C variable-temperature NMR analysis of L-tyrosine ethyl ester, a reorienting compound possessing up to 11 inequivalent carbon sites in the solid phase.
1993
Although molecular motions are responsible for many of the macroscopic properties observed in solids, especially in polymers, methods for studying these processes in all but the simplest systems are scarce. In the present study we introduce a three-dimensional nuclear magnetic resonance experiment for characterizing ultraslow molecular motions in complex solid systems. The technique extracts dynamic information by resolving the two-dimensional exchange distributions that can be observed in spectra of static samples, according to the isotropic chemical shifts of individual molecular sites. These three-dimensional correlations are achieved by processing signals arising from a fast-spinning solid sample using two independent macroscopic axes of rotation as extraction parameters, an approach which becomes practical due to the simple scaling behavior of anisotropic chemical shifts with respect to the axis of sample rotation. The principles involved in this new spectroscopic technique are discussed, and the method is illustrated with an application to the analysis of motions in isotactic polypropylene.
A nuclear magnetic resonance technique providing slice-selected spatial distribution of fluid displacements is introduced and exemplified. This echo-shape analysis method exploits the fact that, in a pulsed-gradient spin-echo sequence, the phase encoding of the echo evolves from a position dependence at the start of this pulse to a displacement dependence at the echo peak. The shape of the forming echo is therefore determined by the joint probability distribution correlating initial particle positions with displacements occurring between the first and the second gradient pulses. This distribution may be directly extracted by Fourier analysis of the echo shape as a function of gradient level. This procedure provides efficient access to Lagrangian flow statistics, as is illustrated by application to Taylor-Couette flow. Agreement between experimental results and simulations demonstrates the suitability of this method for examining spatially heterogeneous flow and molecular transport processes.
1992
15N NMR spectroscopy was used to explore the interactions between natural polyamines and Escherichia coli tRNA. It was found that when tRNA is added to solutions of 15N-labeled spermine or spermidine, there is a considerable decrease in the relative heights of the - NH+2 - resonances with respect to the signals arising from the - NH+3 groups. The presence of tRNA was also found to reduce the longitudinal relaxation times T1 of the nitrogens, mainly those of the - NH+3 - groups. The longitudinal relaxation times of the nitrogens were used to characterize the temperature dependence of the binding, and they allowed us to calculate the activation energies that determine the correlation times of amino groups in the presence of tRNA. Both the thermodynamic and the relaxation results indicate that (i) spermine binds more strongly to tRNA than spermidine does and (ii) within each of these molecules the - NH+2 - groups bind more strongly to tRNA than the more electropositive - NH+3 moieties. This specificity suggests that the interaction between polvamines and tRNA cannot be described exclusively in terms of electrostatic forces and that other interactions (most likely, hydrogen bonding) are very important for establishing the polyamine-tRNA link. Some of the factors that may conspire against the binding of - NH+3 groups to tRNA are briefly discussed.
Nuclear magnetic resonance (NMR) spatial imaging data may be acquired, processed, and interpreted in ways that provide information directly analogous to diffraction experiments, with length scales determined by gradient strengths rather than radiation wavelengths. This approach, originally considered by Mansfield nearly two decades ago, provides access to autocorrelations of sample density that statistically characterize small-scale density variations. These NMR "Patterson functions" can be acquired orders of magnitude more rapidly than comparably resolved NMR images and are suitable for spatial characterization of small features in bulk samples, such as morphology in structural materials. Unlike hindered diffusion approaches, neither mobility, penetrants, nor transport time are required for examining granularity and porosity.
1H pulsed NMR techniques were used to investigate the solid-state dynamics of porphine molecules in which the central protons have been replaced by deuterons. Changes observed in the line width of the 1H NMR signal suggest that, as happened to be the case with the fully protonated derivative, molecules of deuterated porphine rotate in the crystal. Variable-temperature measurements of the proton relaxation times in the rotating frame provided the activation parameters for this motion, which were found to be slightly higher than those observed for the nondeuterated compound. This effect can be related to a combined motion that has been proposed for reconciling the CPMAS NMR and the X-ray results available for porphine, according to which the solid-state tautomerism of the central hydrogens might produce a reorientation of the molecules in the crystals about their main molecular axes. Upon replacement of the central protons by deuterons this model predicts that kinetic isotope effects known to characterize the N-H tautomerism of porphyrins will slow the rates of macrocycle reorientations in the crystal, a dynamic behavior which is reflected in the experimental results.
We describe here a new solid-state nuclear-magnetic-resonance (NMR) experiment for correlating anisotropic and isotropic chemical shifts of inequivalent nuclei in powdered samples. Spectra are obtained by processing signals arising from a spinning sample, acquired in independent experiments as a function of the angle between the axis of macroscopic rotation and the external magnetic field. This is in contrast to previously proposed techniques, which were based on sudden mechanical flippings or multiple-pulse sequences. We show that the time evolution of variable-angle-spinning signals is determined by a distribution relating the isotropic frequencies of the spins with their corresponding chemical shift anisotropies. Fourier transformation of these data therefore affords a two-dimensional NMR spectrum, in which line shapes of isotropic and anisotropic interactions are correlated. Theoretical and experimental considerations involved in the extraction of this spectral information are discussed, and the technique is illustrated by an analysis of 13C NMR anisotropy in glycine, cysteine, and p-anisic acid.
1991
It is shown that by changing their pulse timing, several multiple-pulse sequences normally used to obtain high-resolution NMR spectra of abundant spins in solids can afford spectra in which the effective dipolar couplings appear scaled by a factor ranging between 1 and -1 2. This was used to design a family of partial decoupling sequences (PARDES) which may be useful for recording simplified spectra of solute molecules oriented in liquid-crystal solvents. Upon exploring the experimental performance of these pulse sequences, it was found that their instrumental requirements are considerably less demanding than those necessary to perform dipolar averaging in the solid state. Moreover, it was observed that when proper experimental conditions are chosen, these PARDES perform a selective averaging of the dipolar couplings within the solute molecules without affecting the broad coupling patterns that characterize the nematic solvent, preserving thereby one of the main properties of liquid-crystal 1H NMR experiments.
1990
The 13C CPMAS NMR spectra of four crystalline forms of p-amino-benzenesulphonamide (sulphanilamide) were recorded at room temperature. Three of these forms (a, (3, and y) showed doublings in the resonances of the carbon atoms ortho to the amino group, but only a single signal was obtained from those ortho to the asymmetric sulphonamide group. A variable-temperature study allowed the interconversion of the a and P forms to the y form to be monitored. Changes were also observed in the spectrum of the y form as the temperature was increased, and were ascribed to the presence of 180° flips of the phenyl rings about their para axis. This interpretation was confirmed by analysis of the broadenings introduced by the assumed motion on the centreband and sidebands in the 13C CPMAS NMR spectrum of the exchanging nuclei. Variable-temperature spectra of the y form were simulated in order to obtain information about the geometry, the rates and the activation parameters involved in the process. These calculations were in good agreement with the experimental data. The possible relevance that the observed doublings and ring motion may have for the mode of action of sulphonamides is also discussed.
An approach is introduced that allows the evaluation of the effects of magic\u2010angle spinning (MAS) in the NMR spectra of inhomogeneously broadened spin\u20101/2 nuclei. The method, which consists in replacing the time\u2010dependent MAS Hamiltonian by a set of three time\u2010independent Hamiltonians, is able to predict one of the main characteristics of the MAS experiment, namely the appearance of rotor echoes. Spectra were calculated using this approach and compared with 13C NMR spectra of model compounds, showing good agreement in the range of spinning rates normally used. A simple extension of the method also makes it useful for simulating some cases of variable\u2010angle spinning NMR. Although the approach is suitable for the evaluation of normal MAS NMR spectra, its main applications may be found in cases where the spin Hamiltonian is no longer self\u2010commuting. As an example, the method was employed for analysing the case of an exchange process between two equally populated chemically equivalent sites. Calculated spectra obtained in this way allowed the correct reproduction of the changes observed in the MAS NMR spectra of two compounds which are known to undergo reorientations in the solid state. Further possible applications of the approach are discussed.
An analysis of the effects of a two-site exchange process on the solid-state nuclear magnetic resonance (NMR) spectrum of an S spin coupled to an unlike I spin under rf irradiation is presented. It is shown that the line broadening that under certain conditions is shown by the S resonance can be calculated using a density matrix treatment. Although this approach has been used in order to evaluate the signal that arises from single crystallites, a simplification of the problem was introduced in order to evaluate the signal that arises from a powdered sample. With this approximation it was possible to evaluate the effects of exchange for a broad range of kinetic and decoupling conditions. The calculations were extended to include the effects of the chemical shift anisotropy of the S spins, and simulations obtained in this way agreed well with the experimental spectra of an exchanging solid recorded at different temperatures and decoupling fields. The relation between incoherent and coherent interference with decoupling in solids and in liquids is also briefly discussed.
High-resolution 13C NMR techniques were used in order to investigate the \u201carene-olefin\u201d valence tautomerism between 11,11-disubstituted 1,6-methano[10]annulenes and their respective bisnorcaradienes in the solid phase. It was found that the bridgehead carbon resonances of the dimethyl and of the methylcyano derivatives shift with temperature in a manner that suggests the occurrence of an exchange process proceeding fast on the NMR time scale. In all the cases, the crystal packing forces were found to affect considerably the thermodynamic parameters of the kinetic processes. Although it was not possible to reach a low enough temperature so as to observe the resolved resonances of the aromatic and of the olefinic tautomers, the present solid-state NMR results were combined with previous solution NMR studies in order to obtain the free energies involved in the tautomeric processes. Moreover, a good correlation could be established between the solid-state NMR and the X-ray diffraction results of the compounds. Finally, some of the implications that the present work might have for the understanding of valence tautomerism in 1, 6-methano[lOJannulenes are briefly discussed.
1989
Solid-state NMR techniques were employed in order to study the structure and the dynamics of porphine. The changes observed in the line width of the 1H NMR signal between 173 and 443 K suggest that the porphine macrocycles rotate in the crystals. This was confirmed by recording the 13C CPMAS NMR spectra at different temperatures which showed, in addition to the expected coalescence of signals due to the central hydrogens tautomerism, a broadening of the resonances due to the overall molecular rotation. These studies, coupled to measurements at different temperatures and fields of the relaxation times of the 1H magnetization in the rotating frame, allowed us to obtain activation parameters for the motion which are, within experimental error, equal to those made available by CPMAS NMR for the tautomerism of the central hydrogens. These results suggest an explanation for what seems to be a contradiction between the structure of porphine observed by X-ray, according to which the central hydrogens are localized in opposite pairs of nitrogens, and the structure observed by CPMAS in which the hydrogens migrate between the four central nitrogens. If it is assumed that the migration of the central hydrogens is coupled to a 90° rotation of the molecules, the translational symmetry of the crystal will not be changed by the tautomerism, and an X-ray analysis would always detect a single tautomer.
1988
The hieh-resolution solid-state 13C NMR spectra of meso-tetrapropyl- and octaethylporphyrin were recorded with use of the CPMAS technique. Doublings in the pyrrole carbon signals of these compounds were ascribed to kinetic solid-state effects involved in the central hydrogen migration. It was found that whereas in meso-tetrapropylporphyrin the positions of the pyrrole carbon signals in the low temperature solution 13C NMR spectrum are similar to those in the room temperature solid-state NMR spectrum, this is not the case for octaethylporphyrin. In order to characterize the kinetic behavior of these compounds in the solid phase, 13C CPMAS NMR spectra were recorded at temperatures from slow to fast exchange limits. The changes observed in the spectra were analyzed assuming that the hydrogen migration proceeds between two tautomers of different energies. The shifts that are induced by the aromatic clouds of neighboring molecules were also calculated. With use of these ring current shifts and the low temperature solution chemical shift values, it was possible to obtain kinetic parameters of the solid-state reaction at different temperatures. The implications that the obtained results have for the understanding of the N-H tautomerization process in free base porphyrins are discussed, as well as the relevance that the latter may have for obtaining a mean structure of these compounds.
Solid\u2010state 13C NMR spectra of 14N\u2010containing compounds obtained under CPMAS conditions often show asymmetric doublets arising from the unaveraged 13C,14N residual dipolar coupling. A similar result has recently been noticed in deuteriated samples, whose 13C resonances showed the combined effect of 13C,2H dipolar and scalar couplings. A simple approach, easily adaptable to a desk microcomputer, is described for simulating 13C line shapes for arbitrary values of quadrupole parameters, CX (X = 14N, 2H) distances, external field and orientation of the internuclear vector in the axis system where the electric field gradient tensor is diagonal.