Publications
2003
This study presents a theoretical, numerical, and experimental survey on the nature of homonuclear dipolar couplings in systems of half-integer quadrupolar nuclei undergoing magic-angle-spinning (MAS). Various spin interactions that do not commute with homonuclear dipolar couplings (chemical shift effects, heteronuclear dipolar couplings, quadrupolar interactions) may lead to recoupling effects under MAS, yielding a variety of pathways for transferring magnetization between proximate quadrupole nuclei in 2D correlation experiments. The Hamiltonians underlying this anisotropy-driven recoupling of the dipolar interactions are theoretically derived and their characteristics revealed from theoretical and numerical arguments. To explore when and how these various recoupling mechanisms become relevant, a variety of 23Na and 11B 2D exchange NMR experiments were performed at different external magnetic fields and MAS frequencies on several compounds: Na2HPO4·2H2O, Na2SO 3, disodium deoxycytidine heptahydrate, B2O3 and B10H14. The structural information content afforded by these experiments as well as their potential limitations are discussed.
We have recently demonstrated that magnetic field gradients in combination with frequency selective pulses, can be employed to collect a complete multi-dimensional NMR spectrum within a single scan. Following similar guidelines, field gradients could also be exploited to parallelize other types of NMR experiments where the final results arise from the collection and analysis of a series of time-incremented spectra. The present Communication exemplifies this concept by showing how a combination of gradients can be employed to monitor within a single continuous acquisition, a slow dynamic process which is in turn followed by systematic increments in the duration of a magnetization transfer time. Further, since 2D exchange NMR spectra can nowadays be themselves collected within one scan, the acquisition of a complete set of mixing-incremented 2D exchange patterns could be achieved within a single experiment entailing a total time of ≈1s.
Two-dimensional (2D) spectroscopy is central to many contemporary applications of NMR. Recently, we have introduced a new approach whereby 2D NMR spectra can be collected within a single scan. This methodology employs a magnetic field gradient in order to spatially encode the time evolution occurring along the indirect dimension. The discrete nature of the t 1 incrementation and its one-to-one correspondence with the spatial encoding, may lead to a number of artifacts. Most notable among these is a periodicity of the spectral peaks that are observed along the indirect axes. The appearance of such 'ghost-peaks', which may sometime coincide with genuine cross-peaks, could hamper a proper interpretation of the spectra. This contribution reviews the origin of such multiple resonances, and proposes a procedure for their elimination based on the acquisition of a small number of complementary scans. Such complementary scans can be simultaneously employed for the sake of phase-cycling out other unwanted signals, and improve the overall indirect-domain spectral resolution. Brief mathematical descriptions of the ghost-peak generation and ghost-peak suppression mechanisms are described, followed by experimental tests on a number of samples using various pulse sequences.
Multidimensional nuclear magnetic resonance (NMR) provides one of the foremost analytical tools available to elucidate the structure and dynamics of complex molecules in their native states. Executing this kind of experiment generally requires collecting an n-dimensional time-domain signal S, from which the spectrum arises via an appropriate Fourier analysis of its various time variables. This time-domain signal is actually measured directly only along one of the time axes, while the effects introduced by the remaining time variables are monitored via a parametric incrementation of their values throughout independent experiments. Two-dimensional (2D) NMR experiments thus usually require longer acquisition times than unidimensional experiments, 3D NMR is orders-of-magnitude more time consuming than 2D spectroscopy, etc. Very recently, we proposed and demonstrated an approach whereby data acquisition in 2D NMR can be parallelized, enabling the collection of complete 2D spectral sets within a single transient. The present paper discusses the extension of this 2D NMR methodology to an arbitrary number of dimensions. The principles of the ensuing ultrafast n-dimensional NMR approach are described, and a variety of homo- and heteronuclear 3D and 4D NMR spectra collected within a fraction of a second are presented.
Two-dimensional nuclear magnetic resonance (2D NMR) provides one of the foremost contemporary tools available for the elucidation of molecular structure, function, and dynamics. Execution of a 2D NMR experiment generally involves scanning a series of time-domain signals S(t2), as a function of a t1 time variable which undergoes parametric incrementation throughout independent experiments. Very recently, we proposed and demonstrated a general approach whereby this serial mode of data acquisition is parallelized, enabling the acquisition of complete bidimensional NMR data sets via the recording of a single transient. The present paper discusses in more detail various conceptual and experimental aspects of this novel 2D NMR methodology. The basic principles of the approach are reviewed, various homo- and heteronuclear NMR applications are illustrated, and the main features and artifacts affecting the method are derived. Extensions to higher-dimensional experiments are also briefly noted.
New multidimensional NMR methods correlating the quadrupolar and heteronuclear dipolar interactions affecting a half-integer quadrupolar spin in the solid state are introduced and exemplified. The methods extend separated-local-field magic-angle spinning (SLF MAS) NMR techniques that have been used successfully in spin-1/2 spectroscopy to the study of S ≥ 3/2 nuclei. In our implementation, these techniques avoid homonuclear proton decoupling requirements by relying on moderately fast MAS rates (6-15 kHz) and use rotor-synchronized constant-time pulse sequences to achieve nearly arbitrary amplifications of the apparent dipolar coupling strengths. The result is a suite of simple 2D NMR experiments, whose line shapes carry valuable information about the structure and dynamics of solids containing quadrupolar and proton nuclei. The potential of these sequences was exploited to gather new insight into the structure and dynamics of a variety of boron-containing samples. These experimental SLF schemes were also extended to 3D NMR experiments that incorporate multiple-quantum MAS, thus enabling the resolution needed to study multiple chemical sites in a solid and providing a useful tool for the assignment of inequivalent sites.
We discuss the potential use of relaxation times toward the resolution of inequivalent chemical sites in the NMR spectroscopy of powdered or disordered samples. This proposal is motivated by the significant differences that can often be detected in the relaxation behavior of sites in solids, particularly when focusing on NMR observations of quadrupolar nuclei possessing different coordination and/or dynamic environments. It is shown that in these cases the implementation of a non-negative least-squares analysis on relaxation data sets enables the bidimensional resolution of overlapping powder line shapes, even when dealing with static samples. In combination with signal-enhancement methodologies such as the quadrupolar Carr-Purcell Meiboom-Gill train, such relaxation-assisted separations open up valuable routes toward the high-resolution characterization of systems involving insensitive (e.g., low-γ) nuclei. The principles and limitations of the 2D NMR approach resulting from these considerations are discussed, and their potential is exemplified with a variety of static and spinning investigations. Their extension to other nuclear systems where spectral resolution is problematic, such as protons in organic solids, is also briefly considered.
The nature of higher-order effects in solid-state nuclear magnetic resonance (NMR), when quadrupolar nuclei were subjected to chemical shift anisotropies, was discussed. The quadrupole-shielding effects as field-independent broadening enabled their distinction from other broadening mechanisms arising from shielding dispersion, was also elaborated. It was shown that the quadrupole interaction gave rise to shielding-derived terms, not entirely averaged away by conventional magic-angle spinning (MAS).