Publications

2024

ASS1 metabolically contributes to the nuclear and cytosolic p53-mediated DNA damage response

Lim L. Q. J., Adler L., Hajaj E. et al. (2024) Nature metabolism. 6, 7, p. 1294-1309

Cancer Hallmarks: Piecing the Puzzle Together

Alcolea M. P., Alonso-Curbelo D., Ambrogio C. et al. (2024) Cancer Discovery. 14, 4, p. 674-682

Dual targeting of histone deacetylases and myc as potential treatment strategy for h3- k27m pediatric gliomas

Algranati D., Oren R., Dassa B. et al. (2024) eLife. 13, RP96257.

2023

A single-molecule liquid biopsy for cancer diagnosis

Shema E. (2023) Nature Reviews Cancer. 23, p. 271

PRC2-independent actions of H3.3K27M in embryonic stem cell differentiation

Cohen L. R. Z., Kaffe B., Deri E. et al. (2023) Nucleic Acids Research. 51, 4, p. 1662-1673

Multiplexed, single-molecule, epigenetic analysis of plasma-isolated nucleosomes for cancer diagnostics

Fedyuk V., Erez N., Furth N. et al. (2023) Nature Biotechnology. 41, 2, p. 212-221

Author Correction: Breast cancer plasticity is restricted by a LATS1-NCOR1 repressive axis (doi 10.1038/s41467-022-34863-9 , 28 Nov, 2022)

Aylon Y., Furth N., Mallel G. et al. (2023) Nature Communications. 14, 1, 133.

2022

Breast cancer plasticity is restricted by a LATS1-NCOR1 repressive axis

Aylon Y., Furth N., Mallel G. et al. (2022) Nature Communications. 13, 1, 7199.

Single-cell epigenetic analysis reveals principles of chromatin states in H3.3-K27M gliomas

Harpaz N., Mittelman T., Beresh O. et al. (2022) Molecular Cell. 82, 14, p. 2696-2713

H3-K27M-mutant nucleosomes interact with MLL1 to shape the glioma epigenetic landscape

Furth N., Algranati D., Dassa B. et al. (2022) Cell Reports. 39, 7, 110836.

It's all in the combination: decoding the epigenome for cancer research and diagnostics

Furth N. & Shema E. (2022) Current Opinion in Genetics and Development. 73, 101899.

Real-time single-molecule sequencing of nucleosomal DNA and combinatory histone modifications detection with zero-mode waveguides

Zheng P., Wanunu M. & Shema E. (2022) Biophysical Journal. 121, 3, Supplement 1, p. 289a-289a

SUMOylation of linker histone H1 drives chromatin condensation and restriction of embryonic cell fate identity

Sheban D., Shani T., Maor R. et al. (2022) Molecular Cell. 82, 1, p. 106-122.e9

2021

Systematic detection of m6A-modified transcripts at single-molecule and single-cell resolution

Kim K. L., van Galen P., Hovestadt V. et al. (2021) Cell Reports Methods. 1, 5, 100061.

Unified platform for genetic and serological detection of COVID-19 with single-molecule technology

Furth N., Shilo S., Cohen N. et al. (2021) PLoS ONE. 16, 7, e0255096.

Intratumoral heterogeneity in cancer progression and response to immunotherapy

Vitale I., Shema E., Loi S. et al. (2021) Nature Medicine. 27, 2, p. 212-224

2019

Single-cell and single-molecule epigenomics to uncover genome regulation at unprecedented resolution

Shema E., Bernstein B. E. & Buenrostro J. D. (2019) Nature Genetics. 51, 1, p. 19-25

2016

Single-molecule decoding of combinatorially modified nucleosomes

Shema E., Jones D., Shoresh N. et al. (2016) Science. 352, 6286, p. 717-721

RNF20 Links Histone H2B Ubiquitylation with Inflammation and Inflammation-Associated Cancer

Tarcic O., Pateras I. S., Cooks T. et al. (2016) Cell Reports. 14, 6, p. 1462-1476

2013

Systematic identification of proteins binding to chromatin-embedded ubiquitylated H2B reveals recruitment of SWI/SNF to regulate transcription

Shema E., Nikolov M., Haj-Yahya M. et al. (2013) Cell Reports. 4, 3, p. 601-608

2012

N-methylation of isopeptide bond as a strategy to resist deubiquitinases

Haj-Yahya M., Eltarteer N., Ohayon S. et al. (2012) ANGEWANDTE CHEMIE-INTERNATIONAL EDITION. 51, 46, p. 11535-11539

RNF20 and USP44 Regulate Stem Cell Differentiation by Modulating H2B Monoubiquitylation

Fuchs G., Shema E., Vesterman R. et al. (2012) Molecular Cell. 46, 5, p. 662-673

2011

RNF20-RNF40: A ubiquitin-driven link between gene expression and the DNA damage response

Shiloh Y., Shema E., Moyal L. et al. (2011) FEBS Letters. 585, 18, p. 2795-2802

Detection and characterization of ubiquitylated H2B in mammalian cells

Shema E., Oren M. & Minsky N. (2011) Methods. 54, 3, p. 326-330

Coupled evolution of transcription and mRNA degradation

Dori-Bachash M., Shema E. & Tirosh I. (2011) PLoS Biology. 9, 7, e1001106.

RNF20 Inhibits TFIIS-Facilitated Transcriptional Elongation to Suppress Pro-oncogenic Gene Expression

Shema E., Kim J., Roeder R. G. et al. (2011) Molecular Cell. 42, 4, p. 477-488

Two Phases of Mitogenic Signaling Unveil Roles for p53 and EGR1 in Elimination of Inconsistent Growth Signals

Zwang Y., Sas-Chen A., Drier Y. et al. (2011) Molecular Cell. 42, 4, p. 524-535

Requirement of ATM-Dependent Monoubiquitylation of Histone H2B for Timely Repair of DNA Double-Strand Breaks

Moyal L., Lerenthal Y., Gana-Weisz M. et al. (2011) Molecular Cell. 41, 5, p. 529-542

2009

CDK9 directs H2B monoubiquitination and controls replication-dependent histone mRNA 3-end processing

Pirngruber J., Shchebet A., Schreiber L. et al. (2009) EMBO Reports. 10, 8, p. 894-900

2008

The histone H2B-specific ubiquitin ligase RNF20/hBREl acts as a putative tumor suppressor through selective regulation of gene expression

Shema E., Tirosh I., Aylon Y. et al. (2008) GENES & DEVELOPMENT. 22, 19, p. 2664-2676

Monoubiquitinated H2B is associated with the transcribed region of highly expressed genes in human cells

Minsky N., Shema E., Field Y. et al. (2008) Nature Cell Biology. 10, 4, p. 483-488

Functional conservation of the yeast and Arabidopsis RAD54-like genes

Klutstein M., Shaked H., Sherman A. et al. (2008) Genetics. 178, 4, p. 2389-2397