Publications

2024

Cohort profile: study design and baseline characteristics of an observational longitudinal weight loss cohort and biorepository of patients undergoing sleeve gastrectomy in the USA

Vanegas S. M., Curado S., Gujral A., Valverde G., Parraga S., Aleman J. O., Reid M., Elbel B., Schmidt A. M., Heffron S. P., Segal E., Li H., Abrams C., Sevick M. A., Popp C., Armijos E., Merriwether E. N., Ivezaj V., Ren-Fielding C., Parikh M. & Jay M. (2024) BMJ Open. 14, 8, e081201.

Quantification of beta cell carrying capacity in prediabetes

Woller A., Tamir Y., Bar A., Mayo A., Rein M., Godneva A., Cohen N. M., Segal E., Toledano Y., Shilo S., Gonze D. & Alon U. (2024) BioRxiv.

Endocrinology in the multi-omics era

Shilo S. & Segal E. (2024) Nature Reviews Endocrinology. 20, p. 73-74

Melanoma and microbiota: Current understanding and future directions

Routy B., Jackson T., Mählmann L., Baumgartner C. K., Blaser M., Byrd A., Corvaia N., Couts K., Davar D., Derosa L., Hang H. C., Hospers G., Isaksen M., Kroemer G., Malard F., McCoy K. D., Meisel M., Pal S., Ronai Z., Segal E., Sepich-Poore G. D., Shaikh F., Sweis R. F., Trinchieri G., van den Brink M., Weersma R. K., Whiteson K., Zhao L., McQuade J., Zarour H. & Zitvogel L. (2024) Cancer Cell. 42, 1, p. 16-34

Genome-wide association studies and polygenic risk score phenome-wide association studies across complex phenotypes in the human phenotype project

Levine Z., Kalka I., Kolobkov D., Rossman H., Godneva A., Shilo S., Keshet A., Weissglas-Volkov D., Shor T., Diament A., Talmor-Barkan Y., Aviv Y., Sharon T., Weinberger A. & Segal E. (2024) Med. 5, 1, p. 90-101.e4

2023

Bacterial SNPs in the human gut microbiome associate with host BMI

Zahavi L., Lavon A., Reicher L., Shoer S., Godneva A., Leviatan S., Rein M., Weissbrod O., Weinberger A. & Segal E. (2023) Nature Medicine. 29, 11, p. 2785-2792

Impact of dietary interventions on pre-diabetic oral and gut microbiome, metabolites and cytokines

Shoer S., Shilo S., Godneva A., Ben-Yacov O., Rein M., Wolf B. C., Lotan-Pompan M., Bar N., Weiss E. I., Houri-Haddad Y., Pilpel Y., Weinberger A. & Segal E. (2023) Nature Communications. 14, 5384.

Gut microbiome modulates the effects of a personalised postprandial-targeting (PPT) diet on cardiometabolic markers: a diet intervention in pre-diabetes

Ben-Yacov O., Godneva A., Rein M., Shilo S., Lotan-Pompan M., Weinberger A. & Segal E. (2023) Gut. 72, 8, p. 1486-1496

A randomized clinical trial comparing low-fat with precision nutrition\u2013based diets for weight loss: impact on glycemic variability and HbA1c

Kharmats A. Y., Popp C., Hu L., Berube L., Curran M., Wang C., Pompeii M. L., Li H., Bergman M., St-Jules D. E., Segal E., Schoenthaler A., Williams N., Schmidt A. M., Barua S. & Sevick M. A. (2023) American Journal of Clinical Nutrition. 118, 2, p. 443-451

Phage-display immunoprecipitation sequencing of the antibody epitope repertoire in inflammatory bowel disease reveals distinct antibody signatures

Bourgonje A. R., Andreu-Sánchez S., Vogl T., Hu S., Vich Vila A., Gacesa R., Leviatan S., Kurilshikov A., Klompus S., Kalka I. N., van Dullemen H. M., Weinberger A., Visschedijk M. C., Festen E. A., Faber K. N., Wijmenga C., Dijkstra G., Segal E., Fu J., Zhernakova A. & Weersma R. K. (2023) Immunity. 56, 6, p. 1393-1409.e6

Phage display sequencing reveals that genetic, environmental, and intrinsic factors influence variation of human antibody epitope repertoire

Andreu-Sánchez S., Bourgonje A. R., Vogl T., Kurilshikov A., Leviatan S., Ruiz-Moreno A. J., Hu S., Sinha T., Vich Vila A., Klompus S., Kalka I. N., de Leeuw K., Arends S., Jonkers I., Withoff S., Brouwer E., Weinberger A., Wijmenga C., Segal E. & Weersma R. K. (2023) Immunity. 56, 6, p. 1376-1392

Wearable and digital devices to monitor and treat metabolic diseases

Keshet A., Reicher L., Bar N. & Segal E. (2023) Nature metabolism. 5, 4, p. 563-571

Questioning the fetal microbiome illustrates pitfalls of low-biomass microbial studies

Kennedy K. M., de Goffau M. C., Perez-Muñoz M. E., Arrieta M., Bäckhed F., Bork P., Braun T., Bushman F. D., Dore J., de Vos W. M., Earl A. M., Eisen J. A., Elovitz M. A., Ganal-Vonarburg S. C., Gänzle M. G., Garrett W. S., Hall L. J., Hornef M. W., Huttenhower C., Konnikova L., Lebeer S., Macpherson A. J., Massey R. C., McHardy A. C., Koren O., Lawley T. D., Ley R. E., O'Mahony L., O'Toole P. W., Pamer E. G., Parkhill J., Raes J., Rattei T., Salonen A., Segal E., Segata N., Shanahan F., Sloboda D. M., Smith G. C. S., Sokol H., Spector T. D., Surette M. G., Tannock G. W., Walker A. W., Yassour M. & Walter J. (2023) Nature. 613, 7945, p. 639-649

Head-to-head efficacy and safety of rivaroxaban, apixaban, and dabigatran in an observational nationwide targeted trial

Talmor-Barkan Y., Yacovzada N., Rossman H., Witberg G., Kalka I., Kornowski R. & Segal E. (2023) European heart journal. Cardiovascular pharmacotherapy. 9, 1, p. 26-37

2022

Research gaps and opportunities in precision nutrition: an NIH workshop report

Lee B. Y., Ordovás J. M., Parks E. J., Anderson C. A., Barabási A. L., Clinton S. K., de la Haye K., Duffy V. B., Franks P. W., Ginexi E. M., Hammond K. J., Hanlon E. C., Hittle M., Ho E., Horn A. L., Isaacson R. S., Mabry P. L., Malone S., Martin C. K., Mattei J., Meydani S. N., Nelson L. M., Neuhouser M. L., Parent B., Pronk N. P., Roche H. M., Saria S., Scheer F. A., Segal E., Sevick M. A., Spector T. D., Van Horn L., Varady K. A., Voruganti V. S. & Martinez M. F. (2022) The American journal of clinical nutrition. 116, 6, p. 1877-1900

Allergenic food protein consumption is associated with systemic IgG antibody responses in non-allergic individuals

Leviatan S., Vogl T., Klompus S., Kalka I. N., Weinberger A. & Segal E. (2022) Immunity. 55, 12, p. 2454-2469.e6

BREAst Cancer Personalised NuTrition (BREACPNT): dietary intervention in breast cancer survivors treated with endocrine therapy \u2013 a protocol for a randomised clinical trial

Rein M. S., Dadiani M., Godneva A., Bakalenik-Gavry M., Morzaev-Sulzbach D., Vachnish Y., Kolobkov D., Lotan-Pompan m., Weinberger A., Segal E. & Gal-Yam E. N. (2022) BMJ Open. 12, 11, e062498.

BIPS\u2014A code base for designing and coding of a Phage ImmunoPrecipitation Oligo Library

Leviatan S., Kalka I. N., Vogl T., Klompas S., Weinberger A. & Segal E. (2022) PLoS Computational Biology. 18, 11, e1010663.

Genome-Wide Association Analysis of Over 170,000 Individuals from the UK Biobank Identifies Seven Loci Associated with Dietary Approaches to Stop Hypertension (DASH) Diet

Mompeo O., Freidin M. B., Gibson R., Hysi P. G., Christofidou P., Segal E., Valdes A. M., Spector T. D., Menni C. & Mangino M. (2022) Nutrients. 14, 20, 4431.

Estimating the effect of cesarean delivery on long-term childhood health across two countries

Keshet A., Rossman H., Shilo S., Barbash-Hazan S., Amit G., Bivas-Benita M., Yanover C., Girshovitz I., Akiva P., Ben-Haroush A., Hadar E., Wiznitzer A. & Segal E. (2022) PLoS ONE. 17, 10, e0268103.

Effect of a Personalized Diet to Reduce Postprandial Glycemic Response vs a Low-fat Diet on Weight Loss in Adults with Abnormal Glucose Metabolism and Obesity: A Randomized Clinical Trial

Popp C. J., Hu L., Kharmats A. Y., Curran M., Berube L., Wang C., Pompeii M. L., Illiano P., St-Jules D. E., Mottern M., Li H., Williams N., Schoenthaler A., Segal E., Godneva A., Thomas D., Bergman M., Schmidt A. M. & Sevick M. A. (2022) JAMA network open. 5, 9,

Systemic antibody responses against human microbiota flagellins are overrepresented in chronic fatigue syndrome patients

Vogl T., Kalka I. N., Klompus S., Leviatan S., Weinberger A. & Segal E. (2022) Science advances. 8, 38, eabq2422.

Personalized microbiome-driven effects of non-nutritive sweeteners on human glucose tolerance

Suez J., Cohen Y., Valdés-Mas R., Mor U., Dori-Bachash M., Federici S., Zmora N., Leshem A., Heinemann M., Linevsky R., Zur M., Ben-Zeev Brik R., Bukimer A., Eliyahu-Miller S., Metz A., Fischbein R., Sharov O., Malitsky S., Itkin M., Stettner N., Harmelin A., Shapiro H., Stein-Thoeringer C. K., Segal E. & Elinav E. (2022) Cell. 185, 18, p. 3307-3328.e19

Phenotypic correlates of the working dog microbiome

Craddock H. A., Godneva A., Rothschild D., Motro Y., Grinstein D., Lotem-Michaeli Y., Narkiss T., Segal E. & Moran-Gilad J. (2022) npj Biofilms and Microbiomes. 8, 66.

Antibody signatures in inflammatory bowel disease: current developments and future applications

Bourgonje A. R., Vogl T., Segal E. & Weersma R. K. (2022) Trends in Molecular Medicine. 28, 8, p. 693-705

An expanded reference map of the human gut microbiome reveals hundreds of previously unknown species

Leviatan S., Shoer S., Rothschild D., Gorodetski M. & Segal E. (2022) Nature Communications. 13, 3863.

Recording bacterial responses to changes in the gut environment

Zahavi L. & Segal E. (2022) Science (American Association for the Advancement of Science). 376, 6594, p. 697-698

Soluble Receptor for Advanced Glycation End Products (sRAGE) Isoforms Predict Changes in Resting Energy Expenditure in Adults with Obesity during Weight Loss

Popp C. J., Zhou B., Manigrasso M. B., Li H., Curran M., Hu L., St-Jules D. E., Alemán J. O., Vanegas S. M., Jay M., Bergman M., Segal E., Sevick M. A. & Schmidt A. M. (2022) Current Developments in Nutrition. 6, 5, nzac046.

Whole-genome sequencing reveals that variants in the Interleukin 18 Receptor Accessory Protein 3\u2032UTR protect against ALS

Eitan C., Siany A., Barkan E., Olender T., Yanowski E., Marmor-Kollet H., Chapnik E., Ainbinder E., Ben-Dor S., Segal E. & Hornstein E. (2022) Nature Neuroscience. 25, 4, p. 433-445

An atlas of robust microbiome associations with phenotypic traits based on large-scale cohorts from two continents

Rothschild D., Leviatan S., Hanemann A., Cohen Y., Weissbrod O. & Segal E. (2022) PLoS ONE. 17, 3 March, e0265756.

Clinical efficacy of fecal microbial transplantation treatment in adults with moderate-to-severe atopic dermatitis

Mashiah J., Karady T., Fliss-Isakov N., Sprecher E., Slodownik D., Artzi O., Samuelov L., Ellenbogen E., Godneva A., Segal E. & Maharshak N. (2022) Immunity, inflammation and disease. 10, 3, e570.

Metabolomic and microbiome profiling reveals personalized risk factors for coronary artery disease

Talmor-Barkan Y., Bar N., Shaul A. A., Shahaf N., Godneva A., Bussi Y., Lotan-Pompan M., Weinberger A., Shechter A., Chezar-Azerrad C., Arow Z., Hammer Y., Chechi K., Forslund S. K., Fromentin S., Dumas M., Ehrlich S. D., Pedersen O., Kornowski R. & Segal E. (2022) Nature Medicine. 28, 2, p. 295-302

Microbiome and metabolome features of the cardiometabolic disease spectrum

Fromentin S., Forslund S. K., Chechi K., Bar N. & Segal E. (2022) Nature Medicine. 28, 2, p. 303-314

DOP53 In-depth characterisation of the serum antibody epitope repertoire in Inflammatory Bowel Disease by high-throughput phage-displayed immunoprecipitation sequencing

Bourgonje A. R., Andreu-Sánchez S., Vogl T., Hu S., Vich Vila A., Leviatan S., Kurilshikov A., Klompus S., Kalka I. N., van Dullemen H. M., Weinberger A., Visschedijk M. C., Festen E. A. M., Faber K. N., Wijmenga C., Dijkstra G., Segal E., Fu J., Zhernakova A. & Weersma R. K. (2022) Journal of Crohn's and Colitis. 16, Supplement_1, p. i100-i102

New Approaches to Profile the Microbiome for Treatment of Neurodegenerative Disease

Elmaleh D. R., Downey M. A., Kundakovic L., Wilkinson J. E., Neeman Z. & Segal E. (2022) Handbook of Microbiome and Gut-Brain-Axis in Alzheimer's Disease . Pasinetti G. M.(eds.). p. 117-145

2021

Stress-related emotional and behavioural impact following the first COVID-19 outbreak peak

Benjamin A., Kuperman Y., Eren N., Rotkopf R., Amitai M., Rossman H., Shilo S., Meir T., Keshet A., Nuttman-Shwartz O., Segal E. & Chen A. (2021) Molecular Psychiatry. 26, 11, p. 6149-6158

Reporting guidelines for human microbiome research: the STORMS checklist

Elinav E. & Segal E. (2021) Nature Medicine. 27, 11, p. 1885-1892

Structured elements drive extensive circular RNA translation

Chen C. K., Cheng R., Demeter J., Chen J., Weingarten-Gabbay S., Jiang L., Snyder M. P., Weissman J. S., Segal E., Jackson P. K. & Chang H. Y. (2021) Molecular Cell. 81, 20, p. 4300-4318.e13

Evidence for cutaneous dysbiosis in dystrophic epidermolysis bullosa

Bar J., Sarig O., Lotan-Pompan M., Dassa B., Miodovnik M., Weinberger A., Sprecher E., Segal E. & Samuelov L. (2021) Clinical and Experimental Dermatology. 46, 7, p. 1223-1229

Personalized Postprandial Glucose Response\u2013Targeting Diet Versus Mediterranean Diet for Glycemic Control in Prediabetes

Ben-Yacov O., Godneva A., Rein M., Shilo S., Kolobkov D., Koren N., Cohen Dolev N., Travinsky Shmul T., Wolf B. C., Kosower N., Sagiv K., Lotan-Pompan M., Zmora N., Weinberger A., Elinav E. & Segal E. (2021) Diabetes Care. 44, 9, p. 1980-1991

Challenges of conducting a remote behavioral weight loss study: Lessons learned and a practical guide

Hu L., Illiano P., Pompeii M. L., Popp C. J., Kharmats A. Y., Curran M., Perdomo K., Chen S., Bergman M., Segal E. & Sevick M. A. (2021) Contemporary Clinical Trials. 108, 106522.

New Approaches to Profile the Microbiome for Treatment of Neurodegenerative Disease

Elmaleh D. R., Downey M. A., Kundakovic L., Wilkinson J. E., Neeman Z. & Segal E. (2021) Journal of Alzheimer's Disease. 82, 4, p. 1373-1401

COVID-19 dynamics after a national immunization program in Israel

Rossman H., Shilo S., Meir T., Gorfine M., Shalit U. & Segal E. (2021) Nature Medicine. 27, p. 1055-1061

Prediction of Childhood Obesity from Nationwide Health Records

Rossman H., Shilo S., Barbash-Hazan S., Artzi N. S., Hadar E., Balicer R. D., Feldman B., Wiznitzer A. & Segal E. (2021) Journal of Pediatrics. 233, p. 132-140.e1

Potential role of indolelactate and butyrate in multiple sclerosis revealed by integrated microbiome-metabolome analysis

Levi I., Gurevich M., Perlman G., Magalashvili D., Menascu S., Bar N., Godneva A., Zahavi L., Chermon D., Kosower N., Wolf B. C., Malka G., Lotan-Pompan M., Weinberger A., Yirmiya E., Rothschild D., Leviatan S., Tsur A., Didkin M., Dreyer S., Eizikovitz H., Titngi Y., Mayost S., Sonis P., Dolev M., Stern Y., Achiron A. & Segal E. (2021) Cell Reports Medicine. 2, 4, 100246.

Identification of bacteria-derived HLA-bound peptides in melanoma

Kalaora S., Nagler A., Nejman D., Alon M., Barbolin C., Barnea E., Ketelaars S. L. C., Cheng K., Vervier K., Shental N., Bussi Y., Rotkopf R., Levy R., Benedek G., Trabish S., Dadosh T., Levin-Zaidman S., Geller L. T., Wang K., Greenberg P., Yagel G., Peri A., Fuks G., Bhardwaj N., Reuben A., Hermida L., Johnson S. B., Galloway-Peña J. R., Shropshire W. C., Bernatchez C., Haymaker C., Arora R., Roitman L., Eilam R., Weinberger A., Lotan-Pompan M., Lotem M., Levin Y., Lawley T. D., Adams D. J., Levesque M. P., Besser M. J., Schachter J., Golani O., Segal E., Ruppin E., Kvistborg P., Peterson S. N., Wargo J. A., Straussman R. & Samuels Y. (2021) Nature (London). 592, 7852, p. 138-143

Signals of hope: gauging the impact of a rapid national vaccination campaign

Shilo S., Rossman H. & Segal E. (2021) Nature Reviews Immunology. 21, p. 198-199

A Prediction Model to Prioritize Individuals for a SARS-CoV-2 Test Built from National Symptom Surveys

Shoer S., Karady T., Keshet A., Shilo S., Rossman H., Gavrieli A., Meir T., Lavon A., Kolobkov D., Kalka I., Godneva A., Cohen O., Kariv A., Hoch O., Zer-Aviv M., Castel N., Sudre C., Zohar A. E., Irony A., Spector T., Geiger B., Hizi D., Shalev V., Balicer R. & Segal E. (2021) Med. 2, 2, p. 196-208.e4

Large-scale association analyses identify host factors influencing human gut microbiome composition

Kurilshikov A., Medina-Gomez C., Bacigalupe R., Barkan E., Segal E. & Rothschild Bup D. (2021) Nature Genetics. 53, 2, p. 156-165

The gut microbiome: a key player in the complexity of amyotrophic lateral sclerosis (ALS)

Boddy S. L., Giovannelli I., Sassani M., Cooper-Knock J., Snyder M. P., Segal E., Elinav E., Barker L. A., Shaw P. J. & McDermott C. J. (2021) BMC Medicine. 19, 1, 13.

2020

Longitudinal symptom dynamics of COVID-19 infection

Mizrahi B., Shilo S., Rossman H., Kalkstein N., Marcus K., Barer Y., Keshet A., Shamir-Stein N., Shalev V., Zohar A. E., Chodick G. & Segal E. (2020) Nature Communications. 11, 1, 6208.

A reference map of potential determinants for the human serum metabolome

Bar N., Korem T., Weissbrod O., Zeevi D., Rothschild Bup D., Peled-Leviatan S., Kosower N., Lotan-Pompan M., Weinberger A. & Segal E. (2020) Nature. 588, 7836, p. 135-140

Identifying gut microbes that affect human health

Leviatan S. & Segal E. (2020) Nature. 587, 7834, p. 373-374

Longitudinal Multi-omics Reveals Subset-Specific Mechanisms Underlying Irritable Bowel Syndrome (vol 182, pg 1460, 2020): Longitudinal Multi-omics Reveals Subset-Specific Mechanisms Underlying Irritable Bowel Syndrome (Cell (2020) 182(6) (1460\u20131473.e17), (S0092867420309983), (10.1016/j.cell.2020.08.007))

Mars R. A., Yang Y., Ward T., Houtti M., Priya S., Lekatz H. R., Tang X., Sun Z., Kalari K. R., Korem T., Bhattarai Y., Zheng T., Bar N., Frost G., Johnson A. J., van Treuren W., Han S., Ordog T., Grover M., Sonnenburg J., D'Amato M., Camilleri M., Elinav E., Segal E., Blekhman R., Farrugia G., Swann J. R., Knights D. & Kashyap P. C. (2020) Cell. 183, 4, p. 1137-1140

Rationale and design of a randomised controlled trial testing the effect of personalised diet in individuals with pre-diabetes or type 2 diabetes mellitus treated with metformin

Htet T. D., Godneva A., Liu Z., Chalmers E., Kolobkov D., Snaith J. R., Richens R., Toth K., Danta M., Hng T. M., Elinav E., Segal E., Greenfield J. R. & Samocha-Bonet D. (2020) BMJ Open. 10, 10, e037859.

The road ahead in genetics and genomics

McGuire A. L., Gabriel S., Tishkoff S. A., Wonkam A., Chakravarti A., Furlong E. E. M., Treutlein B., Meissner A., Chang H. Y., Lopez-Bigas N., Segal E. & Kim J. (2020) Nature Reviews Genetics. 21, 10, p. 581-596

The gut microbiome and individual-specific responses to diet

Leshem A., Segal E. & Elinav E. (2020) mSystems. 5, 5, e00665-20.

Longitudinal Multi-omics Reveals Subset-Specific Mechanisms Underlying Irritable Bowel Syndrome

Mars R. A. T., Ward T., Houtti M., Priya S., Lekatz H. R., Tang X., Sun Z., Kalari K. R., Bhattarai Y., Zheng T., Bar N., Frost G., Johnson A. J., van Treuren W., Han S., Ordog T., Grover M., Sonnenburg J., D'Amato M., Camilleri M., Elinav E., Segal E., Blekhman R., Farrugia G., Swann J. R., Knights D. & Kashyap P. C. (2020) Cell. 182, 6, p. 1460-1473

Clinically Accurate Prediction of Glucose Levels in Patients with Type 1 Diabetes

Amar Y., Shilo S., Oron T., Amar E., Phillip M. & Segal E. (2020) Diabetes Technology and Therapeutics. 22, 8, p. 562-569

Building an international consortium for tracking coronavirus health status

Segal E., Zhang F., Lin X., King G., Shalem O., Shilo S., Allen W. E., Alquaddoomi F., Altae-Tran H., Anders S., Balicer R., Bauman T., Bonilla X., Booman G., Chan A. T., Cohen O., Coletti S., Davidson N., Dor Y., Drew D. A., Elemento O., Evans G., Ewels P., Gale J., Gavrieli A., Grad Y. H., Greene C. S., Hajirasouliha I., Jerala R., Kahles A., Kallioniemi O., Keshet A., Kocarev L., Landua G., Meir T., Muller A., Nguyen L. H., Oresic M., Ovchinnikova S., Peterson H., Prodanova J., Rajagopal J., Ratsch G., Rossman H., Rung J., Sboner A., Sigaras A., Spector T., Steinherz R., Stevens I., Vilo J. & Wilmes P. (2020) Nature Medicine. 26, 8, p. 1161-1165

Gene Architecture and Sequence Composition Underpin Selective Dependency of Nuclear Export of Long RNAs on NXF1 and the TREX Complex

Zuckerman B., Ron M., Mikl M., Segal E. & Ulitsky I. (2020) Molecular Cell. 79, 2, p. 251-267

High-throughput interrogation of programmed ribosomal frameshifting in human cells

Mikl M., Pilpel Y. & Segal E. (2020) Nature Communications. 11, 1, 3061.

The human tumor microbiome is composed of tumor type-specific intracellular bacteria

Nejman D., Livyatan I., Fuks G., Gavert N., Zwang Y., Geller L. T., Rotter-Maskowitz A., Weiser R., Mallel G., Gigi E., Meltser A., Douglas G. M., Kamer I., Gopalakrishnan V., Dadosh T., Levin-Zaidman S., Avnet S., Atlan T., Cooper Z. A., Arora R., Cogdill A. P., Khan M. A. W., Ologun G., Bussi Y., Weinberger A., Lotan-Pompan M., Golani O., Perry G., Rokah M., Bahar-Shany K., Rozeman E. A., Blank C. U., Ronai A., Shaoul R., Amit A., Dorfman T., Kremer R., Cohen Z. R., Harnof S., Siegal T., Yehuda-Shnaidman E., Gal-Yam E. N., Shapira H., Baldini N., Langille M. G. I., Ben-Nun A., Kaufman B., Nissan A., Golan T., Dadiani M., Levanon K., Bar J., Yust-Katz S., Barshack I., Peeper D. S., Raz D. J., Segal E., Wargo J. A., Sandbank J., Shental N. & Straussman R. (2020) Science. 368, 6494, p. 973-980

Visualizing the structure and motion of the long noncoding RNA HOTAIR

Spokoini-Stern R., Stamov D., Jessel H., Aharoni L., Haschke H., Giron J., Unger R., Segal E., Abu-Horowitz A. & Bachelet I. (2020) RNA. 26, 5, p. 629-636

A framework for identifying regional outbreak and spread of COVID-19 from one-minute population-wide surveys

Rossman H., Keshet A., Shilo S., Gavrieli A., Bauman T., Cohen O., Shelly E., Balicer R., Geiger B., Dor Y. & Segal E. (2020) Nature Medicine. 26, 5, p. 634-638

Rich data sets could end costly drug discovery

Segal E. (2020) Nature (London). 577, 7792, p. S19-S19

Axes of a revolution: challenges and promises of big data in healthcare

Shilo S., Rossman H. & Segal E. (2020) Nature Medicine. 26, 1, p. 29-38

Prediction of gestational diabetes based on nationwide electronic health records

Artzi N. S., Shilo S., Hadar E., Rossman H., Barbash-Hazan S., Ben-Haroush A., Balicer R. D., Feldman B., Wiznitzer A. & Segal E. (2020) Nature Medicine. 26, 1, p. 71-76

2019

Dissecting splicing decisions and cell-to-cell variability with designed sequence libraries

Mikl M., Hamburg A., Pilpel Y. & Segal E. (2019) Nature Communications. 10, 4572.

Sequence determinants of polyadenylation-mediated regulation

Slutskin I. V., Weinberger A. & Segal E. (2019) Genome Research. 29, 10, p. 1635-1647

Potential roles of gut microbiome and metabolites in modulating ALS in mice

Blacher E., Bashiardes S., Shapiro H., Rothschild D., Mor U., Dori-Bachash M., Kleimeyer C., Moresi C., Harnik Y., Zur M., Zabari M., Brik R. B., Kviatcovsky D., Zmora N., Cohen Y., Bar N., Levi I., Amar N., Mehlman T., Brandis A., Biton I., Kuperman Y., Tsoory M., Alfahel L., Harmelin A., Schwartz M., Israelson A., Arike L., Johansson M. E. V., Hansson G. C., Gotkine M., Segal E. & Elinav E. (2019) Nature. 572, 7770, p. 474-480

The pros, cons, and many unknowns of probiotics

Suez J., Zmora N., Segal E. & Elinav E. (2019) Nature Medicine. 25, 5, p. 716-729

Structural variation in the gut microbiome associates with host health

Zeevi D., Korem T., Godneva A., Bar N., Kurilshikov A., Lotan-Pompan M., Weinberger A., Fu J., Wijmenga C., Zhernakova A. & Segal E. (2019) Nature. 568, 7750, p. 43-48

The rationale and design of the personal diet study, a randomized clinical trial evaluating a personalized approach to weight loss in individuals with pre-diabetes and early-stage type 2 diabetes

Popp C. J., St-Jules D. E., Hu L., Ganguzza L., Illiano P., Curran M., Li H., Schoenthaler A., Bergman M., Schmidt A. M., Segal E., Godneva A. & Sevick M. A. (2019) Contemporary Clinical Trials. 79, p. 80-88

Systematic interrogation of human promoters

Weingarten-Gabbay S., Nir R., Lubliner S., Sharon E., Kalma Y., Weinberger A. & Segal E. (2019) Genome Research. 29, 2, p. 171-183

A Significant Expansion of Our Understanding of the Composition of the Human Microbiome

Leviatan S. & Segal E. (2019) mSystems. 4, 1, e00010-19.

2018

The Helix Twist: Damage and Repair Follows the DNA Minor Groove

Kotler E. & Segal E. (2018) Cell. 175, 4, p. 902-904

Post-Antibiotic Gut Mucosal Microbiome Reconstitution Is Impaired by Probiotics and Improved by Autologous FMT

Suez J., Zmora N., Zilberman-Schapira G., Mor U., Dori-Bachash M., Bashiardes S., Zur M., Regev-Lehavi D., Brik R. B., Federici S., Horn M., Cohen Y., Moor A. E., Zeevi D., Korem T., Kotler E., Harmelin A., Itzkovitz S., Maharshak N., Shibolet O., Pevsner-Fischer M., Shapiro H., Sharon I., Halpern Z., Segal E. & Elinav E. (2018) Cell. 174, 6, p. 1406-1423.e16

Personalized Gut Mucosal Colonization Resistance to Empiric Probiotics Is Associated with Unique Host and Microbiome Features

Zmora N., Zilberman-Schapira G., Suez J., Mor U., Dori-Bachash M., Bashiardes S., Kotler E., Zur M., Regev-Lehavi D., Brik R. B., Federici S., Cohen Y., Linevsky R., Rothschild D., Moor A. E., Ben-Moshe S., Harmelin A., Itzkovitz S., Maharshak N., Shibolet O., Shapiro H., Pevsner-Fischer M., Sharon I., Halpern Z., Segal E. & Elinav E. (2018) Cell. 174, 6, p. 1388-1405.e21

Functional characterization of the p53 "mutome"

Kotler E., Segal E. & Oren M. (2018) Molecular & cellular oncology. 5, 6, 1511207.

Host genetics and microbiome associations through the lens of genome wide association studies

Weissbrod O., Rothschild D., Barkan E. & Segal E. (2018) Current Opinion in Microbiology. 44, p. 9-19

A Systematic p53 Mutation Library Links Differential Functional Impact to Cancer Mutation Pattern and Evolutionary Conservation

Kotler E., Shani O., Goldfeld G., Lotan-Pompan M., Tarcic O., Gershoni A., Hopf T. A., Marks D. S., Oren M. & Segal E. (2018) Molecular Cell. 71, 1, p. 178-190.e8

Prediction of acute myeloid leukaemia risk in healthy individuals

Abelson S., Collord G., Ng S. W. K., Weissbrod O., Mendelson Cohen N., Niemeyer E., Barda N., Zuzarte P. C., Heisler L., Sundaravadanam Y., Luben R., Hayat S., Wang T. T., Zhao Z., Cirlan I., Pugh T. J., Soave D., Ng K., Latimer C., Hardy C., Raine K., Jones D., Hoult D., Britten A., McPherson J. D., Johansson M., Mbabaali F., Eagles J., Miller J. K., Pasternack D., Timms L., Krzyzanowski P., Awadalla P., Costa R., Segal E., Bratman S. V., Beer P., Behjati S., Martincorena I., Wang J. C. Y., Bowles K. M., Quirós J. R., Karakatsani A., La Vecchia C., Trichopoulou A., Salamanca-Fernández E., Huerta J. M., Barricarte A., Travis R. C., Tumino R., Masala G., Boeing H., Panico S., Kaaks R., Krämer A., Sieri S., Riboli E., Vineis P., Foll M., McKay J., Polidoro S., Sala N., Khaw K., Vermeulen R., Campbell P. J., Papaemmanuil E., Minden M. D., Tanay A., Balicer R. D., Wareham N. J., Gerstung M., Dick J. E., Brennan P., Vassiliou G. S. & Shlush L. I. (2018) Nature. 559, 7714, p. 400-404

Meta-analysis of human genome-microbiome association studies: The MiBioGen consortium initiative

Wang J., Kurilshikov A., Radjabzadeh D., Turpin W., Croitoru K., Bonder M. J., Jackson M. A., Medina-Gomez C., Frost F., Homuth G., Rühlemann M., Hughes D., Kim H. N., Spector T. D., Bell J. T., Steves C. J., Timpson N., Franke A., Wijmenga C., Meyer K., Kacprowski T., Franke L., Paterson A. D., Raes J., Kraaij R., Zhernakova A., Ahluwalia T., Barkan E., Bedrani L., Bisgaard H., Boehnke M., Bønnelykke K., Boomsma D. I., Croitoru K., Davies G. E., Geus E. d., Degenhardt F., D\u2019amato M., Ehli E. A., Espin-Garcia O., Finnicum C. T., Fornage M., Frost F., Fu J., Heinsen F. A., Homuth G., Ijzerman R., Jackson M. A., Jessen L. E., Jonkers D., Kacprowski T., Kim H. L., Kraaij R., Laakso M., Launer L., Lerch M. M., Lüll K., Lusis A. J., Mangino M., Mayerle J., Mbarek H., Medina M. C., Meyer K., Mohlke K. L., Org E., Paterson A., Payami H., Radjabzadeh D., Raes J., Rothschild D., Rühle-Mann M., Sanna S., Segal E., Shah S., Smith M., Stokholm J., Szopinska J. W., Thorsen J., Timpson N., Turpin W., Uit-Terlinden A. G., Vasquez A. A., Völzke H., Vosa U., Wallen Z., Wang J., Weiss F. U., Weissbrod O., Wijmenga C., Willemsen G., Xu W. & Yun Y. (2018) Microbiome. 6, 1, 101.

Role of the gut microbiota in nutrition and health

Valdes A. M., Walter L., Segal E. & Spector T. D. (2018) British Medical Journal. 361, p. 36-44 2179.

Towards utilization of the human genome and microbiome for personalized nutrition

Bashiardes S., Godneva A., Elinav E. & Segal E. (2018) Current Opinion in Biotechnology. 51, p. 57-63

Environment dominates over host genetics in shaping human gut microbiota

Rothschild D., Weissbrod O., Barkan E., Kurilshikov A., Korem T., Zeevi D., Costea P. I., Godneva A., Kalka I. N., Bar N., Shilo S., Lador D., Vila A. V., Zmora N., Pevsner-Fischer M., Israeli D., Kosower N., Malka G., Wolf B. C., Avnit-Sagi T., Lotan-Pompan M., Weinberger A., Halpern Z., Carmi S., Fu J., Wijmenga C., Zhernakova A., Elinav E. & Segal E. (2018) Nature. 555, 7695, p. 210-215

What Can Immunologists Learn from Systems Approaches?

Segal E., Vogl T., Klompus S., Peled-Leviatan S. & Weinberger A. (2018) Trends in Immunology. 39, 3, p. 163-166

Unraveling the determinants of microRNA mediated regulation using a massively parallel reporter assay

Slutskin I. V., Weingarten-Gabbay S., Nir R., Weinberger A. & Segal E. (2018) Nature Communications. 9, 529.

Probiotics administration following sleeve gastrectomy surgery: a randomized double-blind trial

Sherf-Dagan S., Zelber-Sagi S., Zilberman-Schapira G., Webb M., Buch A., Keidar A., Raziel A., Sakran N., Goitein D., Goldenberg N., Mahdi J. A., Pevsner-Fischer M., Zmora N., Dori-Bachash M., Segal E., Elinav E. & Shibolet O. (2018) International Journal of Obesity. 42, 2, p. 147-155

2017

Microbiome at the Frontier of Personalized Medicine

Kashyap P. C., Chia N., Nelson H., Segal E. & Elinav E. (2017) Mayo Clinic Proceedings. 92, 12, p. 1855-1864

Sequence features of viral and human Internal Ribosome Entry Sites predictive of their activity

Gritsenko A. A., Weingarten-Gabbay S., Elias-Kirma S., Nir R., De Ridder R. D. & Segal E. (2017) PLoS Computational Biology. 13, 9, e1005734.

Bread Affects Clinical Parameters and Induces Gut Microbiome-Associated Personal Glycemic Responses

Korem T., Zeevi D., Zmora N., Weissbrod O., Bar N., Lotan-Pompan M., Avnit Sagi S. T., Kosower N., Malka G., Rein M., Suez J., Goldberg B. Z., Weinberger A., Levy A., Elinav E. & Segal E. (2017) Cell Metabolism. 25, 6, p. 1243-1253

Involvement of a gut-retina axis in protection against dietary glycemia-induced age-related macular degeneration

Rowan S., Jiang S., Korem T., Szymanski J., Chang M., Szelog J., Cassalman C., Dasuri K., McGuire C., Nagai R., Du X., Brownlee M., Rabbani N., Thornalley P. J., Baleja J. D., Deik A. A., Pierce K. A., Scott J. M., Clish C. B., Smith D. E., Weinberger A., Avnit Sagi T., Lotan-Pompan M., Segal E. & Taylor A. (2017) Proceedings of the National Academy of Sciences of the United States of America. 114, 22, p. E4472-E4481

Systematic Investigation of Transcription Factor Activity in the Context of Chromatin Using Massively Parallel Binding and Expression Assays

Levo M., Avnit-Sagi T., Lotan-Pompan M., Kalma Y., Weinberger A., Yakhini Z. & Segal E. (2017) Molecular Cell. 65, 4, p. 604-+

Large-scale mapping of gene regulatory logic reveals context-dependent repression by transcriptional activators

Van Dijk D. D., Sharon E., Lotan-Pompan M., Weinberger A., Segal E. & Carey L. (2017) Genome Research. 27, 1, p. 87-94

2016

Persistent microbiome alterations modulate the rate of post-dieting weight regain

Thaiss C. A., Itav S., Rothschild D., Meijer M. T., Levy M., Moresi C., Dohnalová L., Braverman S., Rozin S., Malitsky S., Dori-Bachash M., Kuperman Y., Biton I., Gertler A., Harmelin A., Shapiro H., Halpern Z., Aharoni A., Segal E. & Elinav E. (2016) Nature. 540, 7634, p. 544-551

Microbiota Diurnal Rhythmicity Programs Host Transcriptome Oscillations

Thaiss C., Levy M., Korem T., Dohnalova L., Shapiro H., Jaitin D., David E., Winter D., Gury-BenAri M., Tatirovsky E., Tuganbaev T., Federici S., Zmora N., Zeevi D., Dori-Bachash M., Pevsner-Fischer M., Kartvelishvily E., Brandis A., Harmelin A., Shibolet O., Halpern Z., Honda K., Amit I., Segal E. & Elinav E. (2016) Cell. 167, 6, p. 1495-1510.e12

Massively Parallel Interrogation of the Effects of Gene Expression Levels on Fitness

Keren L., Hausser J., Lotan-Pompan M., Vainberg Slutskin I., Alisar H., Kaminski S., Weinberger A., Alon U., Milo R. & Segal E. (2016) Cell. 166, 5, p. 1282-1294.e18

A minimalistic resource allocation model to explain ubiquitous increase in protein expression with growth rate

Barenholz U., Keren L., Segal E. & Milo R. (2016) PLoS ONE. 11, 4, 0153344.

Talking about cross-talk: The immune system and the microbiome

Zeevi D., Korem T. & Segal E. (2016) GENOME BIOLOGY. 17, 1, 50.

Integrative genomic analysis by interoperation of bioinformatics tools in GenomeSpace

Qu K., Garamszegi S., Wu F., Thorvaldsdottir H., Liefeld T., Ocana M., Borges-Rivera D., Pochet N., Robinson J. T., Demchak B., Hull T., Ben-Artzi G., Blankenberg D., Barber G. P., Lee B. T., Kuhn R. M., Nekrutenko A., Segal E., Ideker T., Reich M., Regev A., Y Chang H. & Mesirov J. P. (2016) Nature Methods. 13, 3, p. 245-247

Comparative genetics: Systematic discovery of cap-independent translation sequences in human and viral genomes

Weingarten-Gabbay S., Elias-Kirma S., Nir R., Gritsenko A. A., Stern-Ginossar N., Yakhini Z., Weinberger A. & Segal E. (2016) Science. 351, 6270, aad4939.

Taking it Personally: Personalized Utilization of the Human Microbiome in Health and Disease

Zmora N., Zeevi D., Korem T., Segal E. & Elinav E. (2016) Cell Host & Microbe. 19, 1, p. 12-20

2015

Microbiota-Modulated Metabolites Shape the Intestinal Microenvironment by Regulating NLRP6 Inflammasome Signaling

Levy M., Thaiss C. A., Zeevi D., Dohnalova L., Zilberman-Schapira G., Mahdi J. A., David E., Savidor A., Korem T., Herzig Y., Pevsner-Fischer M., Shapiro H., Christ A., Harmelin A., Halpern Z., Latz E., Flavell R. A., Amit I., Segal E. & Elinav E. (2015) Cell. 163, 6, p. 1428-1443

Personalized Nutrition by Prediction of Glycemic Responses

Zeevi D., Korem T., Zmora N., Israeli D., Rothschild D., Weinberger A., Ben-Yacov O., Lador D., Avnit Sagi S. T., Lotan-Pompan M., Suez J., Mahdi J. A., Matot E., Malka G., Kosower N., Rein M., Zilberman-Schapira G., Dohnalova L., Pevsner-Fischer M., Bikovsky R., Halpern Z., Elinav E. & Segal E. (2015) Cell. 163, 5, p. 1079-1094

Noise in gene expression is coupled to growth rate

Keren L., Van Dijk D. D., Weingarten-Gabbay S., Davidi D., Jona G., Weinberger A., Milo R. & Segal E. (2015) Genome Research. 25, p. 1893-1902

Growth dynamics of gut microbiota in health and disease inferred from single metagenomic samples

Korem T., Zeevi D., Suez J., Weinberger A., Avnit Sagi S. T., Pompan-Lotan M., Matot E., Jona G., Harmelin A., Cohen N., Sirota-Madi A., Thaiss C. A., Pevsner-Fischer M., Sorek R., Xavier R. J., Elinav E. & Segal E. (2015) Science (New York, N.Y.). 349, 6252, p. 1101-1106

Core promoter sequence in yeast is a major determinant of expression level

Lubliner S., Regev I., Lotan-Pompan M., Edelheit S., Weinberger A. & Segal E. (2015) Genome Research. 25, 7, p. 1008-1017

GenoExp: A web tool for predicting gene expression levels from single nucleotide polymorphisms

Manor O. & Segal E. (2015) Bioinformatics. 31, 11, p. 1848-1850

A day in the life of the meta-organism: Diurnal rhythms of the intestinal microbiome and its host

Thaiss C. A., Zeevi D., Levy M., Segal E. & Elinav E. (2015) Gut Microbes. 6, 2, p. 137-142

Systematic Dissection of the Sequence Determinants of Gene 3\u2019 End Mediated Expression Control

Shalem O., Sharon E., Lubliner S., Regev I., Lotan-Pompan M., Yakhini Z. & Segal E. (2015) PLoS Genetics. 11, 4, e1005147.

Editorial overview: Genome architecture and expression

Panning B. & Segal E. (2015) Current opinion in genetics & development. 31, p. v-vi

Non-caloric artificial sweeteners and the microbiome: Findings and challenges

Suez J., Korem T., Zilberman-Schapira G., Segal E. & Elinav E. (2015) Gut Microbes. 6, 2, p. 149-155

Unraveling determinants of transcription factor binding outside the core binding site

Levo M., Zalckvar E., Sharon E., Machado A. C. D., Kalma Y., Lotam-Pompan M., Weinberger A., Yakhini Z., Rohs R. & Segal E. (2015) Genome Research. 25, 7, p. 1018-1029

Artificial Sweeteners Induce Glucose Intolerance by Altering the Gut Microbiota: Editorial comment

Suez J., Korem T., Zeevi D., Zilberman-Schapira G., Thaiss C. A., Maza O., Israeli D., Zmora N., Gilad S., Weinberger A., Kuperman Y., Harmelin A., Kolodkin-Gal I., Shapiro H., Halpern Z., Segal E. & Elinav E. (2015) Obstetrical & Gynecological Survey. 70, 1, p. 31-32

2014

A shared architecture for promoters and enhancers

Weingarten-Gabbay S. & Segal E. (2014) Nature Genetics. 46, 12, p. 1253-1254

Molecular dissection of the genetic mechanisms that underlie expression conservation in orthologous yeast ribosomal promoters

Zeevi D., Lubliner S., Lotan-Pompan M., Hodis E., Vesterman R., Weinberger A. & Segal E. (2014) Genome Research. 24, 12, p. 1991-1999

Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis

Thaiss C. A., Zeevi D., Levy M., Zilberman-Schapira G., Suez J., Tengeler A. C., Abramson L., Katz M. N., Korem T., Zmora N., Kuperman Y., Biton I., Gilad S., Harmelin A., Shapiro H., Halpern Z., Segal E. & Elinav E. (2014) Cell. 159, 3, p. 514-529

Artificial sweeteners induce glucose intolerance by altering the gut microbiota

Suez J., Korem T., Zeevi D., Zilberman-Schapira G., Thaiss C. A., Maza O., Israeli D., Zmora N., Gilad S., Weinberger A., Kuperman Y., Harmelin A., Kolodkin-Gal I., Shapiro H., Halpern Z., Segal E. & Elinav E. (2014) Nature. 514, 7521, p. 181-186

Host-parasite network structure is associated with community-level immunogenetic diversity

Pilosof S., Fortuna M. A., Cosson J. F., Galan M., Kittipong C., Ribas A., Segal E., Krasnov B. R., Morand S. & Bascompte J. (2014) Nature Communications. 5, 5172.

Probing the effect of promoters on noise in gene expression using thousands of designed sequences

Sharon E., Van Dijk D. D., Kalma Y., Keren L., Manor O., Yakhini Z. & Segal E. (2014) Genome Research. 24, 10, p. 1698-1706

In pursuit of design principles of regulatory sequences

Levo M. & Segal E. (2014) Nature Reviews Genetics. 15, 7, p. 453-468

The grammar of transcriptional regulation

Weingarten-Gabbay S. & Segal E. (2014) Human Genetics. 133, 6, p. 701-711

2013

Fixated on fixation - using ChIP to interrogate the dynamics of chromatin interactions

Keren L. & Segal E. (2013) GENOME BIOLOGY. 14, 11, 138.

Inferring gene expression from ribosomal promoter sequences, a crowdsourcing approach

Meyer P., Siwo G., Zeevi D., Sharon E., Norel R., Segal E., Stolovitzky G., Rider A. K., Tan A., Pinapati R. S., Emrich S., Chawla N., Ferdig M. T., Tung Y. A., Chen Y. S., Chen M. J. M., Chen C. Y., Knight J. M., Sahraeian S. M. E. & Esfahani M. S. (2013) Genome Research. 23, 11, p. 1928-1937

Promoters maintain their relative activity levels under different growth conditions

Keren L., Zackay O., Lotan-Pompan M., Barenholz U., Dekel E., Sasson V., Aidelberg G., Bren A., Zeevi D., Weinberger A., Alon U., Milo R. & Segal E. (2013) Molecular Systems Biology. 9, 701.

Nucleosome maps of the human cytomegalovirus genome reveal a temporal switch in chromatin organization linked to a major IE protein

Zalckvar E., Paulus C., Tillo D., Asbach-Nitzsche A., Lubling Y., Winterling C., Strieder N., Mücke K., Goodrum F., Segal E. & Nevels M. (2013) Proceedings of the National Academy of Sciences of the United States of America. 110, 32, p. 13126-13131

Predicting Disease Risk Using Bootstrap Ranking and Classification Algorithms

Manor O. & Segal E. (2013) PLoS Computational Biology. 9, 8, e1003200.

Deciphering the rules by which 5'-UTR sequences affect protein expression in yeast

Dvir S., Velten L., Sharon E., Zeevi D., Carey L. B., Weinberger A. & Segal E. (2013) Proceedings of the National Academy of Sciences of the United States of America. 110, 30, p. E2792-E2801

Sequence features of yeast and human core promoters that are predictive of maximal promoter activity

Lubliner S., Keren L. & Segal E. (2013) Nucleic Acids Research. 41, 11, p. 5569-5581

Promoter Sequence Determines the Relationship between Expression Level and Noise

Carey L. B., van Dijk D., Sloot P. M., Kaandorp J. A. & Segal E. (2013) PLoS Biology. 11, 4, e1001528.

Determinants of nucleosome positioning

Struhl K. & Segal E. (2013) Nature Structural & Molecular Biology. 20, 3, p. 267-273

Measurements of the Impact of 3\u2032 End Sequences on Gene Expression Reveal Wide Range and Sequence Dependent Effects

Shalem O., Carey L., Zeevi D., Sharon E., Keren L., Weinberger A., Dahan O., Pilpel Y. & Segal E. (2013) PLoS Computational Biology. 9, 3, e1002934.

2012

From catalogue to function

Segal E. (2012) Nature. 489, 7414, p. 55-55

Manipulating nucleosome disfavoring sequences allows fine-tune regulation of gene expression in yeast

Raveh - Sadka -. S. T., Levo M., Shabi U., Shany B., Keren L., Lotan-Pompan M., Zeevi D., Sharon E., Weinberger A. & Segal E. (2012) Nature Genetics. 44, 7, p. 743-750

Inferring gene regulatory logic from high-throughput measurements of thousands of systematically designed promoters

Sharon E., Kalma Y., Sharp A., Raveh - Sadka -. S. T., Levo M., Zeevi D., Keren L., Yakhini Z., Weinberger A. & Segal E. (2012) Nature Biotechnology. 30, 6, p. 521-+

Cell lineage analysis of the mammalian female germline

Reizel Y., Itzkovitz S., Adar R., Elbaz J., Jinich A., Chapal Ilani I. N., Maruvka Y. E., Nevo N., Marx Z., Horovitz I., Wasserstrom A., Mayo A., Shur I., Benayahu D., Skorecki K., Segal E., Dekel N. & Shapiro E. (2012) PLoS Genetics. 8, 2, e1002477.

New insights into replication origin characteristics in metazoans

Cayrou C., Coulombe P., Puy A., Rialle S., Kaplan N., Segal E. & Mechali M. (2012) Cell Cycle. 11, 4, p. 658-667

2011

Compensation for differences in gene copy number among yeast ribosomal proteins is encoded within their promoters

Zeevi D., Sharon E., Lotan-Pompan M., Lubling Y., Shipony Z., Raveh - Sadka -. S. T., Keren L., Levo M., Weinberger A. & Segal E. (2011) Genome Research. 21, 12, p. 2114-2128

Computational Prediction of RNA Structural Motifs Involved in Post-Transcriptional Regulatory Processes

Rabani M., Kertesz M. & Segal E. (2011) Rna Detection And Visualization : Methods And Protocols . p. 467-479

High nucleosome occupancy is encoded at X-linked gene promoters in C. elegans

Ercan S., Lubling Y., Segal E. & Lieb J. D. (2011) Genome Research. 21, 2, p. 237-244

How Transcription Factors Identify Regulatory Sites in Genomic Sequence

Field Y., Sharon E. & Segal E. (2011) Handbook Of Transcription Factors . p. 193-204 (trueSubcellular Biochemistry).

2010

Integrative analysis of the Caenorhabditis elegans genome by the modENCODE project

Gerstein M. B., Lu Z. J., Van Nostrand E. L., Cheng C., Arshinoff B. I., Liu T., Yip K. Y., Robilotto R., Rechtsteiner A., Ikegami K., Alves P., Chateigner A., Perry M., Morris M., Auerbach R. K., Feng X., Leng J., Vielle A., Niu W., Rhrissorrakrai K., Agarwal A., Alexander R. P., Barber G., Brdlik C. M., Brennan J., Brouillet J. J., Carr A., Cheung M. S., Clawson H., Contrino S., Dannenberg L. O., Dernburg A. F., Desai A., Dick L., Dosé A. C., Du J., Egelhofer T., Ercan S., Euskirchen G., Ewing B., Feingold E. A., Gassmann R., Good P. J., Green P., Gullier F., Gutwein M., Guyer M. S., Habegger L., Han T., Henikoff J. G., Henz S. R., Hinrichs A., Holster H., Hyman T., Iniguez A. L., Janette J., Jensen M., Kato M., Kent W. J., Kephart E., Khivansara V., Khurana E., Kim J. K., Kolasinska-Zwierz P., Lai E. C., Latorre I., Leahey A., Lewis S., Lloyd P., Lochovsky L., Lowdon R. F., Lubling Y., Lyne R., MacCoss M., Mackowiak S. D., Mangone M., McKay S., Mecenas D., Merrihew G., Miller D. M., Muroyama A., Murray J. I., Ooi S. L., Pham H., Phippen T., Preston E. A., Rajewsky N., Rätsch G., Rosenbaum H., Rozowsky J., Rutherford K., Ruzanov P., Sarov M., Sasidharan R., Sboner A., Scheid P., Segal E., Shin H., Shou C., Slack F. J., Slightam C., Smith R., Spencer W. C., Stinson E. O., Taing S., Takasaki T., Vafeados D., Voronina K., Wang G., Washington N. L., Whittle C. M., Wu B., Yan K. K., Zeller G., Zha Z., Zhong M., Zhou X., Ahringer J., Strome S., Gunsalus K. C., Micklem G., Liu X. S., Reinke V., Kim S. K., Hillier L. W., Henikoff S., Piano F., Snyder M., Stein L., Lieb J. D. & Waterston R. H. (2010) Science. 330, 6012, p. 1775-1787

Widespread compensatory evolution conserves DNA-encoded nucleosome organization in yeast

Kenigsberg E., Bar A., Segal E. & Tanay A. (2010) PLoS Computational Biology. 6, 12, e1001039.

Contribution of histone sequence preferences to nucleosome organization: Proposed definitions and methodology

Kaplan N., Hughes T. R., Lieb J. D., Widom J. & Segal E. (2010) GENOME BIOLOGY. 11, 11, 140.

Overlapping codes within protein-coding sequences

Itzkovitz S., Hodis E. & Segal E. (2010) Genome Research. 20, 11, p. 1582-1589

p53 binds preferentially to genomic regions with high DNA-encoded nucleosome occupancy

Nili E. L., Field Y., Lubling Y., Widom J., Oren M. & Segal E. (2010) Genome Research. 20, 10, p. 1361-1368

Genome-wide measurement of RNA secondary structure in yeast

Kertesz M., Wan Y., Mazor E., Rinn J. L., Nutter R. C., Chang H. Y. & Segal E. (2010) Nature. 467, 7311, p. 103-107

Long noncoding RNA as modular scaffold of histone modification complexes

Tsai M., Manor O., Wan Y., Mosammaparast N., Wang J. K., Lan F., Shi Y., Segal E. & Chang H. Y. (2010) Science. 329, 5992, p. 689-693

Nucleosome sequence preferences influence in vivo nucleosome organization

Kaplan N., Moore I., Fondufe-Mittendorf Y., Gossett A. J., Tillo D., Field Y., Hughes T. R., Lieb J. D., Widom J. & Segal E. (2010) Nature Structural & Molecular Biology. 17, 8, p. 918-920

High nucleosome occupancy is encoded at human regulatory sequences

Tillo D., Kaplan N., Moore I. K., Fondufe-Mittendorf Y., Gossett A. J., Field Y., Lieb J. D., Widom J., Segal E. & Hughes T. R. (2010) PLoS ONE. 5, 2, e9129.

2009

Proteome-wide prediction of acetylation substrates

Basu A., Rose K. L., Zhang J., Beavis R. C., Ueberheide B., Garcia B. A., Chait B., Zhao Y., Hunt D. F., Segal E., Allis C. D. & Hake S. B. (2009) Proceedings of the National Academy of Sciences of the United States of America. 106, 33, p. 13785-13790

Incorporating nucleosomes into thermodynamic models of transcription regulation

Raveh - Sadka -. S. T., Levo M. & Segal E. (2009) Genome Research. 19, 8, p. 1480-1496

What controls nucleosome positions?

Segal E. & Widom J. (2009) Trends in Genetics. 25, 8, p. 335-343

From DNA sequence to transcriptional behaviour: A quantitative approach

Segal E. & Widom J. (2009) Nature Reviews Genetics. 10, 7, p. 443-456

Gene expression divergence in yeast is coupled to evolution of DNA-encoded nucleosome organization

Field Y., Fondufe-Mittendorf Y., Moore I. K., Mieczkowski P., Kaplan N., Lubling Y., Lieb J. D., Widom J. & Segal E. (2009) Nature Genetics. 41, 4, p. 438-445

The DNA-encoded nucleosome organization of a eukaryotic genome

Kaplan N., Moore I. K., Fondufe-Mittendorf Y., Gossett A. J., Tillo D., Field Y., LeProust E. M., Hughes T. R., Lieb J. D., Widom J. & Segal E. (2009) Nature. 458, 7236, p. 362-366

Poly(dA:dT) tracts: major determinants of nucleosome organization

Segal E. & Widom J. (2009) Current Opinion in Structural Biology. 19, 1, p. 65-71

Modeling interactions between adjacent nucleosomes improves genome-wide predictions of nucleosome occupancy

Lubliner S. & Segal E. (2009) Bioinformatics. 25, 12, p. i348-i355

2008

Stemness, cancer and cancer stem cells

Wong D. J., Segal E. & Chang H. Y. (2008) Cell Cycle. 7, 23, p. 3622-3624

Distinct modes of regulation by chromatin encoded through nucleosome positioning signals

Field Y., Kaplan N., Fondufe-Mittendorf Y., Moore I. K., Sharon E., Lubling Y., Widom J. & Segal E. (2008) PLoS Computational Biology. 4, 11, e1000216.

Computational prediction of RNA structural motifs involved in posttranscriptional regulatory processes

Rabani M., Kertesz M. & Segal E. (2008) Proceedings of the National Academy of Sciences of the United States of America. 105, 39, p. 14885-14890

A feature-based approach to modeling protein-DNA interactions

Sharon E., Lubliner S. & Segal E. (2008) PLoS Computational Biology. 4, 8, e1000154.

Geometric constraints on neuronal connectivity facilitate a concise synaptic adhesive code

Itzkovitz S., Baruch L., Shapiro E. & Segal E. (2008) Proceedings of the National Academy of Sciences of the United States of America. 105, 27, p. 9278-9283

Using expression profiles of Caenorhabditis elegans neurons to identify genes that mediate synaptic connectivity

Baruch L., Itzkovitz S., Golan Mashiach M. M., Shapiro E. & Segal E. (2008) PLoS Computational Biology. 4, 7, e1000120.

Module Map of Stem Cell Genes Guides Creation of Epithelial Cancer Stem Cells

Wong D. J., Liu H., Ridky T. W., Cassarino D., Segal E. & Chang H. Y. (2008) Cell Stem Cell. 2, 4, p. 333-344

Reversal of aging by NFκB blockade

Adler A. S., Kawahara T. L., Segal E. & Chang H. Y. (2008) Cell Cycle. 7, 5, p. 556-559

Systematic functional characterization of cis-regulatory motifs in human core promoters

Sinha S., Adler A. S., Field Y., Chang H. Y. & Segal E. (2008) Genome Research. 18, 3, p. 477-488

Predicting expression patterns from regulatory sequence in Drosophila segmentation

Segal E., Raveh - Sadka -. S. T., Schroeder M., Unnerstall U. & Gaul U. (2008) Nature. 451, 7178, p. 535-540

Revealing targeted therapy for human cancer by gene module maps

Wong D. J., Nuyten D. S., Regev A., Lin M., Adler A. S., Segal E., Van De Vijver M. J. & Chang H. Y. (2008) Cancer Research. 68, 2, p. 369-378

Monoubiquitinated H2B is associated with the transcribed region of highly expressed genes in human cells

Minsky N., Shema E., Field Y., Schuster M., Segal E. & Oren M. (2008) Nature Cell Biology. 10, 4, p. 483-488

Transient transcriptional responses to stress are generated by opposing effects of mRNA production and degradation

Shalem O., Dahan O., Levo M., Martinez M. R., Furman I., Segal E. & Pilpel Y. (2008) Molecular Systems Biology. 4, 4.

2007

Motif module map reveals enforcement of aging by continual NF-κB activity

Adler A. S., Sinha S., Kawahara T. L., Zhang J. Y., Segal E. & Chang H. Y. (2007) GENES & DEVELOPMENT. 21, 24, p. 3244-3257

The role of site accessibility in microRNA target recognition

Kertesz M., Iovino N., Unnerstall U., Gaul U. & Segal E. (2007) Nature Genetics. 39, 10, p. 1278-1284

Zinc-ion binding and cytokine activity regulation pathways predicts outcome in relapsing-remitting multiple sclerosis

Achiron A., Gurevich M., Snir Y., Segal E. & Mandel M. (2007) Clinical and Experimental Immunology. 149, 2, p. 235-242

Functional Demarcation of Active and Silent Chromatin Domains in Human HOX Loci by Noncoding RNAs

Rinn J. L., Kertesz M., Wang J. K., Squazzo S. L., Xu X., Brugmann S. A., Goodnough L. H., Helms J. A., Farnham P. J., Segal E. & Chang H. Y. (2007) Cell. 129, 7, p. 1311-1323

Decoding global gene expression programs in liver cancer by noninvasive imaging

Segal E., Sirlin C. B., Ooi C., Adler A. S., Gollub J., Chen X., Chan B. K., Matcuk G. R., Barry C. T., Chang H. Y. & Kuo M. D. (2007) Nature biotechnology. 25, 6, p. 675-680

A transcriptional program mediating entry into cellular quiescence

Liu H., Adler A. S., Segal E. & Chang H. Y. (2007) PLoS Genetics. 3, 6, p. 996-1008

A module of negative feedback regulators defines growth factor signaling

Amit I., Citri A., Shay T., Lu Y., Katz M., Zhang F., Tarcic G., Siwak D., Lahad J., Jacob-Hirsch J., Amariglio N., Vaisman N., Segal E., Rechavi G., Alon U., Mills G. B., Domany E. & Yarden Y. (2007) Nature Genetics. 39, 4, p. 503-512

A feature-based approach to modeling protein-DNA interactions

Sharon E. & Segal E. (2007) RESEARCH IN COMPUTATIONAL MOLECULAR BIOLOGY, PROCEEDINGS. 4453, p. 77-91

2006

A genomic code for nucleosome positioning

Segal E., Fondufe-Mittendorf Y., Chen L., Thastroem A., Field Y., Moore I. K., Wang J. Z. & Widom J. (2006) Nature. 442, 7104, p. 772-778

2005

Separating the contribution of translational and rotational diffusion to protein association

Kuttner Y., Kozer N., Segal E., Schreiber G. & Haran G. (2005) Journal of the American Chemical Society. 127, 43, p. 15138-15144

2003

Module networks: Identifying regulatory modules and their condition-specific regulators from gene expression data

Segal E., Shapira M., Regev A., Pe'er D., Botstein D., Koller D. & Friedman N. (2003) Nature Genetics. 34, 2, p. 166-176