Publications

2023

113.
Ullman S., Assif L., Strugatski A., Vatashsky B. Z., Levi H., Netanyahu A. & Yaari A. (2023) Proceedings of the National Academy of Sciences of the United States of America. 120, 40, e221117912.  Abstract
112.
Segev D., Basri R., Batash T. et al. (2023) 2023 IEEE International Symposium on Biomedical Imaging, ISBI 2023.  Abstract [All authors]
111.
Doveh S., Arbelle A., Harary S. et al. (2023) Proceedings - 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023. p. 2657-2668  Abstract [All authors]
110.
Doveh S., Arbelle A., Harary S. et al. (2023) Advances in Neural Information Processing Systems. Vol. 36. p. 76137-76150  Abstract [All authors]

2022

109.
Zohary E., Harari D., Ullman S., Ben-Zion I., Doron R., Attias S., Porat Y., Sklar A. Y. & Mckyton A. (2022) Proceedings of the National Academy of Sciences of the United States of America. 119, 20, e211718411.  Abstract

2021

108.
Gruber L. Z., Ullman S. & Ahissar E. (2021) Proceedings of the National Academy of Sciences - PNAS. 118, 34, e202279211.  Abstract
107.
Nam Y., Sato T., Uchida G., Malakhova E., Ullman S. & Tanifuji M. (2021) Scientific Reports. 11, 7827.  Abstract
106.
Arbelle A., Doveh S., Alfassy A. et al. (2021) Proceedings - 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021. p. 1781-1792  Abstract [All authors]

2020

105.
Ben-Yosef G., Kreiman G. & Ullman S. (2020) Cognition. 201, 104263.  Abstract

2019

104.
Holzinger Y., Ullman S., Harari D., Behrmann M. & Avidan G. (2019) Journal of Cognitive Neuroscience. 31, 9, p. 1354-1367  Abstract
103.
Preis S. G., Chayet H., Katz A., Yashunsky V., Kaner A., Ullman S. & Braslavsky I. (2019) Science Advances. 5, 3, 1598.  Abstract
102.
Ullman S. (2019) Science. 363, 6428, p. 692-693  Abstract

2018

101.
Ullman S., Dorfman N. & Harari D. (2018) Cognition. 183, p. 67-81  Abstract
100.
Owaki T., Vidal-Naquet M., Nam Y., Uchida G., Sato T., Cateau H., Ullman S. & Tanifuji M. (2018) PLoS ONE. 13, 9, 0201192.  Abstract
99.
Ben-Yosef G. & Ullman S. (2018) Interface Focus. 8, 4, 20180020.  Abstract
98.
Ben-Yosef G., Assif L. & Ullman S. (2018) Cognition. 171, p. 65-84  Abstract
97.
Action Classification via Concepts and Attributes
Rosenfeld A. & Ullman S. (2018) 2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR). p. 1499-1505 (trueInternational Conference on Pattern Recognition).  Abstract

2017

96.
Rosenfeld A. & Ullman S. (2017) COMPUTER VISION - ACCV 2016, PT V. Lepetit, Nishino K., Lai SH. & Sato Y.(eds.). p. 264-279 (trueLecture Notes in Computer Science).  Abstract

2016

95.
Rosenfeld A. & Ullman S. (2016) Proceedings - 2016 13th Conference on Computer and Robot Vision, CRV 2016. p. 148-155  Abstract
94.
Ullman S., Assif L., Fetaya E. & Harari D. (2016) Proceedings of the National Academy of Sciences of the United States of America. 113, 10, p. 2744-2749  Abstract

2015

93.
De La Rosa L. R. S., Choudhery R. N., Curio C., Ullman S., Assif L. & Buelthoff H. H. (2015) Visual Cognition. 22, p. 1233-1271  Abstract
92.
Do You See What I Mean? Visual Resolution of Linguistic Proc. Empirical Methods on Natural Language Processing
Berzak, Y., Barbu et al. (2015) [All authors]
91.
A Model for Full Local Image Interpretation
Ben-Yosef, G., Assif, L., Harari, D., Ullman, S (2015) The Annual Conference of the Cognitive Science Society - CogSci.

2014

90.
Markov N. T., Vezoli J., Chameau P. et al. (2014) Journal of Comparative Neurology. 522, 1, p. 225-259  Abstract [All authors]

2013

89.
Poggio T. & Ullman S. (2013) Conference Reports: Evolutionary Dynamics And Information Hierarchies In Biological Systems: Aspen Center For Physics Workshop And Cracking The Neural Code: Third Annual Aspen Brain Forums. 1305, 1, p. 72-82  Abstract
88.
Learning to Perceive Coherent Objects
Dorfman, N., Harari, D. And Ullman, S. (2013) Proceedings of the Annual Meeting of the Cognitive Science Society - CogSci, pp 394-399.

[PDF]  [Slides]  [Project page]

*Winner of the 2013 Marr Prize

2012

87.
Ullman S., Harari D. & Dorfman N. (2012) Proceedings of the National Academy of Sciences of the United States of America. 109, 44, p. 18215-18220  Abstract
86.
Karlinsky L. & Ullman S. (2012) Computer Vision, ECCV 2012 - 12th European Conference on Computer Vision, Proceedings. PART 3 ed. p. 326-339  Abstract

2011

85.
Harel A., Ullman S., Harari D. & Bentin S. (2011) Journal of Vision. 11, 8, p. 1-13  Abstract
84.
Owaki T., Vidal-Naquet M., Sato T., Cateau H., Ullman S. & Tanifuji M. (2011) Neuroscience Research. 71, p. E71-E71  Abstract

2010

83.
Levi D. & Ullman S. (2010) Image and Vision Computing. 28, 4, p. 715-723  Abstract
82.
Using body-anchored priors for identifying actions in single images
Karlinsky L., Dinerstein M. & Ullman S. (2010) Advances in Neural Information Processing Systems 23.  Abstract
81.
Karlinsky L., Dinerstein M., Harari D. & Ullman S. (2010) 2010 Ieee Conference On Computer Vision And Pattern Recognition (Cvpr). p. 25-32  Abstract
80.
Vidal-Naquet M. J., Tanifuji M., Maldonado P., Ullman S. & Gruen S. (2010) Neuroscience Research. 68, p. E380-E380  Abstract
79.
Using body-anchored priors for identifying actions in single images
Karlinsky, L. Dinershtein, D. Ullman, S. (2010) Neural Information Processing, 1-9, 2010..

2009

78.
Litvak S. & Ullman S. (2009) Neural Computation. 21, 11, p. 3010-3056  Abstract
77.
Levi D. & Ullman S. (2009) Proceedings of the 2009 Canadian Conference on Computer and Robot Vision, CRV 2009. p. 260-267  Abstract
76.
Ecker A. & Ullman S. (2009) Image and Vision Computing. 27, 1-2, p. 87-98  Abstract
75.
Unsupervised Feature Optimization (UFO): simultaneous selection of multiple features with their detection parameters
Karlinsky L., Dinerstein M. & Ullman S. (2009) Cvpr: 2009 Ieee Conference On Computer Vision And Pattern Recognition, Vols 1-4. p. 1263-1270  Abstract

2008

74.
Akselrod-Ballin A. & Ullman S. (2008) Image and Vision Computing. 26, 9, p. 1269-1276  Abstract
73.
Bart E. & Ullman S. (2008) IEEE Transactions on Pattern Analysis and Machine Intelligence. 30, 9, p. 1618-1631  Abstract
72.
Goldberg I., Ullman S. & Malach R. (2008) Consciousness and Cognition. 17, 3, p. 587-601  Abstract
71.
Epshtein B., Lifshitz I. & Ullman S. (2008) Proceedings of the National Academy of Sciences of the United States of America. 105, 38, p. 14298-14303  Abstract
70.
Lerner Y., Epshtein B., Ullman S. & Malach R. (2008) Journal of Cognitive Neuroscience. 20, 7, p. 1189-1206  Abstract
69.
Mcmanus J. N., Ullman S. & Gilbert C. D. (2008) Journal of Neurophysiology. 99, 5, p. 2086-2100  Abstract
68.
Fink M. & Ullman S. (2008) International Journal of Computer Vision. 77, 1-3, p. 143-156  Abstract
67.
Unsupervised Classification and Part Localization by Consistency Amplification
Karlinsky L., Dinerstein M., Levi D. & Ullman S. (2008) Computer Vision - Eccv 2008, Pt Ii, Proceedings. 5303, p. 321-335  Abstract
66.
Borenstein E. & Ullman S. (2008) IEEE Transactions on Pattern Analysis and Machine Intelligence. 30, 12, p. 2109-2125  Abstract
65.
Combined model for detecting, localizing and recognizing faces
Karlinsky, L. Dinershtein, M. Levi, D. Ullman, S. (2008) ECCV Workshop on Faces in Real-life Images, pp. 1-14..

2007

64.
Harel A., Ullman S., Epshtein B. & Bentin S. (2007) Vision Research. 47, 15, p. 2010-2020  Abstract
63.
Ullman S. (2007) Trends in Cognitive Sciences. 11, 2, p. 58-64  Abstract
62.
Semantic hierarchies for recognizing objects and parts
Epshtein B. & Ullman S. (2007) 2007 Ieee Conference On Computer Vision And Pattern Recognition, Vols 1-8. p. 891-898  Abstract
61.
Uncovering Shared Structures in Multiclass Classification
Amit, Y., Srebro, N., Ullman, S. And Fink, M (2007) ICML, 227, pp. 17-24..

2006

60.
Visual classification by a hierarchy of extended fragments
Ullman S. & Epshtein B. (2006) Toward Category-Level Object Recognition. 4170, p. 321-344  Abstract
59.
Fink M., Shalev-Shwartz S., Singer Y. & Ullman S. (2006) ACM International Conference Proceeding Series - Proceedings of the 23rd International Conference on Machine Learning, ICML 2006. p. 313-320  Abstract
58.
Online Multiclass Learning by Interclass Hypothesis Sharing
Fink, M., Shalev-Shwartz, S., Singer, Y. And Ullman, S. (2006) ICML, pp. 313-320.
57.
Learning to classify by ongoing feature selection
Levi, D. And Ullman (2006) CRV, Recipient of Best CRV Paper Award.
56.
Satellite Features for the Classification of Visually Similar Classes
Epstein, B. And Ullman, S. (2006) CVPR, pp. 2079-2086.
55.
Object recognition by eliminating distracting information
Bart, E. And Ullman, S. (2006) ICCVG, Warsaw, Poland..

2005

54.
Shmuel A., Korman M., Sterkin A., Harel M., Ullman S., Malach R. & Grinvald A. (2005) Journal of Neuroscience. 25, 8, p. 2117-2131  Abstract
53.
Cross-generalization: learning novel classes from a single example by feature replacement
Bart E. & Ullman S. (2005) 2005 Ieee Computer Society Conference On Computer Vision And Pattern Recognition, Vol 1, Proceedings. p. 672-679  Abstract
52.
Identifying semantically equivalent object fragments
Epshtein B. & Ullman S. (2005) 2005 Ieee Computer Society Conference On Computer Vision And Pattern Recognition, Vol 1, Proceedings. p. 2-9  Abstract
51.
Feature hierarchies for object classification
Epshtein B. & Ullman S. (2005) Tenth Ieee International Conference On Computer Vision, Vols 1 And 2, Proceedings. p. 220-227  Abstract
50.
Single-example learning of novel classes using representation by similarity
Bart, E. And Ullman, S. (2005) BMVC, Oxford, England .
49.
Learning a novel class from a single example by cross-generalization.
E. Bart And S. Ullman (2005) CVPR, pp. 1063-1069.
48.
A fragment based approach for the characterization of V1 receptive fields
Vidal Naquet, M. Miyakawa, N. et al. (2005) SFN Abstract. [All authors]
47.
A hierarchical non-parametric method for capturing non-rigid transformation
Ecker, A. And Ullman, S. (2005) Canadian Robotics and Vision Conference, pp. 50-56.

2004

46.
Zur D., Ben Simon S. G., Loewenstein A., Alster Y., Moisseiev J. & Ullman S. (2004) Ophthalmic Surgery Lasers and Imaging. 35, 5, p. 395-405  Abstract
45.
Ullman S. & Bart E. (2004) Neural Networks. 17, 5-6, p. 833-848  Abstract
44.
Borenstein E. & Ullman S. (2004) Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 3023, p. 315-328  Abstract
43.
View-invariant recognition using corresponding object fragments
Bart E., Byvatov E. & Ullman S. (2004) Computer Vision - Eccv 2004, Pt 2. 3022, p. 152-165  Abstract
42.
Combining bottom-up and top-down segmentation
E. Borenstein And S. Ullman (2004) CVPR workshop on Perceptual Organization in Computer Vision.
41.
Class-based matching of object parts
E. Bart And S. Ullman (2004) CVPR Workshop on Image and Video Registration.
40.
Image normalization by mutual information
E. Bart And S. Ullman (2004) Bmvc.

2003

39.
Zur D. & Ullman S. (2003) Vision Research. 43, 9, p. 971-982  Abstract
38.
Object recognition with informative features and linear classi cation pound
Vidal-Naquet M. & Ullman S. (2003) Ninth Ieee International Conference On Computer Vision, Vols I And Ii, Proceedings. p. 281-288  Abstract
37.
Approaches to visual recognition
Ullman, S (2003) Attention and Performance XX, Oxford University Press..

2002

36.
Ullman S., Vidal-Naquet M. & Sali E. (2002) Nature Neuroscience. 5, 7, p. 682-687  Abstract
35.
Class-specific, top-down segmentation
Borenstein E. & Ullman S. (2002) Computer Vision - Eccv 2002, Pt Ii. 2351, p. 109-122  Abstract
34.
Gilaie-Dotan S., Ullman S., Kushnir T. & Malach R. (2002) Human Brain Mapping. 15, 2, p. 67-79  Abstract

2001

33.
A fragment-based approach to object representation and classification
Ullman, S., Sali, E. & Vidal-Naquet, M (2001) International Workshop on Visual Form, Berlin: Springer, 85-100..

2000

32.
Object classification using a fragment-based representation
Ullman S. & Sali E. (2000) Biologically Motivated Computer Vision, Proceeding. 1811, p. 73-87  Abstract

1999

31.
Ullman S. & Soloviev S. (1999) Neural Networks. 12, 7-8, p. 1021-1036  Abstract
30.
Combining class-specific fragments for object classification.
Sali, E. & Ullman, S. (1999) In Proc. 10th British Machine Vision Conference, volume 1, 203 - 213..
29.
Detecting object classes by the detection of overlapping 2-D fragments.
Sali, E. & Ullman, S. In: D. Chernikov & T. Szinanyi, (Eds.) (1999) Proceedings of the Workshop on Fundamental Structural Properties in Image and Pattern Analysis, 123-132. Published by OCG, Austrian Computer Society..

1998

28.
Ullman S. (1998) Cognition. 67, 1-2, p. 21-44  Abstract
27.
Moses Y. & Ullman S. (1998) International Journal of Computer Vision. 29, 3, p. 233-253  Abstract
26.
Recognizing novel 3-D objects under new illumination and viewing position using a small number of example views or even a single view
Sali E. & Ullman S. (1998) p. 153-161  Abstract

1997

25.
Adini Y., Moses Y. & Ullman S. (1997) IEEE Transactions on Pattern Analysis and Machine Intelligence. 19, 7, p. 721-732  Abstract
24.
Object recognition using stochastic optimization
Ullman S. & Zeira A. (1997) Energy Minimization Methods In Computer Vision And Pattern Recognition, Proceedings. 1223, p. 329-344  Abstract
23.
Ullman S., Roth A., Thomson A. & Linne M. (1997) Trends in Neurosciences. 20, 2, p. 53-54  Abstract

1996

22.
Bar M. & Ullman S. (1996) Perception. 25, 3, p. 343-352  Abstract
21.
Moses Y., Ullman S. & Edelman S. (1996) Perception. 25, 4, p. 443-461  Abstract

1995

20.
Ullman S. (1995) Cerebral Cortex. 5, 1, p. 1-11  Abstract

1993

19.
Basri R. & Ullman S. (1993) Cvgip-Image Understanding. 57, 3, p. 331-345  Abstract

1992

18.
LIMITATIONS OF NONMODEL-BASED RECOGNITION SCHEMES
Moses Y. & Ullman S. (1992) Computer Vision - Eccv 92. 588, p. 820-828  Abstract
17.
Moses Y. & Ullman S. (1992) Computer Vision - ECCV 1992 - 2nd European Conference on Computer Vision, Proceedings. p. 820-828  Abstract
16.
Ullman S. (1992) Philosophical Transactions of the Royal Society of London Series b-Biological Sciences. 337, 1281, p. 371-378; discussion 379  Abstract

1991

15.
Ullman S. & Basri R. (1991) IEEE Transactions on Pattern Analysis and Machine Intelligence. 13, 10, p. 992-1006  Abstract
14.
Dick M., Ullman S. & Sagi D. (1991) Vision Research. 31, 11, p. 2025-2028  Abstract

1990

13.
Edelman S., Flash T. & Ullman S. (1990) International Journal of Computer Vision. 5, 3, p. 303-331  Abstract
12.
Moses Y., Schechtman G. & Ullman S. (1990) Biological Cybernetics. 63, 6, p. 463-475  Abstract
11.
BEYOND V1 - PROBLEMS IN INTERMEDIATE-LEVEL VISION
Ullman S. (1990) Signal And Sense: Local And Global Order In Perceptual Maps. p. 143-162  Abstract

1989

10.
Ullman S. (1989) Cognition. 32, 3, p. 193-254  Abstract

1988

9.
FROM PIXELS TO PREDICATES - RECENT ADVANCES IN COMPUTATIONAL AND ROBOTIC VISION - PENTLAND,AP
Ullman S. (1988) Contemporary Psychology. 33, 1, p. 48-48  Abstract

1987

8.
Dick M., Ullman S. & Sagi D. (1987) Science. 237, 4813, p. 400-402  Abstract

1986

7.
Richter J. & Ullman S. (1986) Biological Cybernetics. 54, 4-5, p. 313-317  Abstract
6.
Richter J. & Ullman S. (1986) Biological Cybernetics. 53, 3, p. 195-202  Abstract
5.
Ullman S. (1986) Trends in Neurosciences. 9, C, p. 530-533  Abstract
4.
Artificial intelligence and the brain: Computational studies of the visual system
Ullman S. (1986) Annual Review of Neuroscience. VOL. 9, p. 1-26  Abstract

1985

3.
Shifts in selective visual attention: Towards the underlying neural circuitry
Koch C. & Ullman S. (1985) Human Neurobiology. 4, 4, p. 219-227  Abstract

1982

2.
Ullman S. & Schechtman G. (1982) Proceedings Of The Royal Society Series B-Biological Sciences. 216, 1204, p. 299-313  Abstract

1981

1.