ML Course 2023 (Weissman Auditorum Tuesdays)

Welcome to the Weizmann practical Deep Learning Course 2023

All communication with the lecturers will be made via SLACK. join here:

join slack channel

Your lecturers and TAs are
Etienne Dreyer, Nilotpal Kakati, Dmitrii Kobylianskii and Prof Eilam Gross.

The grading system is based on your mandatory homework assignments (10%), a project (30%), and a take-home assignment (60%).

All lecture slides and tutorial code will be posted below.

Date Lecture Slides
& Video
Tutorial  Slides
& Video
Tutorial 2 Slides
& Video
18/4/2023

Eilam:

Introduction

Lecture 1: Introduction

Etienne:

Python essentials

 

python notebook

 

Etienne:

NumPy and grad. desc.

numpy notebook

grad. notebook

9/5/2023 Eilam:
Backpropagation

Lecture 2

Back-propagation

Nilotpal

 pytorch

materials

Nilotpal:

homework 1

Classification

GitHub assignment

hw1 solution

16/5/2023 Eilam:
Convolutional NN
Lecture 3

Nilotpal:

CNNs

materials

Dmitrii:

Optimisation,
Regularisation

materials

23/5/2023

Eilam:

CNN architectures and RNN

Lecture 4, CNN and RNN

Lecture 4, CNN RNN Video

Eilam:

GAN

GAN
recording

GAN PDF

Etienne:

homework 2

transfer learning and denoising

Transfer learning notebooks

hw2 solution

30/5/2023 Etienne:
Autoencoders
(VAE)

Lecture 5
VAE slides

Nilotpal:
VAE tutorial

PDF

materials

Nilotpal:
DCGAN tutorial

PDF

materials

6/6/2023

Eilam:

Graph Neural Networks

GNN Lecture
 

Etienne:
GNN tutorial

materials

Etienne:

homework3

Graph Neural Networks

homework3 assignment

hw3 solution

13/6/2023

Nilotpal:

Attention is All You Need
(Transformers)

Lecture 7: attention

Nilotpal:

Attention tutorial

Material

 

 
27/6/2023

Eilam:

Attenion on Attention

Detection & Segmentation

Attention

Segmentation

 

Nilotpal:
UNET

 

Material

Etienne:
 

Homework 4:
Attention

homework4 overview recording

homework4 assignment

hw4 solution

4/7/2023

 

Nilotpal:
Diffusion

Lecture slides

 

Dmitrii:
Diffusion tutorial

Material

 

Nilotpal
Bayesian NN
 

Bayesian NN

11/7/2023

Eilam:
Deep Reinforcement Learning

Deep Reinforcement Learning

Dmitrii:

Deep Q-learning tutorial

 

Recording

Material

Etienne:

Homework 5 Pong with policy gradient

homework5 overview recording

homework5 assignment

hw5 solution

18/7/2023 Project Proposals I          
25/7/2023 Project Proposals II          

TBA
Take home
5 hours
From 9AM

Take Home Assignement          

TBA

11:00-16:00

Project Presentations (POSTERs festival)